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ABSTRACT. This article is a survey on the author’s preprint [HMN], where the authors study
an integrality of critical values of the Rankin—Selberg L-function for GL, x GL,_1 if the
base field is a totally imaginary field.

1. INTRODUCTION

1.1. Motivations and the main result. This article is a report of the author’s talk at
the conference “ Analytic and arithmetic aspects of automorphic representations ” , which
was held at RIMS, Kyoto University during 23th to 27th, January, 2023. The author’s talk
was based on the joint work with Takashi Hara and Tadashi Miyazaki ([HMN]), where the
authors study an integrality of critical values of Rankin-Selberg L-functions for GL,, X GL,,_1
over totally imaginary fields.

Let us briefly recall the history of the study of the critical values of Rankin-Selberg L-
functions for GL,, x GL,_;. Manin ([Man72]) and Shimura ([Shi76], [Shi77]) started the
study of the rationality of special values of Rankin-Selberg L-functions for GLy x GL; over
the rational number field. Following their works, Deligne ([Del79]) introduced the notion of
critical values and proposed a general conjecture to understand their works as study of a
rationality of critical values of L-functions attached to pure motives. It is widely believed
that there exists a pure motive attached to an irreducible cohomological cuspidal automor-
phic representation of GL,,. Hence we expect that the critical values of the Rankin-Selberg
L-functions for them have an algebraic property, although the existence of pure motives at-
tached to it is not yet known. Based on this motivation, Mahnkopf ([Mah05]) and Raghuram
([Ragl0], [Ragl6]) consider a generalization of Manin and Shimura’s works to GL;,, x GL,,_1
(n > 2), by using the generalized modular symbol method due to Kazhdan-Mazur-Schmidt
([KMSO00]). However, an unspecific constant still remains in their formula for critical values,
which is expected to be non-zero as in [KMS00, page 98, Question]. It is proved that this
unspecific constant is non-zoro by Sun ([Sunl7]), and hence Sun’s result implies that the
generalized modular symbol method is non-trivial. Therefore it is natural to study further
applications of the generalized modular symbol method, and the one of important applica-
tions should be the construction of p-adic L-functions for Rankin-Selberg L-functions beyond
the study of the rationality of critical values.

Based on the work of [KMS00], Januszewski ([Jan]) constructed p-adic L-functions for
Rankin-Selberg L-functions, but his interpolation formula still contains an unspecific con-
stant. This unspecific constant prevent us from studying congruences between critical values
at the different points, since the unspecific constants depend on the critical points. (We
say critical points if the evaluation of the L-functions at the points is a critical value of the
L-functions.) This kind of congruences is called Kummer (or Manin) congruences, which is
one of the expected properties of p-adic L-functions. Of course, the existence of Kummer
congruences implicitly implies that the critical values must be integral in an appropriate
sense. The existence of the unspecific constant also makes difficult to define an integrality of
critical values and to formulate Kummer congruences.
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In this situation, we decided to calculate explicitly this unspecific constant for the further
study of critical values of Rankin-Selberg L-functions. We also consider an integrality for
these critical values. As a result, if the base field is totally imaginary, we obtain an explicit
formula for the unspecific constant (see (4.1)), which was always an obstruction to discuss
rationality in the previous works, and we also prove an integrality of critical values with
respect to an appropriately normalized period without any unspecific constant. See Theorem
4.1 for the result.

1.2. Strategy for the study. The ingredients of our study of the integrality are as follows:

(i) Construction of an appropriate period for automorphic representations;
(ii) Cohomological interpretation of the Rankin-Selberg zeta integrals;
(iii) An explicit formula for Rankin-Selberg zeta integrals.

The first and the most fundamental step is to construct periods for cohomological irre-
ducible cuspidal automorphic representations in an appropriate way for the formulation of
the integrality of critical values. According to the philosophy in [Del79], the choice of periods
corresponds to the choice of the lattices on cohomology groups. Mahnkopf ([Mah05]) and
Raghuram-Shahidi ([RS08]) defined periods attached to cohomological irreducible cuspidal
automorphic representations, which are called (Betti-)Whittaker periods, by making choices
of Whittaker vectors so that an unspecific constant is non-zero, and rational models for a
local systems on locally symmetric spaces. An implicit choice of a Whittaker vector makes
impossible to calculate the (namely archimedean) local Rankin-Selberg zeta integral and this
becomes one of reasons why an unspecific constant appears. Also we can only formulate an
algebraicity of critical values as long as one uses a rational model of local systems. In our
work ([HMN]), we found appropriate choices of Whittaker vectors which have a good behav-
ior under the local Rankin-Selberg zeta integrals and also appropriate choices of lattices of
local systems. These choices enable us to formulate an integrality of critical values.

