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1. INTRODUCTION

Let Mg(q, x) denote the finite-dimensional vector space of holomorphic modular forms of
weight k, level ¢, and nebentypus x, where y is a primitive Dirichlet character of conductor
¢y | g- The classical theory of newforms due to Atkin and Lehner [AL70] states that for each ¢’ | ¢
with ¢’ # ¢ and ¢’ = 0 (mod ¢,) and for each ¢ | %, the function (cpf)(z) = f(£z) defines an
element of My(q, x) whenever f € M (q', x). We call 1;f an oldform. Moreover, the orthogonal
complement with respect to the Petersson inner product of the vector subspace of oldforms
has an orthonormal basis consisting of newforms, which are eigenfunctions of the n-th Hecke
operator not just for each positive integer n for which (n,q) = 1 but for all n € N.

Casselman [Cas73], building on the seminal work of Jacquet and Langlands [JL70], gave an
adelic reformulation of the Atkin—Lehner theory of newforms. Due to the fact that automorphic
representations 7 of GLa(Ag) have a tensor product factorisation in terms of representations
of GL2(R) and GL2(Q)) for each prime p, this reformulation is purely local and is in terms of
distinguished vectors in certain classes of representations of GLy(Q,) determined in terms of
congruence subgroups. Such a theory of newforms has been extended to the setting of generic
irreducible admissible smooth representations of GL,,(F"), where F' is a nonarchimedean local
field [JP-SS81]. Below, we discuss some aspects of this theory, its recent development in the
archimedean setting by the author, and mention some open questions in this field.

2. NONARCHIMEDEAN NEWFORM THEORY FOR GL,

2.1. Representations. Let F' be a nonarchimedean local field, so that F' is either a finite
extension of the p-adic numbers @, for some prime p or F' is the field of formal Laurent series
F,((t)). Write O for the ring of integers of F' and p for its maximal ideal, and set q :== #O/p.
Given representations (71, Va, ), ..., (7, Vi) of GLy, (F), ..., GL,, (F), where ny+- - -+n, = n,
we form the representation m X - - X, of Mp(F'), where X denotes the outer tensor product and
Mp(F') denotes the block-diagonal Levi subgroup of the standard (upper) parabolic subgroup
P(F) =P, .n)(F) of GL,(F). We then extend this representation trivially to a representation
of P(F). By normalised parabolic induction, we obtain an induced representation (7, V) of

GLn(F),

1 GLu(F) [
= IndP(F) IX T,
j=1

where V; denotes the space of smooth functions f : GL,(F) — V, ® --- ® V. that satisfy

f(umg) = 85 (m)mi (m1) @ - @ o (my) - f(g),
for any u € Np(F), m = blockdiag(myq,...,m,) € Mp(F), and g € GL,,(F'), and the action of
7w on V is by right translation, namely (7w (h) - f)(g) = f(gh). We call 7 the isobaric sum of

1, ..., T, which we denote by
T
T = %71']’.
Jj=1

A representation 7 of GL,,(F) is said to be an induced representation of Whittaker type if it is
the isobaric sum of 7y, ..., 7, and each 7; is irreducible and essentially square-integrable. If each
1



2 PETER HUMPHRIES

m; is additionally of the form o; ® |det|tj , where o; is irreducible, unitary, and square-integrable,
and R(t1) > -+ > R(t,), then 7 is said to be an induced representation of Langlands type. Every
irreducible admissible smooth representation 7 of GL,,(F') is isomorphic to the unique irreducible
quotient of some induced representation of Langlands type. If 7 is also generic, so that it has
a Whittaker model W(m, 1), then it is isomorphic to some (necessarily irreducible) induced
representation of Langlands type [CS98].

2.2. Newform Theory. Let K = K, := GL,,(O) be the maximal compact subgroup of GL,, (F),
which is unique up to conjugation. For a nonnegative integer m, we define the following finite
index subgroup of K:

K1 (pm) = {k’ c K: kn,h .. -:kn,n—lykn,n —1e pm} .

