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1 Introduction

Let S be a submonoid of Ng = NU {0}. Namely, S satisfies the conditions:
(i) SCNp; (i) 0es; (ii)ifa,be Sthena+beS.

Then S is called a numerical semigroup if and only if No\S is a finite set, which is
equivalent to 1 € {x — ylz,y € S}. When S is a numerical semigroup, the maximal
element, the cardinality and the sum of the elements of No\S are called the Frobenius
number, the genus or the Sylvester number, and the Sylvester sum, respectively, and
denoted by ¢(S), n(S) and s(5), respectively. Several generalized Frobenius numbers
have been introduced, but we study the one focusing on the number of representations
(nonnegative integer solutions). Let A := {aj,as,...,ax} be the set of positive integers
with & > 2. The denumerant d(n) = d(n;ay,as,...,ax) is the number of representations
to n = a1xy + asxs + - - - + apry for a given nonnegative integer n. When S is a numerical
semigroup and A C S, it is called that S is generated by A and denoted by S = (A) if for
all n € S, there exist aq,as,...,ap € A and x1, 9, ..., € Ny such that n = Z?Zl a;T;.
A is called a minimal set of generators of S if S = (A) and no proper subset of A has its
property. S = (A) is called the canonical form description of S.

For an nonnegative integer p, let S, be the set of integers whose nonnegative integral
linear combinations of given positive integers aq, as, ..., a; are expressed in more than p
ways. By emphasizing the fact that S is generated by the set A, we also write S,(A) as
Sp. We can see that the set Ng\S, is finite if and only if ged(ay, aq,...,ar) = 1. Then
there exists the largest integer ¢,(A) := g(S,) in No\S,, which is called the p-Frobenius
number. The cardinality of Ny\S, is called the p-genus and denoted by n,(A) := n(S,).
Its sum of elements is called the p-Sylvester sum and denoted by s,(A) := s(S)).

Several different generalizations have been introduced and studied. However, our gen-
eralization is very natural and efficient in terms of the following p-Apéry sets.



2 Preliminaries

Using the elements in the p-Apéry set, we can obtain the p-Frobenius, the p-genus, the
p-Sylvester sum and so on very efficiently. Without loss of generality, put a; = min(A).
For a nonnegative integer p, the p-Apéry set is given by

Ap,(A) = Ap,(ai,as, ..., a;) = {mo ,mg),...,m(p) : (1)

a1—1

(»)

Here, for each 0 < i < a; — 1, the positive integer m,” is determined uniquely as

() mP =i (moda), (i) m® € S,(A), (iii) m” —as & S,(A).

So, the set Ap,(A) is a complete residue system modulo a1, {0,1,...,a; —1}. In general,
the following formula for power sum is given ([13]).

Theorem 1. Let k, p and p be integers with k > 2, p > 0 and y > 0. Assume that
ged(A) = 1. We have
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where B, are Bernoulli numbers defined by
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When g = 0,1 in Theorem 1, together with g,(A) we have formulas for the p-Frobenius
number, the p-Sylvester number and the p-Sylvester sum.

Corollary 1. Assume that gcd(A) = 1. For a nonnegative integer p, we have

gp(A) = max m” —ar.
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When p = 0 in Corollary 1, the formulas are reduced to the classically known ones.
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Notice that mg = méo) = 0 is applied when p = 0. Hence, the sum runs from ¢ = 1.

The elements of the p-Apéry set are uniquely determined, but it is not easy to obtain
them for the general case. Furthermore, it is even more difficult to find any regularity.

3 Explicit expressions

In the case of two variables, namely, a; = @ and as = b, by {m;|0 < i < a— 1} =
{b(pa +1)|0 <i < a—1}, from Corollary 1 we can get the explicit expressions.

Corollary 2. For a nonnegative integer p, we have

gpla,b) = (p+1)ab—a—b,

ny(a,b) = pab + w;b_l) ,

p?a®b? N p(ab — a — b)ab N (a—1)(b—1)2ab —a—b—1)
2 2 12 '

sp(a,b) =

However, for k > 3, even though p = 0, g(A) cannot be given by any set of closed
formulas which can be reduced to a finite set of certain polynomials [5]. For k = 3,
there are several useful algorithms to obtain the Frobenius number (e.g., [9, 21, 7]).
For the concretely given three positive integers, if the conditions are met, the Frobe-
nius number can be calculated by the method of case-dividing in [25]. Only some spe-
cial cases, explicit closed formulas have been found, including arithmetic, geometric, Fi-

bonacci, Mersenne, repunits and triangular.