The second step is to study the cohomological interpretation of Rankin-Selberg zeta in-
tegrals, since the periods are defined in terms of cohomology groups. A general strategy to
give such a cohomological interpretation is called the generalized modular symbol method in
[KMS00], which we have already mentioned. However the explicit relation between cohomo-
logical method and Rankin-Selberg zeta integrals are clarified in few cases: see [Hid94] for
the case of GLg x GL; over general number fields and [HN21] for the case of GL3 x GLy over
the rational number field. In [HMN], we give distinguished cohomology classes, which are
called Eichler-Shimura class, and we write down the Rankin-Selberg zeta integrals by using
these cohomology classes in an explicit manner. This enables us to discuss the integrality of
the Rankin-Selberg zeta integrals.

The third step to give an explicit formula of Rankin-Selberg zeta integrals is basically done
due to Ishii-Miyazaki ([IM22]). Hence our main considerations in [HMN] are (i) and (ii).

1.3. Outline of this article. As we have already mentioned, the most fundamental problem
is to define periods in an appropriate manner. This is done by introducing a lattice for the
local systems and by making a choice of a distinguished Whittaker vector. Hence, in this
survey article, we concentrate to give a brief discussion about these two subjects. In Section
2, we introduce a model of finite dimensional representations which gives an appropriate
description of our local systems. In particular, the notion of Gel’fand-Tsetlin basis will be
a fundamental tool, and hence we describe it in some detail. We also recall the definition
of local systems and critical values in Section 2. In Section 3, we introduce the notion of
Whittaker periods. To state the definition of Whittaker periods precisely, we will explain an
explicit description of lattices in cohomolgy groups of local systems, distinguished Whittaker
vectors and Eichler-Shimura classes there. The main theorem about an explicit formula for
critical values and their integrality is stated in Section 4.
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1.4. Basic notations. Throughout this article, F' always denotes a totally imaginary num-
ber field. Let Ir be the set of embeddings of F' into C and X the set of places of F. Write
the complex conjugate of * € C as ¥ and denote by v the complex conjugate of v € X .
Then we identify (non-canonically) Ir with the {v,7 | v € ¥}, and hence regard Xp o as
a subset of I'r. We also denote by X p o (resp. Xppyn) the set of infinite (resp. finite) places
of F. Define Fa to be the ring of adeles of ' and Fp o (resp. Fa sn) denotes the ring of
infinite (resp. finite) adeles of F'. Similarly, for an adelic object X4, the symbol XA o (resp.
XA fin; Xy (v € Xf)) denotes the infinite part (resp. finite part, v-component) of Xa. We
also let Xg = [[,cq X0 for a subset S C Xp.

For cohomological irreducible cuspidal automorphic representations 7 of GL,,(Fa) and
71 of GL,_1(Fa), let L(s,7(" x 7z(*=1)) = [Loes, Lo(s, 7 x g
plete) Rankin—Selberg L-function of 7™ and (=1,

Let Ay, = {(A1,...,A\n) €EZ" | Ay > -~ > A\, }. Foreach A = (A,...,\,) € Ay, and p =
(H1y -y fin—1) € Ap—1, we write g < X if the inequalities A\, < 1 < Ao < oo < Ao <
p1 < Ap are satisfied. For A = (Ay)perp € ALF and p = (j15)ery € Aiﬂl, we define pu < A
by using the multi-index notation, that is, p < X holds if and only if pu, = As holds for
each o € Ip. For an integer m € Z, we abbreviate (m,m,...,m) € A, to m € A, since no
confusion likely occurs.

) denote the (com-

2. COHOMOLOGICAL REPRESENTATIONS

In this section, we prepare basic notions on cohomological irreducible cuspidal automorphic
representations of GL,,(Fa ). The automorphic representation is defined to be cohomological
if it appears in a cohomology group of the associated locally symmetric space with coeffi-
cients in a certain local systems. The local system is defined by using an irreducible finite
dimensional representation, and hence it is useful for the further study of automorphic rep-
resentations to write down the finite dimensional representation in an explicit way to handle.
In [HMN], we adopt Gel’fand-Tsetlin basis to study finite dimensional representations, which
is a fundamental tool in our study. Hence we explain it in Section 2.1 in certain details. We
also prepare some notions about cohomology groups of local systems in Section 2.2 and their
relation to the critical values in Section 2.3.