Given an induced representation of Langlands type (m, Vi) of GL,(F), we define the vector

subspace Vi ™) of V.. consisting of K 1(p™)-fixed vectors:

VEG™) = fv e Vyiw(k)-v=wvforall k € Ky (p™)}.

The following theorem is due to Casselman [Cas73, Theorem 1] for n = 2 and Jacquet,
Piatetski-Shapiro, and Shalika for arbitrary n.

Theorem 2.1 (Jacquet—Piatetski-Shapiro—Shalika [JP-SS81, Théoreme (5)]). Let (w, Vi) be an
induced representation of Langlands type of GL,,(F'). There exists a minimal nonnegative integer
™)

. Ki(p™) . . o K . : .
m for which Vi 10™) s nontrivial. For this minimal value of m, V! s one-dimensional.

Definition 2.2. We define the conductor exponent of 7 to be this minimal nonnegative integer

m and denote it by ¢(7); we then call the ideal p“™) the conductor of m. The newform of = is
defined to be the nonzero vector v° € ﬂKl(pC(ﬂ)), unique up to scalar multiplication.

The uniqueness of the newform may be thought of as being a multiplicity-one theorem for
newforms. The reason for naming this distinguished vector a newform is due to its relation to the
classical theory of modular forms: as shown by Casselman [Cas73, Section 3], an automorphic
form on GLy(Ag) whose associated Whittaker function is a pure tensor composed of newforms
in the Whittaker model is the adelic lift of a classical newform in the sense of Atkin and Lehner
[AL70].

If ¢(mr) = 0, so that K;(p(™) = K, then m must be a spherical representation and we say
that 7 is unramified. If ¢(mw) > 0, then = is said to be ramified. In this sense, the conductor
exponent is a measure of the extent of ramification of 7: it quantifies how ramified = may be.
Moreover, the conductor exponent is additive with respect to isobaric sums and appears in the
epsilon factor associated to 7.

Theorem 2.3 (Jacquet—Piateski-Shapiro—Shalika [JP-SS83, Theorem (3.1), Section 5]). For an
induced representation of Langlands type 7 = 71 B --- B, of GL,(F), we have that

T

o(m) =Y elm)).

j=1

Moreover, the epsilon factor (s, 7, 1)) satisfies

1
e(s,m ) =¢ (5, , w) g ™3,
2.3. Oldform Theory. While Jacquet, Piatetski-Shapiro, and Shalika merely show that v ()
is one-dimensional, one can also calculate the dimension of v ®™) for all m > ¢(m) in terms of

a binomial coefficient; for n = 2, this is due to Casselman [Cas73, Corollary to the Proof], while
Reeder has proven this result for arbitrary n.
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Theorem 2.4 (Reeder [Ree91, Theorem 1]). Let (m, V) be an induced representation of Lang-
lands type of GLy,(F') with n > 2. We have that

m—c(r)+n—1 ,
dlm Vle(pm) _ < n—1 ) me 2 C(ﬂ'),
0 otherwise.

Casselman and Reeder also give a basis for each of these spaces in terms of the action of

certain Hecke operators on the newform. For m > ¢(7), we call VE®™) the space of oldforms
of exponent m. Once again, the reason for naming these distinguished vectors oldforms is due
to their relation to the classical theory of modular forms: an automorphic form on GLy(Ag)
whose associated Whittaker function is a pure tensor composed of Whittaker newforms at all
but finitely many places and of Whittaker oldforms at the remaining places corresponds to an
oldform in the sense of Atkin and Lehner [ALT70].

2.4. K-Types. Since 7 is admissible, Homg (7, 7| ) is finite-dimensional for each irreducible
smooth representation 7 of K. We say that such a representation 7 is a K-type of w if
Hompg (7, m|k) is nontrivial, and we call dim Homg (7, 7|x) the multiplicity of 7 in w. The
complexity of an irreducible smooth representation 7 of K can be measured by its level m, which
is the least nonnegative integer m for which 7 factors through the finite group GL,(O/p™).
In [Hum?22], the author proved the existence of a distinguished K-type of 7 that occurs with
multiplicity one and is closely associated to the newform and the conductor exponent.

