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1 Introduction

The Kontsevich invariant is a invariant of knots which is universal among all quantum
invariants and Vassiliev invariants of knots. The LMO invariant is a invariant of 3-
manifolds derived from the Kontsevich invariant, and it is universal among all perturbative
invariants and finite type invariants of 3-manifolds. These two invariants are very strong
invariants, but their images are presented by infinite sums of some types of graphs, and it
is very hard to determine all terms of them. It must be important problems to determine
the images of these strong invariants in order to clarify the set of all knots or 3-manifolds.

The Kontsevich invariant has a special expansion, called the “loop expansion”, and it
can be one approach to investigate the image of the Kontsevich invariant [5, 7]. In [17],
the author define the 3-loop invariant (or, the 3-loop polynomial) which present the 3-loop
part of the loop expansion of the Kontsevich invariant, and perform some calculations for
the 3-loop polynomial. Also, in [6], Garoufalidis and Kricker found a formula for the LMO
invariant of cyclic branched covers of knots by using the loop expansion of the Kontsevich
invariant. By using this formula and the result in [17], the author calculate the degree 2
part of the LMO invariant of cyclic branched covers of knots in [18].

This report is a rough explanation of these results.

2 Preliminaries

2.1 The Kontsevich invariant and its loop expansion

In this section, we review the Kontsevich invariant and its loop expansion, and we
define the 3-loop invariant. For details, see [5, 7, 11, 17].

An open Jacobi diagram is an uni-trivalent graphs such that a cyclic order of the three
edges around each trivalent vertex is fixed, in other words, each trivalent vertex is vertez-
oriented. When we draw a Jacobi diagram on (), each trivalent vertex is vertex-oriented
in the counterclockwise order. Furthermore, we define the degree of a Jacobi diagram to
be half the number of all vertices of the graph of the Jacobi diagram. We define B to be



the quotient vector space spanned by Jacobi diagrams subject to the AS, IHX relations.

the AS relation : >Ov - — }
the IHX relation : ji = >_< — X

B forms a commutative algebra whose product is given by disjoint union.

The Kontsevich invariant x~'Z(K) of a knot K is defined to be in B (Strictly speaking,
it is defined to be in the completion of B with respect to the degree). Note that x ™' Z(K)
is group-like, which means that it is exponential of series of connected diagrams. The
loop expansion of the Kontsevich invariant of a 0-framed knot K is a presentation of the
following form [5, 7],
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by the AS relation. Then, we define the 3-loop invariant of K by

AK(tlv t27 t37 t4)
SgHTt—SgHT Sgnrt—sgnﬂ' sgnrt—sgnT sgm‘t—sgnT SgHTt—SgHT SgHTt—SgHT

_ Z Qi,1<t7—(1) (4) )Qi,Q(tT(Q) (4) )%‘,3(257(3) (4) )%‘A(tr(g) 7(3) )qi,5(t7(3) 7(1) )Qi’(i(tf(l) 7(2) )
A (tity ) Ar(tatr ) A (st ) Aw(tats ) Ax(taty ) Axc (tits )

7
TEG,
sgn‘rt—sgm’ tsgn‘rt—sgm’ thIth—SgnT thIth—SgnT thIth—SgnT

n Z Ti,l(tq—(l) 7(4) )Tz’,2( 7(2) “r(4) )Ti,3( (3) tr(a) )7"@5( +3) tr(1) )Ti,ﬁ( ) ) )
7 At Ax (trt () Ax (br@ i) Ax (@t 0) Ax (bt )

TEG,

1
S E ' Q[tzltlvtétlvtétlvtfl]/<64atlt2t3t4 = 1)7

where we put
A = A (it ) Ak (ot DAk (tst T A g (tat5 ) A (st T A (8185 Y).

In particular, if Ag(t) = 1, then Ag(t1,t2,%3,t4) is a polynomial, so in this case, we
call it the 3-loop polynomial. For details about the 3-loop invariant, see [17]. The 3-loop
invariant is a rational form presenting the 3-loop part of the Kontsevich invariant of knots.

Remark 1. The 2-loop part of the Kontsevich invariant of knots is presented by the
2-loop polynomial. The 2-loop polynomial Ok (t;,ta,t3) is defined by

Ok (t1,t2,t3) = Z Pia(to))Pi2(ty@)pis(tss) € Q' 31,15/ (63 X Z)2Z, tytsts = 1).
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There are examples of calculations of the 2-loop polynomial, for example, see [4, 12, 13].