2.1. Gel’fand-Tsetlin basis.

2.1.1. Description of the action. Let A € A,. Denote by (7, V)) the irreducible holomorphic
finite dimensional representation of GL,,(C) of highest weight A. Consider V) as an hermitian
space by fixing a U(n)-invariant hermitian pairing on V). Here we will describe (73, V)) in an
explicit manner by using a distinguished basis of V). Such a basis is called Gel’fand-Tsetlin
basis of V), which is a key ingredient of our study in [HMN].

Consider a finite set G(A) consisting of the triangle matrices

min M2n cee Mn,n
mMmin—1 ... Mp_1n-1
mia M22 m®
mi1

()

with the following conditions: m; ; € Z, m™ = X\ and m) = m+D) (1<j<n-1). For
each M = (m; ;)1<i<j<n € G()), define the weight ™ = (v, ... M) of M to be

J Jj—1
W= mi,1, VJM = Zmi,j - Zmi,j—l (2<j<n).
i=1 i=1
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Gel'fand and Tsetlin construct a basis of V, which is indexed by elements in G(\), which
gives an explicit description of the action of gl,, on V) via 7):

Proposition 2.1 ([IM22, Section 2.5]). There exists an orthonormal basis {Carfarec(y) of
Vi with the following formulas on the gl,,-action

A (Erp ) = 7 Cu (1<k<n),
(B = > a(M)Cura,, (1<j<n-1),
1<i<;
M+A; ;€G(N)
B )= Y 2, (M")Car s ay, (I<j<n-1).
1<i<;
M+AY,€G(N)

Here A; ; is the integral triangular array of size n with 1 at the (i,j)-th entry and 0 at the
other entries, and a; (M) and MY = (m};)1<i<j<n are defined to be (M = (m; j)1<i<j<n)

. . 1
T mngn —may = h+ ) T (o1 —maj —h+i—1) |

aij(M) := ' ; ’
J Hlﬁhﬁj, h#(mhyj —my; — h+ z)(mhyj — My — h+i— 1)
mxj = Mye1—4,5-
Al Ao e An
Let H(\) = M ”/\'”_1 Then we note that (p(y) is the highest weight
A

vector.

2.1.2. An integral structure. One of our motivations to describe (7, V}) in Section 2.1.1 is
to give a rational and integral structure on cuspidal cohomology groups, which is one of
key ingredients for the definition of periods attached to cohomological irreducible cuspidal
automorphic representations. Ishii-Miyazaki ([IM22]) introduced such a rational structure on
V) via Gel’fand-Tsetlin basis aiming for application to the study of the rationality of critical
values. Furthermore we can actually consider an integral structure by looking their rational
structure carefully, which we describe below.
As in [IM22, Section 2.5], we set

§ar = VT (M)Cr (M = (mijhi<i<j<n € G(A),
where (M) is the rational constant defined by

L . o A\ ] _ ] . N
r(M) = H (mlvk Mjk—1 —1 +])-(mz,k—1 Mjy1 g — 1 + )

\<idiek<n (mig—1 —mjp—1— i+ ) (mir —mjp1 e — i+ 7).

By re-writing the action of gl, on V) via &y (M € G())), Ishii-Miyazaki obtain an explicit
formula of the action ([IM22, (2.19), (2.20), (2.21)]). By their explicit description, we can
see that it actually gives an integral structure under certain condition as follows:

Corollary 2.2. Let A be a subring of C satisfying {(\ — M\ +n —3)!1}71 € A if n > 3.
Define an A-module Vy(A) to be

VA(A) = @ A&
MeG(\)

Then V)(A) is closed under the action of GL,(A) via Ty.
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Remark 2.3. (i) In [HMN], A is not necessary to be a subring of C. We introduce a
GL,,(A)-module (73, V)(A)) for an integral domain A of the characteristic zero by
realizing (7, Vi(A)) as a certain subspace of polynomial functions on M,,(A) with
the regular representation of GL,,(A), which coincides with (7, V\(A)) in Corollary
2.2 if A is a subring of C. So we will use the notion (7, VA(.A)) for a general integral
domain A of the characteristic zero satisfying the condition in Corollary 2.2 in the
subsequent arguments.

