Summary on the Potential Function of the Colored Jones
Polynomial with Arbitrary Colors

Shun Sawabe
Waseda University

1 Introduction

Kashaev [8] observed that a certain limit of the Kashaev invariant for some hyperbolic
knots is equal to the hyperbolic volume of their complements. Murakami-Murakami [10]
proved that the Kashacv invariant for a link L coincides with the colored Jones polyno-

mial Jy(L;q) evaluated at the root of unity &y = e%Tﬁ, and reformulated Kashaev’s
conjecture as the volume conjecture.

Conjecture 1.1 (the volume conjecture [10]). For any knot K,

9 lim log |Jn (K59 = En)|
N—oo N

= v K],
where vs is the volume of the ideal reqular tetrahedron in the three-dimensional hyperbolic
space and || - || is the simplicial volume for the complement of K.

Many variations and generalizations of the volume conjecture have been proposed. One
of them is the Chen-Yang conjecture.

Conjecture 1.2 (the Chen-Yang conjecture [3]). For any 3-manifold M with a complete
hyperbolic structure of the finite volume,

o tim 18TV =)

r—00 r

= Vol(M),

where r runs over all odd integers, TV (M) is a Turaev-Viro invariant of M and Vol(M)
s a hyperbolic volume of M.

Detcherry-Kalfragianni-Yang [4] proved that for an odd integer » > 3 and r-th root of
unity u, the Turaev-Viro invariant 7V (5% \ L,u) for the complement of a link L can be
written as a summation of |.J;(L;u?)? with respect to ¢, and proved Conjecture 1.2 for
the complements of the figure-eight knot and the Borromean rings.

These conjectures are still open, but we can provide theoretical evidence. One idea of
proof of the volume conjecture is to use the saddle point method. For a sufficiently large
integer IV, if a certain quantity )y depending on N can be asymptotically written of the
form

N
On ~ / B / PNeﬁQJ(zL...,zV)dzl coodzy,
Q
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where Py grows at most polynomially and €2 is a region in C”, then, a saddle point of the
function ®(zy,..., 2,) contributes to the limit of Q.

Definition 1.3. We call the function ®(zi,...,z,) a potential function of Q.

Yokota [15] established the relationship between a saddle point equation of the potential
function of the Kashacv invariant and the triangulation of a hyperbolic knot complement.
Cho-Murakami [2] considered a potential function of the colored Jones polynomial eval-
uated at the root of unity. The upshot of their works is as follows: The saddle point
equation of the potential function coincides with the ‘gluing equation’ of the triangula-
tion. In this study, we will consider the potential function of J;(L;q = £y) and explore
geometric meanings. Specifically, we obtain the following theorem:

Theorem 1.4 ([11]). Let D be a diagram of a hyperbolic link with n components, and
let 1 be (1,...,1) € Z™. The point (1,01(1),...,0,(1)) is a saddle point of the function
Dp(ay,...,ap,wi,...,w,) and gives a complete hyperbolic structure to the link comple-
ment.

Besides, a parametrized potential function is conjectured to lead the A-polynomial of a
knot [7, 16]. On the other hand, the AJ conjecture [5] also states the relationship between
the colored Jones polynomial and the A-polynomial. In this context, we will view the AJ
conjecture from the perspective of the potential function.

2 Potential function

2.1 Colored Jones polynomial

Let N, N’ be integers, and let m, m’ be half-integers satisfying N = 2m + 1 and N’ =
2m/+1. Moreover, let V' and V' be an N-dimensional vector space and an N’-dimensional
vector space whose bases are {e,...,e,} and {¢',,, ... e} respectively. The colored
Jones polynomial is obtained by the following R-matrix R: V @ V' - V' @V

RVV’ (61' X 6;)

min{m-+i, m’'—j} o
_ Z (_1)k+k(m+m')+2zjq—z’j—@+w
k=0
{m—i+k}{m' +j+Ek}!,
] — ) ; Y ej+k®ei—k7
{E}{m —i}{m' + j}!

and its inverse [9, 11]. Here, for an integer k,

(kY =q> —q 2, {k}={k}HE—-1}--- {1}, {0}l =1.

