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1 Introduction

Let K be a knot in S®. It is well known that the Alexander polynomial Ak (t) is not zero
for any knot K. We see it from Ak (1) = +1, for example. Then it is natural to ask
whether the twisted Alexander polynomial would not be zero.

Friedl and Vidussi showed that for any 3-manifold N and any non-fibered class in
HY(N;Z) there exists a representation such that the corresponding twisted Alexander
polynomial is zero. In this paper, we provide several concrete examples with zero twisted
Alexander polynomial and some explicit formulas of the twisted Alexander polynomial.

Throughout this paper, we adopt Rolfsen’s table [9] to represent a prime knot with 10
or fewer crossings.

2 The twisted Alexander polynomial and the theorem of Friedl-
Vidussi

In [11], the twisted Alexander polynomial is defined for finitely presentable group. In this
section, we review quickly the definition of the twisted Alexander polynomial of a knot.
See [11] for the precise definition and more general settings.

Let G(K) be the knot group of a knot K, namely, the fundamental group of the exterior
of K in S3. We take the Wirtinger presentation

G(K) = <.§C1,I‘2,...,I‘m|7’17T2’,,,77’m71>

according to a diagram of K, where x; represents a meridian of K. The abelianization
a:G(K)— Z ~ (t) sends x; to t.

Definition 2.1 The twisted Alexander polynomial of K associated to a linear represen-
tation p : G(K) — GL(n,Z) is defined by

det <(p ® oz)%é) 1<i,j<m—1
A1) = sis
det ((p ® a)(z, — 1))
where a%j is the Fox derivation with respect to x;.



Remark that the twisted Alexander polynomial is defined up to multiplication of +t*
for some k € Z and that the twisted Alexander polynomial is not always a genuine
polynomial.

For a finite group G and for a homomorphism f : G(K) — G, we can consider the
twisted Alexander polynomial A%/ (t), where p : G — GL(|G|,Z) is the regular repre-
sentation of G. In this situation, Friedl and Vidussi showed the following distinguished
theorem.

Theorem 2.2 (Friedl-Vidussi [3]) A knot K is non-fibered if and only if there exists
a finite group G and a surjective homomorphism f : G(K) — G such that the twisted
Alezander polynomial A% (t) is zero.

Then in [6] we define the minimal order O(K) of a knot K as the smallest order of
a finite group G such that there exists a surjective homomorphism f : G(K) — G with
AT (t) = 0. By Theorem 2.2, O(K) is finite for any non-fibered knot K. On the other
hand, we define O(K) = 400 for a fibered knot K.

3 The minimal order O(K)

In general, it is not easy to determine O(K) for a given non-fibered knot K. However,
we obtain the lower bound and the explicit values for some knots.

Theorem 3.1 For any knot K, we have O(K) > 24.

There are 59 finite groups of order less than 24. We need to show that the twisted
Alexander polynomials are not zero for all of them. The following is a sketch of the
proof, see [7] in detail. First, if a group G is not normally generated by one element,
then there does not exist a surjective homomorphism f : G(K) — G. It implies that
we do not need to consider such finite groups to show our statement. Next, it is easy to
see that A% (t) is not zero for any abelian group. Similarly, we see that A% (¢) is not
zero for any dihedral group D,» of order 2p™ and for any dicyclic group Dic,» of order
4p", where p is an odd prime number. The remaining groups of order less than 24 are
Ay, D3 x C3, D3 x C3,Cy x C5,C3 X C7, where C,, is the cyclic group of order n. Finally,
we show that A’I’é’f (t) are not zero for these 5 finite groups separately.

Theorem 3.2 For any prime knot K with up to 10 crossings, we have

e O(K)=24, if K=935,9%es,

e O(K)=060, if K=1047,10120,10146,

e O(K)=96, if K =101,

e O(K) =120, if K = 815,995,930, 941, 949, 105,
e O(K)>125, otherwise .



The following is a sketch of the proof, see [6] and [7] in detail. We have A% (t) of all
the non-fibered knots with up to 10 crossings for all the finite groups of order up to 120,
with aid of computer. These computations give us that A%/ (t) are zero for

f:G(935) = Sa, f : G(946) — S,

f:G(10g7) = As, f : G(10190) — As, f : G(10146) — As,
(10166) — S4 x C3,
(
(

f:G
f -G 815) — 85, f . G(925) — 85, f : G(939) — 55,
f -G 941) — 85, f . G(949) — 85, f : G(1058) — 85

and that A% () are not zero for any other finite groups of order less than 24 (respectively
60, 96, 120). Moreover, we see that A%/ (t) of the other knots are not zero for any finite
groups of order less than 125.