(ii) The idea to introduce an explicit model of the finite dimensional representation
for the study of cohomological automorphic representations and their critical values
can be found in [Hid94] in the case of GLg2 over general number fields. In this
sense, introducing an integral structure as in Corollary 2.2 can be considered as a
generalization of Hida’s strategy for GL,, over totaly imaginary fields. We also note
that a similar kind of study can be found in [HN21] in the case of GL3 over the
rational number field.

2.1.3. Branching rule. Besides an integral structure (Corollary 2.2), we introduce one more
distinguished property of Gel’fand-Tsetlin basis of V). Let A € A,,, and put Zt(\) = {u €
Ap—1 | p =2 A}, Consider GL,_; as a subgroup of GL,, via the diagonal embedding ¢,, :
GL,—1 — GL,;9 — g 1

of GL,,—1(C), which is called the branching rule for (GL,(C), GL,,—1(C)), is given as follows
([GW09, Theorem 8.1.1}):

(2'1) V>\ = @ VA,W V)\,[.L = Vu'

HEET(A)

. Then the irreducible decomposition of V) as a representation

The Gel’fand-Tsetlin basis describes the above branching rule in an explicit manner. We
prepare some notation to introduce such a description according to [IM22, Section 2.5]. For
each M =1 (m(”),...,m(l)) € G(N), define M to be t (m(”_l),...,m(l)) and let G(\; p)
(1 € E[A]) be the set consisting of M € G(\) such that M e G(p). Then the following map
gives a GL;_1(C)-isomorphism:

(2:2) Vin= P Céuw = Viiéuw— &
MeG(Xp)

For later use, we prepare a notation for the inverse of (2.2). For p € =*(\) and M € G(u),
we define M[A] € G(A; p) to be
A
= ().

Then the inverse of (2.2) is given by V,, = Vi ,;ém — Evpyy (M € G(p)). An important
observation is that these maps are integrally defined with respect to the integral structure
defined in Corollary 2.2.

Remark 2.4. For the study of the rationality and the integrality of critical values of Rankin-
Selberg L-functions, we interpret Rankin-Selberg zeta integrals as cup products of distin-
guished cohomology classes, which we introduce in Section 3.2.3, of locally symmetric spaces.
To describe cup products in an explicit way, we will use the branching rule (2.1). Hence a
rational (resp. integral) model of branching rule is one of key ingredients for the study of
rationality (resp. integrality) of critical values.

The multiplicity one of the branching rule and the Schur’s lemma immediately show that
the branching rule is defined over a certain number field. This rationality for the branch-
ing rule is used in the previous works as in [Mah05], [Ragl0] and [Ragl6]. However this
abstract construction of the rational model of the branching rule becomes one of reasons of

5



an ambiguity of an unspecific constant in the formula for the critical values and this also
causes the difficulty of the study of the cohomological interpretation of the Rankin-Selberg
zeta integrals.

We also note that, in [Hid94] and [HN21], the branching rule is explicitly described by
giving finite dimensional representations explicit models as subspaces of polynomial functions.
This description is one of key ingredient for the cohomological interpretation of the Rankin-
Selberg zeta integrals in an explicit way in [Hid94] and [HN21]. In [HMN], we consider an
analogue of these works by using an explicit description (2.2) of the branching rule.

2.2. Cohomology of local systems. For each A = (A1,..., \,) € A, define the contragre-
dient AV of A to be AY = (=Ap,...,—A1) € Ay. Let A = (A\y)oerr € ALF and define AV to
be (AY)yer, € AIF. Denote by F,. the normal closure of F in C and take a subfield A in C

containing Fye. Let V(AY)4 = ® Viy(A) and define a representation (7v, V(AY)4) of
GL,(F) by

TyV (9) (®0‘EIFVU) = ®UEIFT/\},/ (U(Q)) (VU) (g € GLn(F)7VU S V)\},/)

o€lp

Let K be an open compact subgroup of GL,(FA an) and put K, = [lies,  C*UM).
Define Y,én) to be

V" = GL,(F)\GL,(Fa)/ K. K.

Consider a diagonal left action of GLy,(F) on the direct product GLy,(Fa)/K.K x V() 4.