Remark 2.1. The integer NN is a dimension of a U, (sly)-representation assigned to a link
component. We call the integer a color.

k
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We put

val(ei X 6;) = z:(.R-i_)Zld~C & ey,

k.l

Ryyi(ej@e;) =Y (R)e,®e;.
k,l

We assign these coefficients to each crossing of a diagram of a link L as shown in Figure
1. We also assign (—1)¥~1¢** to the maximum points of the diagram depending on the

k l k l
wi e L X
Y TAY

Figure 1: A crossing and the coefficient of the R-matrix.
orientation of the string as shown in Figure 2. Note that indices are labeled to the edges
(—1)N-1gi - m (—1)N-1g70 m
N-1 :ti'

Figure 2: A maximum point and (—1)" "¢

of the diagram. For arguments of the potential function later, we change the indices i,
J, k, and [ to the ones labeled to four regions around the crossing. See Figure 3. Under

)
ky T k. : i=k —k,
Figure 3: An index i labeled to an edge and indices k&, &, labeled to regions.

the change of indices, we obtain the R-matrix RE(m,m’, kj,, kj,, ki, kj, ), where kj,, kj,,

kj,, and kj;, are indeces as shown in Figure 4. Here, the indices ¢, j, k, [ and k;,,..., k),
satisfy

@ =kj, — kj,,

j :kh - kj27

k= kj2+kj4 - kjl - kj3

The colored Jones polynomial J;(L;q) for n-component link L, where ¢ = (iy,...,14,) is
an n-tuple of colors, is the multiplication of all these factors with modification for the
Reidemeister move I. We normalize the colored Jones polynomial so that the polynomial
for a trivial link with any colors 4 is equal to 1.



Figure 4: Indices around a crossing.

2.2 Potential function

Let L be an n-component hyperbolic link. We fix a diagram D of L. A procedure to
obtain a potential function of J;(L; &X,), where p = 1 or 2, is as follows: First, we obtain
a local potential function (I)jE assigned to each crossing ¢ of D by approximating the
R-matrix with continuous functlons At this step, each quantum factorial becomes the
dilogarithm function defined by

Lis(z) = — /OZ Mdaﬁ.

x
Let an and by be colors. We put

. an . by
a= lim —, and b = lim —.
N—ooco N N—o0

Functions (I>ci7p arc as follows:

vt
S, =1 (a,b,wj,, wj,, Wy, wj,)

}w/
wJ4

/ js L (I)Zp = p(nv/—1a)* + [ (a,a,wi, wiy, wj,, w;,)
]o

Y

w]l w]a . cbcm = fp (a,b, Wiy s Wiy Wiz w.74)

W

7 —
wNj:« : (1)7 —p(mv/— a) + f];(avaﬂwjuwjszjsvwh)
Ayiz



Here, wj, = Z ,withe=1,...,4, and

1 b s
f;(a, b, wj17wj27wj37wj4) S {7T /__1p2(1+ log Wi, Wiy

wj 2 Wi,

w?
— p*log 2 Wiz log o Liy ( —;) Li, (eb 7 )
.71 J2 ]
WP 2
+ Li, <—]2 “) + Li, (ep ]1) Lis (eb Zf’) — W—} ,
w]1w13 w]z w]z 6

_ 1 a+b Wi, W,
fp <a7bawj17wj27wj37wj4):;j{_WV_MDQ 9 log —

Wi, Wy,

w’-’ w?
+ p®log —2 1} log — Liy ( ;1> — Liy (eb f)
Wia wﬁ “wj, Wi,
wh wh w? LW 2
— L12 (‘1772—> + L12 (62%) + le ( -72> + ﬂ-_}
wj1w13 Wi, w]1 6

with e, = e™~1¢ Note that functions <I>i have a modification term with respect to the
Reidemeister move I for crossings between the same component. A potential function

Op,(a,wy,...,w,) is a summation of local potential functions ®., with ¢ running over
all crossings of D. Here, a = (ay,...,a,) is an n-tuple of
Uk
ap = lim —.
N—o00

We can casily verity that ®p, is obtained from ®p ;. Thercfore, we mainly consider ®p ;
and put ®p = ®p ;. This potential function essentially coincides with Yoon’s generalized
potential function [17].