Theorem 2.5 ([Hum22, Theorem 4.11]). Let (7, V) be an induced representation of Langlands
type of GL,,(F). Among the K-types of m whose restriction to

Kn—l,l = { (8 Z1)> € Kn rac Kn—l» be Mat(n_l)xl(O)}

contains the trivial representation, there exists a unique K-type 7° of minimal level. Furthermore,

T° occurs with multiplicity one in w, the level of T° is equal to the conductor exponent ¢(m), and

the subspace of Vi of T°-isotypic K,,_1 1-invariant vectors is equal to the one-dimensional subspace
c(m)

VWKI(p ) spanned by the newform v°.

Definition 2.6. We call the distinguished K-type 7° the newform K -type.

The author additionally showed that spaces of oldforms can be described in terms of distin-
guished K-types.

Theorem 2.7 ([Hum22, Theorem 4.11]). Let (m,Vy) be an induced representation of Langlands
type of GL,,(F). For each m > c(w), there exists a unique K-type 7, of m of level m whose
restriction to K,_11 contains the trivial representation. Furthermore, this K-type occurs with

multiplicity
m—c(m) +n—2
(")
and the direct sum indexed by nonnegative integers £ € {c(n),...,m} of the subspaces of Vi of

Te-1sotypic Ky,_1 1-invariant vectors is equal to VWKl(pm), the space of oldforms of exponent m.

These K-types have a particular structure. If 7 is an irreducible smooth representation of K
whose restriction to K, 1,1 contains the trivial representation, then 7 has as a model a space of
spherical harmonics, namely a distinguished subspace of the space C*°(S™ 1) of complex-valued
locally constant functions on the p-adic n-sphere

St = {(21,...,2n) € F" : max{|z1], ..., |za|} = 1} 2 K, _11\K.

The decomposition of C*°(S™~1) into irreducible K-modules was analysed by the author [Hum22,
Theorem 2.16] by extending earlier work of Petrov [Pet82].



4 PETER HUMPHRIES
2.5. Nongeneric Nonarchimedean Newform Theory. Recently, Atobe, Kondo, and Yasuda
developed some aspects of newform theory for nongeneric representations of GL,,(F).

Theorem 2.8 (Atobe-Kondo—Yasuda [AKY22, Theorem 1.1]). Let (m, V;) be a nongeneric
irreducible admissible smooth representation of GLy(F). Then 7 has a local newform, which is
invariant under the action of some subgroup of the form

Ky = {k € K :kj;=0;; (mod P’\i)}

for some minimal A = (A\,...,\p) with 0 < Ay < --- < \,. Moreover, the conductor exponent
of misc(m) =AM+ 4+ A\

Some natural questions remain open in this nongeneric setting.

Question 2.9. Let F' be a nonarchimedean local field.

(1) Is there a theory of oldforms for nongeneric representations of GLy(F)?
(2) Can one describe the newform of a nongeneric representation in terms of a K-type?

We expect that a resolution of the latter question must involve branching not just from K,
to K11, as in the generic setting, but instead branching in stages to smaller subgroups of K.
This branching in stages should involve both branching from

a O
7Il—m+1 = {(0 1m_1) € KTL a € Kn_m+1}

a b
Kn—mm = {(O 1m> ceKy,:ac K, be Mat(n_m)xm(O)}

and from Ky, m to Ky, where m € {1,...,n —1}.

to

3. ARCHIMEDEAN NEWFORM THEORY FOR GL,

3.1. Representations. We now turn our attention to the archimedean setting, so that F' is an
archimedean local field, namely either ' = R or F' = C. We define induced representations of
Langlands type of GL,(F) in the same fashion as in the nonarchimedean setting. As well as
being admissible and smooth, such a representation is additionally a Fréchet representation of
moderate growth and of finite length.