When p > 0 and k£ > 3, the situation is even harder. Though any explicit formula
had not been found even for particular triples, recently we have been finally successful to
obtain closed formulas for arithmetic [17], triangular [11], repunit [12], Fibonacci [16] and
Jacobsthal [?].



4 Some relations related to p-Frobenius numbers
In this section, we show some fundamental relations among g,(A), n,(A) and s,(A).

Lemma 1. For p > 0, we have

gp(A) +1 ‘

ny(A) > B

Proof. For a non-negative integer s, if s € S,, then g,(A) — s € S,. Hence, by n,(A) >
#{s € Spls < gp(A)} = g,(A) +1 —n,(A), we get the result. O

For emphasis, write Ap(Sy,a;) as the p-Apéry set Ap,(A) from S,(A) with a; as the
least element of the set A.

Proposition 1. Assume that S,(A) is minimally generated by ay,...,a;. Set d =
ged(ag, . .., ax) and Ty(A) = {n € Ny|d(n; a1, a2/d, . .., ar/d) > p} Then we have Ap(S,, a1) =
dAp(T,,ay).

Proof. From the definition of the Apéry set, w € Ap(S,, a;) implies that w—a; & S,. Since
w € (as,...,a), we have w/d € (as/d, ..., a;/d). If w/d —ay € T,(A), as w — day € S,
w/d —ay; ¢ T,(A). Hence, w/d € Ap(Sy,a1), which implies that w € dAp(S,, a).

On the other hand, if w € Ap(7,,a1), then w € (as/d, ..., a;/d), implying that dw €
(ag,...,a;) € S,. We shall see that dw — a; ¢ S,(A), entailing that dw € S,(A).

Otherwise, for non-negative integers y1, ..., yx, dw —a; = a1y + - - - + apyx, implying that
w=a1(y1 +1)/d+ (az/d)y>+- - -+ (ar/d)y, and d|(y, +1). But this is impossible because
w—a; & T,(A). O

By Proposition 1, we can obtain the relations between the p-Frobenius numbers g,(A)
and the p-Sylvester numbers n,(A). For simplicity, we write g, (Ad) = g(Tp(A)) and
n,(Aq) = n(T,(A)).

Corollary 3. As the same setting as above, we have

(i) gp(A) = dgp(Aa) + (d — 1)as.

() my(4) = dny(4,) + T =D
() s(4) = s, (Ag) + DI D (gL DEZ D@0 a2 )



Proof. We shall prove (iii). By Corollary 1,
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Example 1. Let S = (20,30,17) and T' = (2,3, 17) = (2, 3) with d = 10. Then, for p = 3,
by s3(A10) = 136 and nz(Ay) = 17, we get s3(A) = 10%s3(A1g) + 1710 - 9/2n3( A1) +
16-9(2-17-10— 17— 10 — 1)/12 = 30349.

Example 2. When S = (a, b), by putting d = b, we get

a’p® —a
9p(Ad) =ap—1, ny(Aq) =ap and g,(A4q) = %.

Therefore, Corollary 2 is reduced again.

4.1 p-Hilbert series

For a non-negative integer p, the p-Hilbert series of S,(A) is defined by
H,(A;z) .= H(S,; ) Z x°
s€SpH(A)

When p = 0, the 0-Hilbert series is the original Hilbert series. In addition, the p-gaps
generating function is defined by

\IIP(AVI‘) = Z xS )
s€Np\Sp(A)

satisfying H,(A;x) + ¥,(A;z) =1/(1 — z) (Jz| < 1). By using p-Apéry set, we see that
Sp(A) = Ap,(A; a) + aNy, with a = min(A). Hence,
1

Hy(A;z) = ——— doooam. (2)




For three or more variables, it is not easy to obtain an explicit form of the p-Hilbert
series. However, the p-Hilbert series may be explicitly given when the structure of the
p-Apéry set is known. We give one of the simplest cases, though the expression of the
p-Hilbert series often becomes very complicated.

For example, let A := {a,a+1,...,2a — 1} for an integer with a > 3. Then its p-Apéry
set is given as follows.