Then let V(A) 4 be the local system on Y,én) which is defined to be the sheaf of locally constant
sections of the following first projection:

QL. (F)\ (GLn(FA) JRLK x V() A) v,

Let 7(™ be an irreducible cuspidal automorphic representation of GL,(FaA). We re-
call that (™ is said to be cohomological, if there exists an open compact subgroup K of
GL,,(FA fin) and X € AlF such that the Trf(i?l)—isotropic part of the cuspidal cohomology group

H;, (Y,én), V(AY)c) is non-trivial for some degree . We call A € AIF the highest weight as-

cusp
sociated with 7(™ . If 7(™) is cohomological, then the range of the degree * with the non-trivial

cohomology groups are known to be by, p:= 3" o5 M <x < ZvegFm(n(n{l) +n—1).

Here we note that the weight A is uniquely determined by the Langlands parameters of the

archimedean part wé’.}) of 7™ and it is known that X satisfies the following purity condition:

(Pur): there exists an integer w € Z such that A, — A = (w,w,...,w) holds for each
o € Ir. Here ¢ € Ir denotes the complex conjugate of o € Ip.

Let us call w the purity weight of A.

2.3. Critical values. In this subsection, we prepare some notation and facts about critical

values of the Rankin-Selberg L-function L(s,7(™ x 7("=1). We write the infinite part of
L(s, 7™ x 7(»=1) ag Loo(s,Trég) X 77&2_1)) = HveEF,oo LU(S,m(;n) X m(;n_l)). Define a half-
integer %+m € %+Z to be a critical point of L(s, 7(™ x 7"~ if neither L (s, 7 x wé’.}‘”)

nor Lo (1 —s, m@’v X m(g_l)’v) has a pole at s = % +m. Here " denotes the contragredient

representation of .

Let o € A,_1 be the highest weight associated with 7("~1). We always suppose the
following condition, which is necessary to apply the generalized modular symbol method due
to Kazhdan-Mazar-Schmidt ([KMS00]) for the study of critical values:

e There exists an integer mg € Z such that XY > p + mgl.
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Here we put 1 = (1),¢r, € Aqlf_ 1- Under this condition, we find the following proposition,
which is firstly found by Kasten-Schmidt ([KS13, Theorem 2.3]) if the base field is the rational
number field:

Proposition 2.5 ([Ragl6, Theorem 2.21]). Let m € Z. Then a half-integer §+m is a critical
point of L(s, 7™ x 7("=1Y) if and only if m satisfies that XY > g + m1.

Proposition 2.5 relates the study of critical values of Rankin-Selberg L-functions with the
study of the branching rule (2.1), which is explicitly described by the Gel’fand-Tsetlin basis
as in (2.2). This is the main reason why we use Gel’fand-Tsetlin basis for the study of critical
values, which also describes an integral structure of cuspidal cohomology groups in an explicit
way due to Corollary 2.2, and hence we can discuss an integrality of critical values. (See also
Remark 3.2.)

3. WHITTAKER PERIODS

In this section, we introduce the notion of Whittaker periods for cohomological irreducible
cuspldal automorphic representations of GL, (Fa). According to the philosophy of Deligne

n [Del79], we define the Whittaker period of 7(™ as a ratio of two algebraic structures
associated with 7("). Such a definition is introduced in [Mah05], [RS08], and an rationality
of critical values L(% +m, 7™ x W(”_l)) with respect to these Whittaker periods is discussed
in [Ragl0], [Ragl6]. In [HMN], we basically follow their formulation, but we also discuss an
integral properties of these critical values by using certain integral structure associated with
7(") and distinguished Whittaker vectors. We introduce such integral structures on cuspidal
cohomology groups in Section 3.1, and we give distinguished elements in Whittaker model of
7(") in Section 3.2. By using these data, we define the Whittaker period associated with (™)
up to multiplication by p-adic units in Secton 3.3, which enables us to discuss an integrality
of critical values.

3.1. Integral structure of cuspidal cohomology groups. In this subsection, we prepare
integral structure on the cuspidal cohomology group of Y,Cn

Let p be a prime number and fix an isomorphism ¢ : C — C, as fields. Recall that Fy
is the normal closure of I’ in C, and let Ch. be the ring of integer of I}.. Define Oy to
be the closure of ¢,(tf,. ) in C,, where ¢, : Q — C,, is the embedding induced by the fixed
isomorphism ¢ : C — C,. Let A be a subring of C, containing Oc.

Let A = (As)oerp € ALF. If n > 2, suppose that p satisfies
(3.1) p>max{As1 —Aop+n—2 | o€ lp}.
Let (7x,, V), (A)) (o0 € Ir) be the finite rank representation of GL,(A) as in Corollary 2.2.