3.2. K-Types. One cannot define the newform of an induced representation of Langlands type
of GL,,(F') with F' archimedean in terms of congruence subgroups, since GL, (F’) lacks compact
open subgroups akin to K;(p™). Instead, we proceed directly via K-types, where K denotes the
maximal compact subgroup of GL, (F'), which is unique up to conjugacy, namely

I O(n) if F =R,
“Hn T \um) ifF=C

Since 7 is admissible, Homg (7, 7| i) is finite-dimensional for each irreducible representation
7 of K. We say that such a representation 7 is a K-type of 7 if Homg (7, 7| ) is nontrivial,
and we call dim Homg (7, 7|g) the multiplicity of 7 in w. The complexity of an irreducible
smooth representation 7 of K can be measured by its Howe degree m = deg r, which is defined
by degt := Z?:l |pj| with (p1, ..., pun) € Z™ the highest weight of 7. In [Hum20], the author
proved the existence of a distinguished K-type of 7 that occurs with multiplicity one and defined
the newform and the conductor exponent via this K-type.

Theorem 3.1 ([Hum20, Theorem 4.7]). Let (m, V) be an induced representation of Langlands
type of GLy,(F'). Among the K-types of m whose restriction to

0
K | = {(g 1) EK:aeKn_l}
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contains the trivial representation, there exists a unique K-type 7° of minimal Howe degree.
Furthermore, T° occurs with multiplicity one in m and the subspace of Vi of T°-isotypic K/ -
invariant vectors is one-dimensional and spanned by a vector v° that is unique up to scalar

multiplication.

Definition 3.2. We call the distinguished vector v° the newform, the distinguished K-type 7°
the newform K-type, and the distinguished nonnegative integer c¢(m) := deg7° the conductor
exponent.

Just as in the nonarchimedean setting, the conductor exponent is additive with respect to
isobaric sums and appears in the epsilon factor associated to .

Theorem 3.3 ([Hum20, Theorem 4.15]). For an induced representation of Langlands type
7=mB---Bm of GL,(F), we have that

T

e(m) = Zc(ﬂj).

j=1
Moreover, the epsilon factor (s, 7, 1)) satisfies
e(s,m ) =i,

The author additionally showed that spaces of oldforms can be described in terms of distin-
guished K-types.

Theorem 3.4 ([Hum20, Theorem 4.12]). Let (7, V) be an induced representation of Langlands
type of GLy(F'). For each m > c(w) for which m = c(n) (mod 2), there exists a unique K-
type T of ™ of Howe degree m whose restriction to K|, contains the trivial representation.
Furthermore, this K-type occurs with multiplicity

m_TC(W) +n—2
n—2 '
Definition 3.5. For each m > ¢(x) for which m = ¢(7) (mod 2), we call the subspace of V; of
Tm-isotypic K/, _;-invariant vectors the space of oldforms of exponent m.

Note that if 7 is an irreducible representation of K whose restriction to K/ _; contains
the trivial representation, then 7 has as a model a space of spherical harmonics, namely a
distinguished subspace of the space C*(S™~!) of complex-valued locally constant functions on
the n-sphere

gn-1._ {(z1,....2n) ER" 12+ -+ 22 =1} if =R,
' {(z1,...,2,) €C" : ;4T7 + - -+ 2,7, = 1} if F =C,
= Ky, \K.

The decomposition of C°°(S™~1) into irreducible K-modules is simply the classical theory of
spherical harmonics.

3.3. Nongeneric Archimedean Newform Theory. As yet, there is no newform theory of
nongeneric representations of GL,(F') when F' is archimedean. One can raise some natural
questions in this nongeneric setting.

Question 3.6. Let F' be an archimedean local field.

(1) Is there a theory of newforms and oldforms for nongeneric representations of GLy,(F)?
(2) Can one describe the newform of a nongeneric representation in terms of a K-type?
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Once more, we expect that a resolution of the latter question must involve branching not just
from K, to K/, as in the generic setting, but instead branching in stages from

a 0
] = {(0 1m_1> eKy:ac Kn_m+1}

to K where m € {1,...,n —1}.

n—m?