Lemma 2. Let a > 3. For p =0, we have
Apy(a,a+1,...,2a—1)={0,a+1,a+2,...,2a — 1}
and 1 <p < (a—1)/2, we have

Ap,(a,a+1,...,2a —1)={3a,...,3a+2p—1,2a+2p,...,3a — 1}.

Therefore, by (2), when p = 0, we obtain

Ho(a,a+1,...,2a — 1;2) = ——— (2"t 4 2972 4 ... 4 2271

When p > 0, we obtain

Hy(a,a+1,...,2a — 1;2) (2202 4 gRat2pHl oLy et 2l

1—x@
I2a+2p
1—a

This result looks simple, but the expression of the p-Hilbert series usually becomes
very complicated because its structure of the corresponding p-Apéry set is uncertain or
complicated. For example, concerning the sequence of consecutive odd integers A :=
{2a +1,2a 4+ 3,...,4a + 3} (a > 1), no exact explicit form of the p-Apéry set has been
found for general p.

5 p-symmetric semigroup

By arranging the elements mgp ) (0 <i < a; —1) of the Apéry set in (1) in ascending
order, let {y(p) < l1(p) < -+ < lo,—1(p). That is, the sequence ly(p),l1(p),. - - Lo, —1(p) is
the ascending permutation of m(()p ), mgp ). ,mg’i)_l.

The p-numerical semigroup S, = S,(A) is called p-symmetric if for all @ € Z\S,,

lo(p) + gp(A) — z € S, where {y(p) is the least element of S, that is the p-multiplicity



of S, if p > 1; ly(p) = 0if p = 0. When p = 0, "0-symmetric” is "symmetric”. If a
p-symmetric numerical semigroup S, further satisfies £y(p) = g,(A4) + 1 := ¢,(A), which
is called p-conductor, then S, is called p-completely-symmetric.

From the definition, the following is obvious.
Proposition 2. For a p-semigroup S, (p > 0), the following conditions are equivalent.

(i) S, is p-symmetric.

(i) #5, N {lo(p), .-, gp(A)} = #No\Sp) N {lo(p), ... go(A)} = 95(4) _50@) +1

(iii) If x +y = Lo(p) + g,(A), then exactly one of non-negative integers x and y belongs
to S, and another to No\.S,,.

Example
When A = {4,5,6}, we get that
Ss = {36,38,40,41,—~},
No\Ss ={0,1,...,35,37,39} .

Then we know that
gs(A) =39 and Apg(A) ={36 = méS), 38 = méS), 41 = m§8), 43 = m:(f)}.
Hence, we see that
36+39=38+4+37T=40+35=41+34=---=754+0=T76+(—1)=---.

Therefore, Sg(A), where A = {4,5,6}, is 8-symmetric. In fact, among the elements in
Apg(A), we can obtain
36 +43 = 38 +41.

This fact is explained in the next lemma, which is a generalization of the result by Apéry
[1].

Lemma 3. For a non-negative integer p, S, = Sp(A) is p-symmetric if and only if
li(p) + la—i-1(p) = gp(A) + bo(p) +a (i=1,2,...,|a/2]).

If one element mgp ) in Ap,(A;a) with a = min(A) can extend such that m

i

=1
(mod a) for any i, Lemma 3 can be restated as follows. For simplicity, put g = g,(A) and

0= ly(p).

Lemma 4. For a non-negative integer p, Sy is p-symmetric if and only if m g4 e41) 245 () +
Mgt—1)/2+(P) = gp + L +a (j EZ).



From Lemma 3 or Lemma 4, we have a relation between p-Frobenius number g,(A) and
p-Sylvester number n,(A).

Proposition 3. For a non-negative integer p, S, = S,(A) is p-symmetric if and only if

_ 9 +l(p) +1

ny(A) 5

Let us consider the two variables’ case. For any integer n € S,(A) for A = {a,b} with
ged(a,b) = 1 and a < b, let xy be the largest integer = satisfying n = ax + by (y > 0).
Then there exists the least non-negative integer vy, such that n = axy+ byg, which is called
the standard form of the representation of n. Since S,(A) € Ny C Z and Z is Euclidean
domain, the standard form is unique.

Lemma 5. Let n = axg + byy be the standard form of n. Then
(i) 0<y<a-1

(ii) For any integer n € S(A) = So(A), n € S,(A) if and only if xo > pb.