Consider ‘N/()\)Ef{) = Qyerp V2o (A), and then we define an action T)(\p) of GL,(tF) on ‘N/(A)Eﬁ))
as follows:

® Vo | = ® (T2, (B0 0(9))ve) for g € GL,(vp).

o€lp o€lp
We extend this action to the action of GL,,(trp ®z Z,) as follows. Define I, to be
Iry,:={o €Ip|visinduced by io0: F — Cp}.
For o € IF,, let 0, denote the automorphism of F,, induced by ¢ o 0. Then define an action
of GL,(vr ®z Zp) on ‘N/()\)Ef) by

(71) v\(p ® ® Vo ® ® T)\J Ty qv Vo for (gv)v|(p) € GLn(tF Xz Zp).

v|(p) o€ p) o€IF,
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If A is a field, then we also define the action of GL,(F ®q Q,) on V(>\)E4) in the same way.
Let IC be an open compact subgroup of GL;,(Fa fn) so that ICp, is a subgroup of GL,,(tF ®z

Z,). Define a right action of K on the direct product GL,(F)\GL, (Fa)/Kp x XN/()\)%) to
be ([g], viy) -« = (lgu), 7 (™ )vig)) (9] € GL(F)\GLa(Fa)/Ko, vig) € V). Then

define the local system V()\)Eff) on Y,é") to be the sheaf of locally constant sections of the
following first projection:

<GLn(F)\GLn(FA) /K % 17()\)55()) /K — 7.

Lemma 3.1. Retain the notations. Let ® be a morphism of local systems on Y,é") defined as

@ V(Ne — VD (g vig) — ([a 78 (5, ilvig))
where gy = (gv)vlp € GLn(Fa p) is the p-component of g € GLy(Fa), and we consider i(v(y)

as an element in V()\)é) via the fized embedding i : C — C,. Then ® gives an isomorphism
of local systems.

Let E C C be a finite extension of Fi., £ the p-adic closure of its image via the fixed
isomorphism ¢ : C — C,, O the ring of integers of £, and ‘B the prime ideal of the ring of

integers tp of E which is induced by 2. For a local system V on Y,é ), denote by H. *(Y(n) V)

the cohomology group of local system Y for 2 = () and the cohomology group with com-
pact supports for 7 = c. Let tvg (p) be the localization of vg at B. Then the natural

inclusion E — C induces a morphism from H;‘(Y,én), V(A)E) to H;‘(Y,én), V(AY)c), which
gives an isomorphism after taking scalar extension to C. We also have the natural inclusion
O — C, and hence this induces a morphism from H{,"(Y,én), )7()\V)g)) to H;‘(Y,én), )7()\V)gi)
which also gives an isomorphism after taking scalar extension to C,. Write the image of
H;‘(Y,én),v()\v)( )) as H?*(Y,én),v()\v)( )) Furthermore, we can identify H5 (Y( ") YV(AY)e)
with Hy (v, V(AY)E)) via @ due to Lemma 3.1. Hence we define Hi (v, VY )ep o))
be H;(Y,é”),V(AV) )N Hy (Y, D(AY)D)) by taking the intersection in Hi (Y, V(AY)c).
We also define Hz,o, (Y, V(AY)e, o) to be

cusp

to

YE,(B)

H:usp( (n) V()‘V)tE,(m)) = H:(Y/én)717()‘v)tE,(m)) n H:usp( (n) V()‘V) )

which gives the integral structure of H, (Y,én), V(AY)c) in [HMN].

cusp

Remark 3.2. Januszewski ([Jan]) chooses a lattice of V(AY)c to be the GLn(vg, () )-
submodule generated by a highest weight vector. In his formulation, it becomes difficult
to describe the branching rule in integral coefficients and hence this is one of reasons why
an unspecific constant appears in his formula for the critical values. On the other hand, we
immediately find an integral model of branching rule from (2.2) and Corollary 2.2 according
to the formulation in [HMN].