4. RANKIN-SELBERG INTEGRALS

4.1. The Test Vector Problem. There is a close connection between newform theory and the
theory of test vectors for Rankin—Selberg integrals. We recall that given induced representations
of Whittaker type 7 of GL,(F) and 7’ of GL,,(F') with m < n, and given Whittaker functions

W e W(r, ) and W' € W(r', 1), the local GL,, x GL,, Rankin—Selberg integral is defined by

U(s, W,W') = / w (g 1 0 ) W (g)|detg|* "= dg for m <n,
N (F)\ GLn (F) -
Ve W)= [ W@W(g)Bleng) detgl dy form=n,
Ny (F)\ GLn(F)

where ® € . (Mat; «p,(F)) is a Schwartz—Bruhat function and e,, == (0,...,0,1) € Matyx,(F) =
F™. These integrals converge absolutely for R(s) sufficiently large and extend meromorphically
to the entire complex plane.

The Rankin—Selberg integral is always a holomorphic multiple of the Rankin—Selberg L-
function. In particular, for nonarchimedean F', the Rankin—Selberg L-function L(s, 7 x 7’) is the
generator of the C[¢®, ¢~ ®]-fractional ideal of C(¢ *) generated by the family of Rankin—Selberg
integrals W (s, W, W) (or U(s, W, W’ ®) if m = n) with W € W(m,%) and W' € W(x', %)) (and
O € . (Mat1xn(F)) if m = n). For archimedean F, the quotient (s, W,W')/L(s,m x ©’) (or
U(s, W,W' ®)/L(s,m x «') if m = n) is entire and of finite order in vertical strips.

While this quotient is always entire regardless of the choice of Whittaker functions W and
W’ (and Schwartz—Bruhat function ® if m = n), for many applications, one requires something
stronger, namely that for particular choices of W, W', and @', this quotient be nicely behaved
— in particular, nonvanishing apart from a prescribed collection of values of s € C. When
the representations m and 7’ are both unramified, one can take W and W’ to be the spherical
Whittaker functions, and additionally explicitly choose the Schwartz—Bruhat function @ if m = n,
such that this quotient is exactly equal to 1. This motivates the following problem.

Test Vector Problem. Given induced representations of Langlands type © of GLy,(F) and 7'

of GL,(F), determine the existence of Whittaker functions W € W(m, ) and W' € W(x' 1)),

and additionally a Schwartz—Bruhat function ® € % (Matyx,(F)) if m = n, for which
(s, W, W) form < mn,

L(s,mx7') = ,
U(s, W,W' @) form=n.

We call such a tuple (W, W), or a triple (W, W’ ®) if m = n, a test vector for the Rankin—
Selberg integral.

4.2. Newforms as Test Vectors. When m € {n,n — 1} and the representation 7’ of GL,,(F')
is spherical, newforms are test vectors. The case m =n — 1 is as follows.

Theorem 4.1. Let  be an induced representation of Langlands type of GL,,(F'). The newform
We € W(r, 1) is the unique Whittaker function that is both right K!,_,-invariant, so that

(o ) -



NEWFORM THEORY FOR GL, 7

for all k € K, 1, and is such that for any spherical representation of Langlands type 7' of

GL,,—1(F) with spherical Whittaker function W' € W(x', 1),
(s, W,W") = L(s,m x 1)
for R(s) sufficiently large.

For F' nonarchimedean, this is due to Jacquet, Piatetski-Shapiro, and Shalika [JP-SS81,
Théoreme (4)] (though the proof was incomplete and was independently corrected by Jacquet
[Jac12] and Matringe [Mat13, Corollary 3.3]). For F' archimedean, this is [Hum20, Theorem
4.17]. An analogous result holds for the case m = n.

Theorem 4.2. Let w be an induced representation of Langlands type of GL,(F'). Then there
exists a choice of bi-K-finite Schwartz—Bruhat function ®° € . (Mat1x,(F)) such that for
any spherical representation of Langlands type 7' of GL,(F) with spherical Whittaker function
W' € W(r', 1)), the newform W° € W(w, 1) of 7 satisfies

U(s, W, W 8°) = L(s, 7 x ')
for R(s) sufficiently large.

For F' nonarchimedean, this is due to Kim [Kim10, Theorem 2.1.1]; for F' archimedean, this
is [Hum20, Theorem 4.18].

What about the case m < n — 17 For F nonarchimedean, the newform is again a test vector
for the Rankin—Selberg integral. For F' archimedean, on the other hand, it is widely believed
that no test vector exists.