By Proposition 3 and Lemma 5, together with the formulas in Corollary 2, we can show

the p-symmetric property for two variables.
Theorem 2. For any non-negative integer p, Sy(a,b) with ged(a,b) =1 is p-symmetric.

Proof. When A = {a,b} with ged(a,b) = 1, by Lemma 5, the least integer whose number
of representations in terms of a and b is more than p is pab. That is, the non-negative
integral solutions of az + by = pab are (z,y) = (jb, (p — j)a) (j =0,1,...,p). Since
ly(p) = pab, by Proposition 3 together with the formulas in Corollary 2, we have

gp(A) + lo(p) +1 _ (p+1)ab—a—b+ pab+ 1

2 2
(a—1)(b—-1)

= pab + =ny(a,b).

O

At the end of this section, we consider a p-symmetric property in terms of the valuation.
Let Ry := K[[t*]s € S”(A)]], Ry be the integral closure of Ry, f be the algebraic conductor
from t® Ry to Ry, ¢, = gp+1 (p-conductor). Since Ry is the ring associated to a numerical
semigroup S;(,O)(A), it is a discrete valuation ring with the valuation v.

Lemma 6. f = {z € Ro|v(z) > ¢, + lo(p)}.



Proof. For any x € f and r € Ry, we have ro € t®®R,. So v(rz) = v(z) + v(r) €
V(PP Ry). For x =t @y’ we get v(r) 4+ v(t°®) +v(2') € v(t°P Ry) = v(Ry) + v(t°®),
By the arbitrariness of r and v(r) > 0, we have v(x) > ¢, + fo(p), that is, f C {z €
Folo(z) = ¢ + ()}

For any = € Ry and v(x) > ¢, + £o(p), we have v(z) = v(r) for some r € t*®» R C R.
Then for any 1’ € Ry, we have v(z1’) = v(z) + v(r') = v(r) + v(r') > ¢, + £y(p). By the
definition of ¢,, we have zr’ € t*® Ry. So, f D {x € Rolv(z) > ¢, + lo(p)}. O

For simplicity, let d; and dy be the lengths of ideal of Ry/f and of Ry-submodule of
Ry/ f, respectively, and d3 be the number of elements in S,(4) N{1,2,...c, + o(p) — 1}.

Theorem 3. S,(A) is p-symmetric if and only if d; = %.

Proof. By Proposition 2 together with the facts that all the elements in {1,...7, — 1} are
in No\S,(A4) and {g, + 1,...4y(p) + g, — 1} are all in S,(A), S,(A) is p-symmetric if and
only if d3 = WTgp_l.

Consider the ideal chain Ry D Ry D Ry--- D Ry, O f, where R; = {r € Rylv(r) > v;}
and v; < vy < -+ < vy, are the elements in S,(A) N {1,2,...¢, + lo(p) — 1} arranged
in ascending order. This sequence is maximal because if we adjoin an element r € Ry of
value v;_1 to R;, we get all of R;_;. So, d; = ds + 1.

Similarly consider the maximal Ry-submodule chain of R, /f: Ry=0by Db Dby--+ D
beo(p)+gp+1 = S where b; = {r € Ro|v(r) > i}. So we have dy = lo(p) + g, + 1. Hence,

Sp(A) is p-symmetric if and only if d; — 1 = %22, O

5.1 p-pseudo-symmetric semigroup

For a non-negative integer p, let S,(A) be a p-numerical semigroup. = € Z is called a p-
pseudo-Frobenius number if x ¢ S,(A) and x+s—{y(p) € Sp(A) for all s € S,(A)\{lo(p)},
where fo(p) is the least element of S,(A), so is of Ap,(A;a) with a = min(A). The set
of p-pseudo-Frobenius numbers is denoted by PF,(A). The p-type is denoted by t,(A) :=
#(PF,(A)). Notice that the p-Frobenius number is given by g,(A) = max(PF,(A)).

For p > 0, the p-numerical semigroup S, = S,(A) is called p-pseudo-symmetric if for all
x € Z\S, with = # (Lo(p) + g,(A)) /2 € Z, Lo(p) + g,(A) — x € S,, where ly(p) is the least
element of S,. When p = 0, ”0-pseudo-symmetry” is ”pseudo-symmetry”.