3 Geometric meanings

3.1 Thurston’s Triangulation

We would like to establish the relationship between the potential function and geometry
of the complement M of a hyperbolic link L = LyU---UL,,. The method we mainly use is
Thurston’s triangulation [13]. Namely, as shown in Figures 5 and 6, we put an octahedron
between each crossing and decompose each octahedron into five ideal tetrahedra. Here,

u; and v;, with ¢ = 1,...,5, are moduli of the ideal tetrahedra, and
1 1
Z/ _ 7 Z// —1_=
1—=2 z

for a complex number z. Following [1], we review how to determine the geometry of
M from the triangulation. The link complement admits a hyperbolic structure if all
tetrahedra are glued well. Assume that there are k(e) tetrahedra around an edge e, and



Figure 5: Ideal tetrahedra on a pos- Figure 6: Ideal tetrahedra on a neg-
itive crossing. ative crossing.

let z1,..., zke) be moduli of these tetrahedra. Then, all tetrahedra are glued well if and
only if

21 Zie) = 1
holds for all edges e in the triangulation. We call this equation the ‘gluing equation’. We
can also determine completeness by the triangulation. In general, a component of the
boundary of compactification of M admits a similarity structure, that is, a curve ~ in the
boundary induces the action of the form

Coz—az+beC, a,beC.

We call the coefficient a the dilation component of v and write (7). M is complete if and
only if components of the boundary admit a Euclidean structure. Namely, M is complete
if and only if the dilation components of meridians and longitudes are all equal to 1.
This is called a completeness condition. We can calculate the dilation component from
cross-sections of truncated ideal tetrahedra. Cutting off ideal vertices of ideal tetrahedra
with horospheres produces Euclidean triangles. A modulus of a vertex of the triangle is
the modulus of the ideal tetrahedron’s edge that contains the vertex. Each modulus of
the triangle contributes to the dilation component of a curve v in the manner shown in
Figure 7.

3.2 The saddle point equation

First, we fix the parameters a = (aq,. .., a,). If we put
w; w; Wi, W; w; w;
_ J1 _ _—1*Js _ J2 %4 _ 1% _ J3
Uy = €q ) Uz = €, ) Uz = ) Uy = €, ’ Us = Cp ’
Wi, Ws, Wi, Wy Wi, Wy,
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Figure 7: The contribution of each modulus of the triangle to the dilation component of ~.

w; w; wj,Wj, w;
—1 74 J2 J1 =773 J2
v =e, =, Uy = e, Ug= o yp=e—r, Us =€ —,
Wy, Wija Wy, Wi, Wi, J3
in Figures 5 and 6, then, the gluing equation automatically holds for oblique edges and
interior edges.

Remark 3.1. Thurston’s triangulation is, in fact, a triangulation of a link complement
minus two points, and we can verify that a boundary of a neighborhood of cach puncture
is a sphere. However, this contradicts that Euclidean triangles are glued. Therefore, a
boundary of cach puncture is collapsed and we can treat the triangulation as that of the
link complement.

Derivatives with parameters assigned to regions of the diagram correspond to the gluing
equations for the remaining horizontal edges in Figures 5 and 6. For example,

0P —b A\t A\t s
wj, — = w\/_la +log <1 o €a%> <1 _ eb1%) (1 B wjle)
ow;, 2 wj, wj, Wi wj,
holds. Therefore, at a glance, the derivative with respect to w; is

8@[) ™ -1

wla_u}Z: 5 r(al,...,an)-i-lOgGi;

where r(ay, ..., a,) is a linear polynomial with respect to ay, ..., a,, and G; is a product of
moduli of tetrahedra around the edge lying on the region with w; assigned. Considering the
contribution of each color to r(ay,...,a,), however, we can varify that r(aq,...,a,) = 0.
Therefore, the system of equations

0P
exp (wi—D) =1, 1=1,...,v
awi

coincides with the gluing equation for the horizontal edges in Figures 5 and 6. Hence a sad-
dle point (oy(a), ...,o,(a)) determines a hyperbolic structure of the link complement that
is not necessarily complete. Here, we choose the saddle point such that (o4(1),...,0,(1))
gives a hyperbolic structure with the volume Vol(M), where 1 = (1,...,1). Let M, be a
manifold with this hyperbolic structure. The dilation component of the meridian m; of
the link component L; with a; labeled is d(m;) = ¢~2"V=1%_ This means that the action
of the meridian generally rotates faces 2m(1 —a;) and makes a singular set. Therefore, the



the singular set
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Figure 8: The developing image of M, in H?.

developing image of M, is as shown in Figure 8. This implies that M, is a cone-manifold
with cone-angles 27(1 — a;) around L;, with j = 1,...,n. When we regard a;, with

j=1,...,n, as variables,
1 0%p -
= (1, 1
ow (=5 ) =) 1)

holds, where Zj is the longitude of the component L; with lk(ij,Lj) = 0. Namely, the
saddle point equation with respect to a; coincides with the completeness equation. This
implies the following theorem:

Theorem 1.4. Let D be a diagram of a hyperbolic link with n components, and let
1 be (1,...,1) € Z" The point (1,04(1),...,0,(1)) is a saddle point of the function
dp(ay,...,ap,wi,...,w,) and gives a complete hyperbolic structure to the link comple-
ment.