2.2 The LMO invariant and the formula of Garoufalidis and Kricker

In this section, we review the LMO invariant.

A Jacobi diagram on () is a trivalent graph such that each trivalent vertex is vertez-
oriented. We define A() to be the quotient vector space spanned by Jacobi diagrams on
() subject to the AS, IHX relations.

The LMO invariant ZEMO(M) of a closed 3-manifold M is defined to be in .A(0)
(Strictly speaking, it is defined to be in the completion of A(()) with respect to the
degree). The LMO invariant is presented by

ZEMO (M) = exp (cl(M) @ + (M) @ + (terms of connected diagrams of degree > 2)) :

where ¢;(M) is a scalar invariant of M. Note that ¢;(M) is equal to (—1)"M\(M)/2,
where A(M) is the Casson-Walker-Lescop invariant and by (M) is the first Betti number
of M. For details, see for example [8, 10].



Let K be a knot in S?, and let X% is the p-fold cyclic branched covers of K. We call
a knot K p-reqular if ¥4 is a rational homology sphere, and we call a knot K regular
if it is p-regular for all p. It is known that a knot K is p-regular if and only if its
Alexander polynomial Ak (t) has no complex pth root of unity. In [6], Garoufalidis and
Kricker found the formula which present ZLMO(32) by using the loop expansion of the
Kontsevich invariant of K.

3 Results about the 3-loop invariant

In this section, we state the results about the 3-loop invariant obtained in [17].

3.1 The 3-loop polynomial of D(K, K’)

Let K be a O-framed knot, and let K’ be a k-framed knot (k € Z). Let D, D" be
1-tangles whose closures are K, K’, respectively, noting that isotopy classes of D and D’
are uniquely determined by K and K'.

(0-framing) (k-framing)

We define D(K, K') to be the following knot,

D'(2)

where D) and D' are the doubles of D and D', respectively. We can obtain D(K, K)
by plumbing of the doubles of K and K’, noting that D(K, K') is a genus 1 knot with
trivial Alexander polynomial.

For a knot K, we denote the low degree Vassiliev invariants as follows. Let ¢, be the
coefficient of the Conway polynomial Vi (z) = 3 ¢,2", and let j, be the coefficient of
the Jones polynomial Ji(e') = > j,t™. Note that the Conway polynomial is defined by
Vi (t2 —t72) = Ag(t). Then, we denote

1 1. 1 )
a2 =—gC2, a3=-—g 03 = ﬂ(—1204 + 6¢5 — ¢2) (2)
We put U =ttt +t, — 2 and vy =ttt =t (myn € {1,2,3,4}).



Theorem 2. The 3-loop polynomial of D(K, K') is presented by
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In particular, we can get the 3-loop polynomial of untwisted Whitehead double of K.
We denote it by Wh*(K).

Wht(K) = \ D@ Wh™(K) =

Here, D is a 1-tangle whose closure is K as shown in (1).

Corollary 3. The 3-loop polynomial of Wh*(K) is presented by
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Remark 4. The 2-loop polynomial of Wh*(K) is presented by [4, 13]
GWhi(K)(t17t27t3) - :|:4a2(t1 —+ tl_l + t2 + t2—1 + t3 + t??l _ 6)

Moreover, the 2-loop polynomial of genus 1 knots are calculated in [13].

We can prove Theorem 2 by using the rational version of the Aarhus integral. For
the Aarhus integral, see [1, 2, 3]. By considering the doubles of knots one of which is 0
framing, the 3-loop polynomial of D(K, K') is relatively easy to calculate, see [17]. This
and Remark 4 are some of reasons why we consider D(K, K').

3.2 A connected sum formula for the 3-loop invariant

Let K, K5 be O0-framing knots, and let K1# K> be their connected sum.

Proposition 5. We get the 3-loop invariant of Ki# Ky as follows,

AKl#Kz (t17t27t37t4) = AK1 (t17t27t37t4) + AK2 (t17t27t37t4)
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In particular, if Ak, (t) = Ak, (t) =1, then

Areowre, (B, to, ta,ta) = Nge, (t1, Lo, B3, ta) + Mg, (t1, 1, 3, 1) € QI 157,150 171/ (S, titatsty = 1),

Remark 6. The 1-loop part of the Kontsevich invariant (that is, log Ag(t)) of Ki1# K>
and the 2-loop polynomial of K1# K, are presented by

log Age, 41, (t) = log A, () +log A, (¢),
Ok 41, (t1, 12, 13) = Ok, (t1, 12, t3) + O, (t1, ta, t3).
This shows that up to 2-loop parts behave additively for the connected sum of knots.