For simplicity, put the p-Frobenius number as g := g,(A) and the p-multiplicity as
¢ :=ly(p) (p > 1) with £5(0) = 0. Denote the p-Apéry set by Ap,(A;a) with a = min(A).

Theorem 4. For a non-negative integer p, the following conditions are equivalent:

(i) S, = Sp(A) is p-pseudo-symmetric



(i)
2a if j=0and (g+1£)/2 € No\S,(A);

mg)w)/uj + mglz)n—j =g+L+40 ifj=0and(g+¢)/2 € Sy(A);
a ifj>0.
1 if (g+0)/2 € No\S,(A);
2 0 if (g4 0)/2 € S,(A).

Corollary 4. Let S,(A) be a p-numerical semigroup. The following conditions are equiv-

alent.
(i) S, is p-symmetric.
(i) PF,(A) = {g,(A)} with g,(4) # lo(p) (mod 2).
(iii) t,(A) = 1 with g,(A) # lo(p) (mod 2).
Corollary 5. Let S,(A) be a p-numerical semigroup. The following conditions are equiv-
alent.
(i) S, is p-pseudo-symmetric.

{95(A), (95(A) + lo(p)) 2} if (9p(A) +Lo(p) /2 € No\S,(A);

(ii) PF,(A) = ‘
{g,(A)} if (9o(A) + lo(p)) /2 € Sp(A).

2 if (9,(A) + fo(p)) /2 € No\S,(A);

(iif) 2,(A) = ‘
1 if (gp(A) + €o(p)) /2 € Sp(A).

For a,b € Z, define a partial order relation a <g, b (or a <g b for short) as b — a € S,,.
The set of p-pseudo-Frobenius numbers PF,(A) can be determined with this order relation

in terms of the p-maximal gaps.

Proposition 4. For a p-numerical semigroup S, = S,(A), we have

PF,(A) = Maximals<,(No\S,) .

The set of p-pseudo-Frobenius numbers PF,(A) can be also determined in terms of the

p-Apéry set.

10



Proposition 5. Let S, = S,(A) be a p-numerical semigroup with a = min(A). Then for
n € .S, we have
PF,(A) = {w — aJw € Maximals< Ap, (A;a)} .

At the end of this subsection, we mention a partially corresponding result to Theorem
3.

Theorem 5. If S,(A) is p-pseudo-symmetric, then 2d, +1 = ds.

Proof. If S,(A) is p-pseudo-symmetric, then we have 2d; = {y(p) + g, — 2.

Again, consider the maximal ideal chain Ry D Ry D Ry--- D Ry, D f as in the proof of
Theorem 3. Thus, we get d; = ds + 1. And consider the Ry-submodule chain of Ry/f:
Ry=0by Db Dby---D beo(p)+go+1 = f- We have dy = €o(p) + g, + 1. Hence, if S,(A) is
p-pseudo-symmetric, then 2(d; — 1) = dy — 3. O

When is a p-numerical semigroup p-symmetric, and when p-pseudo-symmetric?
Let A= {6,7,17,28}. Sy is pseudo-symmetric. In addition,

S1 = { 24 30 31 34 35 36 37 38 40 — }
Gy = { 39 33 32 29 28 27 26 25 23 ~—~ }
Se = { 41 42 47 48 49 51 — }
Gy = { 50 46 45 44 43 0 — }
Sy = { 48 54 55 58 — }
Gy = { 57 56 53 52 51 50 49 47 —~ }
Sg = { 65 66 68 ~— }

G,y { 67 64 — }

Hence, S; is symmetric, S, and S35 are not symmetric, and S, is pseudo-symmetric.

(For underlined p’s, they are completely-symmetric.) S, is p-pseudo-symmetric for p =
0,4,5,19,20,23,25,.... S, is neither p-symmetric nor p-pseudo-symmetric for p = 2, 3,14, 16, .. ..

Conjecture 1. If ged(ai,a;) = 1 (i # j) for A = {a1,a9,...,ax}, then S, is p-
completely-symmetric for enough large p.

5.2 p-irreducible numerical semigroup

A numerical semigroup S is irreducible if it cannot be expressed as the intersection of two
proper oversemigroups. A p-numerical semigroup S, = S,(A) is called p-irreducible if it is
either p-symmetric or p-pseudo-symmetric. It is known that every numerical semigroup
can be expressed as a finite intersection of irreducible numerical semigroups.