We can construct infinitely many knots K such that there exist surjective homomor-
phisms ¢ : G(K) — G(935) (or ¢ : G(K) — G(946)). These knots K are non-fibered, since
Silver-Whitten in [10] showed that the knot group of a fibered knot never surjects to that
of a non-fibered knot. Moreover, Kitano-Suzuki-Wada in [5] showed that if there exists a
surjective homomorphism ¢ : G(K) — G(K'), then the twisted Alexander polynomial of
K contains that of K’ as a factor. Therefore we have the following corollary.

Corollary 3.3 There are infinitely many non-fibered knots K with O(K) = 24.

4 Some formulas of the twisted Alexander polynomial

In the previous section, we considered only whether the twisted Alexander polynomial
is zero or not. In this section, we discuss the explicit formulas of the twisted Alexander
polynomial for some classes of finite groups.

First, we consider abelian groups. In this case, the twisted Alexander polynomial
AT (1) can be described in terms of the (classical) Alexander polynomial A (t).

Proposition 4.1 1. Let A be an abelian group. There exists a surjective homomor-
phism f: G(K) — A if and only if A is a cyclic group.

2. For a surjective homomorphism f : G(K) — C, and the reqular representation
p:C, — GL(n,7Z), the twisted Alezander polynomial is given by

o =11 (557

where o € C is a primitive n-th root of unity.

In particular, it follows immediately that the twisted Alexander polynomials are never
zero for abelian groups.

Next, we obtain the following formula of the twisted Alexander polynomials for the
dihedral groups.



Theorem 4.2 Let p be an odd prime number and ¢ = p". We denote by p : D, —
GL(2q,7Z) the regular representation of D,. If there exists a surjective homomorphism

f:G(K)— D,, then A A .
AP (1) = ( ti(i) : tK—t(—_lt)) (mod p).

Let G(m,p|k) be a finite group of order mp defined by the following presentation:

G(m.plk) = (z,y|a™ = y" = 1, aya™" = y*)
where p is an odd prime number, m € N such that p =1 (mod m), and k is a primitive
m-th root of unity (mod p). In [2], Fox called this group K-metacyclic group when m =
p — 1. Hirasawa-Murasugi and Boden-Friedl discussed the twisted Alexander polynomial
for G(m, p|k) in [4], [1] respectively. Note that G(m, p|k) is a semi-direct product C,, x C,
and that G(2,p|p — 1) is the dihedral group D,,.

Theorem 4.3 Let k; € {1,2,...,p—1} be m-th roots of unity (mod p), namely, k;™ =1
(mod p) (j = 1,2,...,m) and o € C a primitive m-th root of unity. We denote by
p : G(m,plk) — GL(mp,Z) the reqular representation of G(m,p|k). If there exists a
surjective homomorphism f : G(K) — G(m,pl|k), then

A1) = ﬁ (%) ﬁ (24D) (o ).

Finally, we get the twisted Alexander polynomial for the dicyclic group Dic,, of order
4n which is defined by the presentation:

Dic, = (a,7|a* = 1,2* = a", zaz™' =a™ ).

The dicyclic group Dic,, can be considered as an extension of Cy by Cj,, namely, we have
a short exact sequence:

1 — Cy, — Dic,, —» Cy — 1.
Furthermore, Dic, /(z?) is isomorphic to D,,. Then Dic, is also called the binary dihedral
group.
Theorem 4.4 Let p be an odd prime number and ¢ = p". We denote by p : Dic, —

GL(4q,Z) the regular representation of Dic,. If there exists a surjective homomorphism
f:G(K) — Dic,, then

0= (220)' (50 (S0EDY

See [8] for the proof of Theorem 4.2, 4.3, and 4.4.

Remark 4.5 We obtain Theorem 3.1 by showing the non-vanishing of the twisted Alexan-
der polynomial. Besides, we can also use Theorem 4.2, 4.3, and 4.4. Among 59 finite
groups of order less than 24, there are 12 finite groups which are non-abelian and nor-
mally generated by one element. We can apply Theorem 4.2 for Ds, Ds, D7, Dy, D11 and
Theorem 4.3 for Cy x Cs = G(4,5|2), C3 x C7 = G(3,7|2) and Theorem 4./ for Dics, Dics.
They follow that the twisted Alexander polynomials are mot zero. Then the remaining
groups are only Ay, D3 x C3, D3 x Cj.
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