However, more than 2-loop parts do not behave additively, and the 3-loop part behaves
as Proposition 5.



3.3 The 3-loop part of the colored Jones polynomial

The colored Jones polynomial J,(K;t) is the polynomial invariant of knots, which is
obtained by
Va(Kit) Rl
V,(the unknot;¢) /2 — ¢—n/2
where V,,(K;t) is obtained by V,,(K;e™") = Wy, v, (Z(K)), and Wiy, v, denotes the weight
system derived from the Lie algebra sly and its irreducible representation V,,. For details,

see [11, 10, 9]. It is known, see Conjecture 1.2 of [15], Theorem 1.2 of [16], Proposition
3.1 of [14], that J,(K;t) can be presented in the following form,

=> K di(nh)t Zhl%

>0 k>0 >0

Jn<K; t) =

V(K 1),

for some P,(t) € Q[t*!]. This is called the loop expansion of the colored Jones polynomial.

P.
The 3-loop part of the colored Jones polynomial is given by A (")

NGO
For a knot K, Ag(t2,¢2,t 2t 2) is a symmetric rational form in t*! divisible by ¢ — 1
(since Ag(1,1,1,1) = 0) and, hence, divisible by (t — 1)2. We define the reduced 3-loop
mvariant by
A Ag(t2, 2,672 ,t72) 1
Ag(t) = — €
(t1/2 — t-1/2)2 Ax(t)
which is symmetricl in t£1. If A (t) = 1, then this is a polynomial, so we call it the reduced
@K(tv t_lv 1)
(/2 — t-1/2)2

- Q[

3-loop polynomial. We denote the reduced 2-loop polynomial by © x(t) =
defined in [12].

P. nh
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For details, see [12].

4 Results about the degree 2 part of the LMO invariant

In this section, we state the results about the degree 2 part of the LMO invariant
obtained in [18].

Proposition 9. For all p and p-reqular knot K, we have

ca(¥)

1 3 11 _1
_ 4 4 1 4,.,4 1 1 4,,4 1 1 1 K
~ 482 E , Ag(wiwy fwy * wy fwywy L wy fwy fwgwy fwy fws ) + Ly

pP_, P_, P_
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Here, l{f is a scaler invariant of a knot K, which can be calculated by an equivariant
linking matrix of a surgery link in S*\ K. For details, see [6].

Remark 10. For all p and p-regular knot K, we have

H AK(CU)

wP=1

(co(Bk) =) [HL(Z5)| =

Y

1 Ok (Wi, wa, (Wiws) ") 1
c(Xh) = — 167
=135 2 R An(en)Br e T T 167

(K)7

where 0,(K) is p-signature of K.

Let K be a regular knot. For ¢ = 0,1,2, we can regard {¢;(X%)},=12.. as families of
invariants of K. Proposition 9 and Remark 10 show that i-loop part (i-loop polynomial)
of the Kontsevich invariant of K is an universal invariant among {¢;(X%)},=12,....

For D(K,K'), we can show that 1y (KK — 0. Therefore, we obtain the following
theorem and corollary.

Theorem 11. For all p > 2, we have

p
(XD k)
3 1 1 1 3 1 _1 1 3 1 1 1

1 3 _1 _1
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Corollary 12. For all p > 2, we have

D
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5 Future directions

Lastly, we consider some problems about the calculation of Ax and cs for future direc-
tions.

For the 2-loop polynomial, some clasper surgery formulas are concretely presented in
[13]. Clasper surgery formulas are useful to calculate them for some classes of knots.
However, such clasper surgery formulas have not been presented concretely for the 3-loop
invariant so far. Thus, it is one problem to present clasper surgery formulas concretely
for the 3-loop invariant for clasper surgery along some (simple) claspers.

Further, it is another problem to determine the set of possible values of triple
(AK(t),@K(tl,tg,tg),AK(tl,tQ,tg,t4)). This problem would be hard to solve in general,
so it may be good to consider some further simplified cases, for example, to determine the
set of possible values of the 3-loop polynomial of K with Ak (t) = 1 and O (t1,ts,t3) = 0.
Moreover it is good to find some useful formula or method to calculate 2-loop polynomial
and 3-loop invariant concretely.

For a closed 3-manifold M, the invariant ¢;(M) is equivalent to the Casson-Walker-
Lescop invariant of M, and it is well-studied. However, not much is known about ¢y (M)
so far. Thus, it is good to calculate cy(M) for other examples, or to find some formula or
method to calculate it.
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