11



By Theorem 2, we have the p-irreducible property for two variables.

Corollary 6. For any non-negative integer p, Sy(a,b) with ged(a,b) =1 is p-irreducible.

Every p-numerical semigroup can be also expressed as a finite intersection of irreducible
numerical semigroups ([2]).

Proposition 6. For a non-negative integer p, let S, be a p-numerical semigroup. Then,
there exist finitely many irreducible numerical semigroups S, ..., S, such that S, = S U
S US,.

Remark. Tt has not been known that for any fixed non-negative integer p, a p-numerical
semigroup can be expressed as an intersection of all p-irreducible numerical semigroups.
Example. For A = {5,9, 16}, we see that Sy(A) = {41, 45, 46,48, 50, — }, which is neither
(2-)symmetric nor (2-)pseudo-symmetric. But it can be expressed as an intersection of two
(0—)numerical semigroups: So(A) = S(A;1) US(As) with A; = {41,43, 45,46, 48,50, —
} and Ay = {41,45,46,47,48,50,—}. Here both S(A;) and S(Az) are (0—)pseudo-

symmetric. In addition, these 0-numerical semigroups are given by canonical forms:
S(Ay) = (41,43,45,46, 48,50, ...,81,83,85) ,
———

S(A,) = (41,45, 46,47,48,50,...,81,83,84, 85) .
N——

6 Lipman semigroup and dual

For simplicity, set S7 = S, U {0}. Then the p-dual of S,(A) is defined to be

B(Sp) = (S, — Sp) = (Sp — Sp) -

p
Note that for ideals I and J, I+ J={i+jli€l,je J},and I =1+ - -+ 1.
l
The p-Lipman semigroup is defined to be L,(S) = L(S;) := Up>1(hS, — hSp). Then

two kinds of chains of semigroups are obtained by duals and blow-ups, respectively:

Sp =t BO(Sp> - B(BO(SP)) = B1(5p> c---C B(Bh(Sp)) = Bh+1(5p) C -

Sp =1 Lo(Sp) € L(LO(Sp)) =1 L1(Sy) C--- C L(Lh(Sp)) =t Lp1(Sp) € -+
If these sequences coincide, the semigroup S is called the p-Arf numerical semigroup.
B,(S) = B(Sy) and A,(S) = A(S,) denote the least integers such that Bs,(s) = Ly, (s) = No.

Two chains play a role to characterize classes of certain local Noetherian domains.
The following is a generalization of the result in [3].

12



Proposition 7. For a nonnegative integer p, let S,(A) be a p-numerical semigroup with
canonical form (A). Then

(1) gp(Bp(A)) = g,(Sp(A)) — lo(p), where Lo(p) is the least non-zero element of S,(A).

(i) Lp(A) = (ti(p) — Lo(p), L2(p) — Lo(p); - - - Lay—1(p) — Lo(p))-

Example. For A = {5,9,16}, we see that

So(A) = {0,5,9,10,14, 15,16, 18, 19, 20, 21, 23, —} ,
No\So(A) = {1,2,3,4,6,7,8,11,12,13,17,22} .

So, we see that By(A) = (M —M) = {0,5,9,10,11,14, 15,16, 18,—}. Hence, go(So(A)) —
lo(0) =22 —5 =17 = go(Bo(A)).

Since 2M = {10, 14, 15,18, 19,20, 21, 23,1}, we get (2M — 2M) = {0,5,9,10, 11,13,
}. Since 3M = {15,19,20,23,—}, we get (3M — 3M) = {0,4,5,8,—}, which is also
equal to (4M —4M) because 4M = {20,24,25,28,—}. Thus, L(S) = (5,9 — 5,16 — 5) =
(4,5,11) = {0,4,5,8, =} = U_ (hM — hM).