4.3. Test Vectors for Ramified Representations. When both 7 and 7’ are ramified, new-
forms are no longer test vectors for Rankin—Selberg integrals, and instead one must look elsewhere
to construct test vectors. For example, for F' archimedean, there are certain representations
for which Whittaker functions lying in the minimal K-type are test vectors [IM22]. In general,
however, we do not yet have a way of systematically determining test vectors for Rankin—Selberg
integrals.

Question 4.3. Can one systematically determine K-finite test vectors for Rankin—Selberg inte-
grals?

Let us briefly discuss how one might go about this in the case m = n — 1. By the Iwasawa
decomposition, we may write

/ I5—% o1 / a o0 kK 0 1 1yt 1oax
(s, W,W') = deta’|""2 6,1, (d) 144 W'(d'K") dk' d*d’.
An_1(F) Koy 0 1 0 1

Here A,_1(F) denotes the subgroup of GL,_1(F) of diagonal matrices and d0,_1(a’) denotes
the modulus character. Suppose that W € W(m, ¢) is right K-finite Whittaker function, so
that the action of (k) on W for k € K,, generates a finite-dimensional representation 7 of K;
similarly, suppose that the action of #'(k") on W’ for k' € K,,_1 generates a finite-dimensional
representation 7 of K,_1. By Schur’s lemma, the inner integral vanishes unless 7 @ 7/|x,
contains the trivial representation of K,_1.

With this in mind, we expect that there exist test vectors when 7,7’ are such that the
representation 7®7’ of K, x K,,_1 is minimal among all K,, x K,,_1 types of @’ in some explicit
sense. For F' nonarchimedean, this should be in the sense of the level of this representation,
while for F' archimedean, this should be in the sense of the Howe degree of this representation.
Finally, the level or Howe degree should be associated to the conductor exponent ¢(m x 7') of
7 x 7', which appears in the epsilon factor as

1 /
—, T x7, ¢) g el (5=3) if Fis nonarchimedean,

faremn =75

- / . . .
jclmxa’) if F'is archimedean.
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4.4. Nongeneric Representations. Rankin—Selberg integrals involve Whittaker functions and
hence are only defined for representations that admit a Whittaker model. Nonetheless, there
ought to be a theory of test vectors for other period integrals for nongeneric representations.
In [AKY22], Atobe, Kondo, and Yasuda investigate Rankin—Selberg integrals in the Zelevinsky
models and in the Shalika models, which are well-defined even for nongeneric representations.
They prove that if F' is nonarchimedean, the newform is a test vector for these period integrals
when the second representation is unramified. Once more, there are natural open questions in
this regard.

Question 4.4.

(1) Can one extend the test vector result of [AKY22] to the setting of F archimedean?
(2) Can one systematically determine K -finite test vectors for Rankin—Selberg integrals in the
Zelevinsky models and in the Shalika models?

5. OTHER GROUPS

We end by discussing the problem of generalising the notion of newforms and of test vectors
to groups other than GL,,.

For nonarchimedean F', there has been a great deal of recent progress in defining newforms via
congruence subgroups for groups G other than GL,,. See, for example, [RS07] for G = PGSp,,
[Okal9] for G = GSp,, [Che22a, Tsal6] for G = SO,41,, [AOY22, Che22b] for G = Uy,
and [Ato23] for G = U,,,,. In several cases, it has additionally been shown that newforms for
these groups are test vectors for certain period integrals. For example, in the case of G = GSp,,
the period integral of interest is the GSp, x GL2 Rankin—Selberg integral: the newform is a test
vector for this integral when the representation of GLs is spherical.

From the previous discussion for GL,,, many open questions naturally arise. We state several
below as motivation for researchers in the field.

Question 5.1.

(1) Can one characterise newforms for groups other than G = GL,, via K-types?

(2) Can one determine a theory of newforms for groups other than G = GL, when F is
archimedean?

(3) Can one determine a theory of newforms for groups other than G = GL,, when the represen-
tation is nongeneric?

(4) Can one systematically determine K -finite test vectors for period integrals for groups other
than G = GL, ?
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