The idea of proof of (1) is as follows: For example, the derivative of ®F with respect
to a is

Yoy 1 1
0%; _T — 1 log (1 — ea%> <1 — ea%) (1 — 6;1%> (1 — 6;1%) .
da 2 Wi Wi, Wy, Wy,

The ingredient of log is a product of four moduli shown in Figure 9. Therefore, the
derivative of the potential function ®p with respect to a; corresponds to two parallel
longitudes of L; that are canceled with 3.

3.3 Witten-Reshetikhin-Turaev invariant

Let My, ¢, be the hyperbolic manifold obtained by Dehn surgery on a link L = L; U
-+ U L, with a framing f; on L;, where j = 1,...,n. Let ®(ay,..., 0, wy,...,w,)
be the potential function of the Witten-Reshetikhin-Turaev invariant of My, , where
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Figure 9: Upper side of a positive crossing.

aj = ™19, So far, a; is a real number hence aj is in the unit circle, but hereinafter,
we regard cach o as a complex parameter that is not necessarily in the unit circle. Using
the formula for the Witten-Reshetikhin-Turaev invariant in [9], we can verify that the
derivative of ® with respect to «; is

0P _of, -
exp (aj%> = q ijé(lj).
j

Since d(m;) = ozj_2, the saddle point equation implies that
§(my) I = 8(1;).

Assuming that f; > 0 and |o;| < 1, the developing image would be as shown in Figure
10. When we shift the region X in Figure 10 in the direction of the longitude once, it

the inverse of the meridian

Me
X

the singular set

Figure 10: The schematic diagram of the developing image in the case of f; = 6.

reaches the region Y. On the other hand, when we shift the region X in the direction of
the inverse of the meridian f; times, it again reaches the region Y.



4 AJ conjecture

4.1 A-polynomial

A parametrized potential function is conjectured to lead the A-polynomial [7, 16]. Let K
be a hyperbolic knot. A factor of the A-polynomial A (I, m) is conjectured to be obtained
from the system of equations

(2)

by eliminating wy, . .., w,. The other factor of Ax (I, m) is [—1 that corresponds to abelian
representations.
4.2 Ag-polynomial and the AJ conjecture

An A -polynomial [5] A,(K) for a knot K is the polynomial defined as an annihilator of
Jrk(n) = Jn(K;q). If we have a recursion relation of Jx(n)

d
=0

where ¢;(q,q") € Z[q, q"], we rewrite it as
d
(Z ¢i(gq, Q)El> Jr(n) =0,
i=0
where F and @) are operators defined by
(EJk)(n) =Jg(n+1), and (QJk)(n) = q"Jx(n).

E and @) generate a noncommutative algebra

d ' d & ZZO
A= e, QF (e, Q) € Zlg, Q]
i=0 EQ =qQFE

A set of all annihilating polynomials Ix = {P € A| PJg(n) =0} is a left ideal in A. A
is not a principal ideal domain but a localization A, of A defined by

Ao = {Z arE" | ar € Qq, Q), a = 0 for sufficiently large k}
k=0

is a principal ideal domain. Here, the multiplication of monomials in Ay is given by

aE" - bE' = ac®(b) E¥,
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where o is the automorphism of the field Q(g, @) defined by

a(f)(g, Q) = f(q,9Q).

An A, -polynomial A,(K)(E,Q) for a knot K is a generator of the annihilating ideal
of Ji(n) in A with the smallest E-degree and coprime coefficients. Garoufalidis [5]
proposed the AJ conjecture, which relates the A-polynomial and the colored Jones poly-
nomial.

Conjecture 4.1 (the AJ conjecture). For any knot K, Ak (l,m) is equal to e A,(K)(l, m?)
up to multiplication by an element in Q(m), where ¢ is the evaluation map at ¢ = 1.

4.3 Creative Telescoping and the potential function

The Ag-polynomial can be calculated by creative telescoping. Let us recall this process
by following [5, 6]. Let F(n,ky,...,k,) be a multi-Z-variable discrete function. Creative
telescoping is a method to calculate an annihilating polynomial of

=> F(nk), k=(k,... k)
k

from F(n,ky,...,k,). First, we define operators @, E, @;, and E; by

QF)(n,ky,..., k) =q"F(n,ki,..., k),

E ) ) <n+1k17'-'7k)7
(QzF)(n k17 ) V) =4q ZF(n k17"'7k )7
(E,F)(n k’l, R 1,) (n,kl,...,ki—i-l,...,k,,).