Since

G1(A) = {0,...,24,26,27,28,29,31,33,38} ,
S1(A) = {25,30,32,34,35,36,37,39, >},

we see that By (A4) = (S1(A4) — S1(A)) ={0,5,7,9,10,11,12,14,—}. Hence, g1 (S1(A)) —
lo(1) = 38— 25 = 13 = g (B1(A)). In addition, B> = {0,5,7,9,—~}, B = {0,2,4,~},
B = {0,2,—} and B = N. Since 25,(4) = {50,55,57,59,60,61,62,64, -}, we get
(251(A4) —251(A)) ={0,5,7,9,10,11,12,14, —}, which is the same for (hSl(A) —51(A))
when h > 3. Hence, L1(S) = B1(S) = {30—25, 32—25, 34—25, 35— 25, 36—25, 37— 25, 39—
25,—}. Similarly, L% (S) = {0,2,4,5,7,9,—1}, LP(S) = {0,2,—} and L{"(S) = Ny,

Since Sy(A) = {41,45,46,48,50,—}, we see that By(A) = {0,5,7,9,~}, BP(A) =
{0,2,4,}, Bo(A)® = {0,2,+} and BSY(A) = Ny. We have g,(S5(A)) — £o(2) = 49 —
41 = 8 = g1(Bs(A)). Inaddition, Ly(S) = {0,4,5,7,—} = (45 — 41,46 — 41,48 — 41,50 — 41)
and ng)(S) = Np.

7 p-Arf numerical semigroup

A numerical semigroup S is called an Arf numerical semigroup if for every z,y,z € S
such that x > y > z, then x +y — z € S. Arf semigroups help to characterize Arf rings,
an important class of rings in commutative algebra and algebraic geometry.
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Proposition 8. If S(A) for A = {a,b} with ged(a,b) =1 is an Arf numerical semigroup,
then S,(A) is also an Arf numerical semigroup.

Proof. Assume that for every z,y,x € S, such that x > y > 2. We write z, y and 2 in
the standard form as x = aky; + bhy, y = aky + bhy and z = aks + bhz. Then by Lemma
5 ki >pb(i=1,2,3). Put 2’ =z —pb = a(ky — pb) +bhy, y =y — pb = a(k, — pb) + bh,
and 2/ = z — pb = a(ks — pb) + bhs. Since ky —pb > 0 and h; > 0 (i = 1,2,3), we
get 2/,y,7 € S with 2/ > ¢ > 2. As S is an Arf, we have 2/ + 1y — 2/ € S. Hence,
2’ + 1y — 2’ has the standard form 2’ + ¢/ — 2/ = aky + bhg with kg, hg > 0. Then by
r+y—z=a 4y — 2 +pab = a(pb+ ko) + bhy and Lemma 5, we have v +y — 2z € S,
so S is also an Arf. O

Proposition 9. Let S = S(A) be an Arf numerical semigroup with a = min(A). For a
nonnegative integer p, let p-conductor be c,, that is, ¢, = g,(A)+1. ¢, denotes the residue
modulo a, that is ¢, = ¢, (mod a) with 0 < ¢, < a. Then, we have

w _ Jotl if ¢, =0 (mod a)

cp —Cp+a+1 otherwise.
=c,—C¢+a—1

Proof. As a{g,(A), we see that ¢, Z1 (mod a). Let ¢, =0 (mod a). Since ah +1 ¢ S,
and ah +a—1¢ S, for h < ¢,/a, we have m'? = a(c,/a) + 1 = ¢, + 1 and m”, =
a(ep/a)+a—1=c,+a—1.

Let ¢, #0 (mod a). Since ah+1 ¢ S, and ah+a—1 ¢ S, for h < (¢, —¢,)/a, we have
m, =a((c,—¢)/a+1)+1=¢,—¢G+a+1and mi, =a((c, —G)/a) +a—1=
cp—Cp+a—1. L

For a nonnegative integer p and every i € {0, 1,...}, there is a positive integer kgp ) such
that m” = kPa + 4. Then (k" &P, ... kP

o’y) are called p-Kunz coordinates of S,.

Proposition 10. Let S,(A) be an Arf numerical semigroup with a = min(A), p-conductor

¢, and p-Kunz coordinates (kP kP ... k.). Then,
k%p) = F—p-‘ and k[(lp_)l = {@J )
a a

Proof. When ¢, = 0 (mod a), by Lemma 9, we have mgp) — KPa+1 = ¢, + 1 and
771[(179_)1 = k[(lp_)la%—a —1=rc¢,+a— 1. Hence, k:§p) = kC(L”_)l = ¢,/a. When ¢, # 0 (mod a), by
Lemma 9, we have m?’) = kip)a—i-l = ¢,—Cp+a+1and mffl)l = kffi)la+a—1 =cp—Cpt+a—1.
Hence, k% = (¢, — &) /a+ 1 and k%, = (¢, — &) /a. O
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