These operators generate the noncommutative algebra Q[g, Q, Qx|(E, Ey) with the fol-
lowing relations:

QiQ; = Q;Qi, E:E; = E;E;, E:Q; =" Q;E;,
where 4,7 € {0,...,v}, By = E, and Qg = Q.
Definition 4.2. F' : Z"*' — Q(q) is called g-hypergeometric if E;F/F € Q(q, ¢", ¢", ..., ¢*)
holds for alli=0,..., v.

Definition 4.3. A g-hypergeometric discrete function F(n,k) is called proper if it is of
the form

F(n, k) = [ (A3 Daintbo ke, Ak gk
’ Ht<Bt§ q)Utn+vt'k+wt ’

where Ag, By € Q(q), as,u; are integers, b, v, are vectors of r integers, cs, w; are variables,
A(n, k) is a quadratic form, & is an r vector of elements in Q(q), and

n—1

(A;q)n = [J(1 - Ad).

=0

It is known that a proper g-hypergeometric function has a good recurrence relation.

11



Theorem 4.4 ([14]). Every proper q-hypergeometric function F(n, k) has a k-free recur-
rence

> oiilq")F(n+ik+35) =0,

(i,5)es
where S is a finite set, and o, ; are Q(q)-coefficient polynomials.

Theorem 4.4 implies the existence of an annihilating polynomial of F'(n, k) of the form

(E Q El?”'? ) € Q[q7Q]<E7Ek> EXpanding P(E7Q7E17"‘7El/) at (E17"‘7EI/) =
=(1,...,1) € Z", we have
Py(E, Q) +Z Ri(E,Q,FE,...,E,),

where Py(E,Q) = P(F,Q,1"), and R; € Q[q, Q|(F, Eg). Putting G; = R;F', we have
Py(E, Q) (n, k)

—Z (nky, .. k41, k) —Giln, Ky, .. k).

Note that the right-hand side is in the form of a telescoping sum. Namely, most of the
right-hand side terms are canceled when summing up with respect to k. This method to
create a form of telescoping sum is called creative telescoping. Summing up the equality,
we verify that Py(E, Q)G(n) is a sum of multisums of proper g-hypergeometric functions
with one variable less. Repeating this process, we obtain P (E, Q)FPy(E, Q)G (n) = 0 for
a polynomial P;(E, Q). Then, how can we obtain P(E,Q, E1, ..., E,)? Note that

P(E7Q7E17 .. ‘7EIJ) S AHH(F) n@[Q? Q]<E7 Ek>7

where Ann(F) = {P € Qlq, Q, Q«)(E, Ex) | PF = 0} is an annihilating ideal of F.
Moreover, it is known that if we put

EF R

F Si Q=q", Q;=q"I
for R;,S; € Zlg,Q,Qk, then, Ann(F) is gencrated by {S;E; — R; | 1 = 0,.. V} C
Qlg, Q, Qi)(E, Ey). Combining these facts, we would be able to obtain P(E,Q, E E,))

from
S,El—R1=O, i=0,...,V

by eliminating @1, . . ., Q. Therefore, we would be able to obtain e Py(E, @) by eliminating
Q1,...,Q, from

e(SE—R) =0,
where S = 5y, R = Ry. In this context, the following proposition holds:

=0 (i=1,...,v),
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Proposition 4.5 ([12]). Following equalities hold:

o w 0P - EF
X i— | =

¢"i =w;
q7n:a
o aﬁ@ - EF
X — | =& ——
P oo F q*i=w; ’

where E,, is an operator that shifts m to m + 1.

Namely, the system of equations (2) coincide with

E;F ,
Equiz’uh:l, (]:1’ ’V)
q"ﬂr:a
E,F ‘
m _ EZ
3 Ia Ji—w; )
q"=a

under the correspondence [ = E. After finite times of creative telescoping, all indices k
vanish and we obtain

P(E,Q)Py(E,Q)Jk(n) + f(q,q") =0,

where P'(F,Q) € A, and f(q,q") € Q(q,q™). We can cancel f(q,q") by multiplying
(E—1)- f(q,Q)~" from the left. This factor corresponds to [ — 1 in the A-polynomial.
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