3.2. Choice of Whittaker vectors. Let 7(™ be an irreducible cohomological cuspidal au-
tomorphic representation of GL,,(F'a ), which appears in the cuspidal cohomology group of a
loca% system 9(}\\/). We introduce distinguished Whittaker vectors in the Whittaker model
of ("),

Let B, be the subgroup of GL,, consisting of upper triangle matrices. Define N,, (resp.
T,,) to be the subgroup of B,, consisting of the unipotent (resp. diagonal) matrices. We fix
an additive character 1. n, of N, (Fa) to introduce the notion of Whittaker models of (™),

Let ¢ € {£} and ¥, : Q\Qa — C* be the additive character which is characterized by
8



the following properties: 1), o (x) = exp(e2my/—1z) for z € R, and 1), is trivial on Z, and
non-trivial on p~'Z, for each prime p. Let 1. x, be a character of N,,(Fa) defined by

(3.2) 1!)571\1” (x) = 1!)5 (TI"F/Q(CE'LQ + 272,3 —+ e+ wn—l,n)) (l’ = (xz’,j) € Nn(FA))
When n = 1, we understand that ), n, is the trivial character of Ni(Fa) = {1}.

Let W(r(™ ¢,) = ®;W(7T1(;n),¢57v) be the Whittaker model associated with 7(®) and the
additive character v, n,. The purpose of this subsection is to give distinguished vectors in

W(m(,n),ww) for each place v of F. In particular, we describe the Whittaker vectors at
infinite places, since the argument at inifinte places is the essential part of [HMN].

3.2.1. At infinite places. We introduce distinguished Whittaker vectors in the Whittaker
models at infinite places v of F'. Here we follow a formulation given in [IM22, Section 2.4].
See references therein for the basic facts on the Whittaker model. It is known that m()n) is
isomorphic to an irreducible principal series representation g, g, ,, of GL,(F,) = GL,(C).
So here we recall some notion of the principal series representation g, 4, ., and the Whittaker
model associated with 7R, 4, v, -

Let dy, = (dy1,dv2,...,dypn) € Z" and v, = (Vy 1,2, ..., Vppn) € C™. Define a character
Xdy.vy of Tp(C) to be

n du 1
a; \" Vo i .
(3.3) Xdo,vp (@) = | | (W) |a; |V (a = diag(ay, ag, ..., a,) € T,(C)).
i=1 ¢

Let pp, = (pn1,Pn2s - Pnn) € Q" with py,; := ”TH —i (1 <i < n). Denote the space of C*°-
functions on GL,(C) by C*°(GL,(C)). We define a (smooth) principal series representation
(Tanyva%N IEC,:L (dU? V'U)) of GLn(C) by

(3.4) Iﬁi(dm Vv) = {f c COO(GLn(C)) ‘ f(Taq) = Xdu,Vv+pn(a).f(g) }

(r € N,(C), a € T,(C), g € GL,(C))

and (7B,,,d, ., (9)f)(h) = f(hg) (g:h € GL,(C), f € IF (dv,vp)). Let dd°™ be the unique
element in A, N {od, | 0 € &,}. Suppose that g, q,, is irreducible. Then Vjdom gives
the minimal U(n)-type of 7p, 4,4, and, in particular, Homy,)(Vaom, I (dv, 1)) is one
dimensional. Let fg,, 4, v, : Vgdom — I3’ (dv, 1) be the U(n)-embedding which is characterized
by 18,,,dy v (§a1(agom)) (1n) = 1.

If Re(vy,1) > Re(vy2) > - -+ > Re(vn), we define the Jacquet integral 7. : Ig° (dy, ) — C
to be

T(f) = / Fwn) e, o(a)da
N, (C)

for f € I (dy, vy). Here wy, is an anti-diagonal matrix of size n whose all anti-diagonal entries

are 1. The Jacquet integral J.(f) is absolutely convergent, and it is holomorphically continued
to whole v € C™. Define W.(f)(g) (f € Ig (dy, ), 9 € GL,,(C)) to be J-(7B,, d,.v, (9)f) and
set

W(WBn,du,Vvvws,v) = {Ws(f) ‘ fe I]%i(dvv’/v)}-

Then the right-translation by GL,(C) on W(7B,, d, > Vewv) gives the Whittaker model of
TBup,du,Vy
For each v € Vjdom, we define the normalized Whittaker function WEZ) (v) to be

Vo

W(E) v) = (-1 X (=1 ev/—1 Zzﬂ:l(i_l)d”»ifn Vp; dp )W a0 (V)),
dy,Vy nQu,Vy

where we put 'y, (vy; dy) = H1§i<j§n vy —vy;+1+ Lf’”‘) Since it is well-known that
IR (dy, ) = 1T (0dy, ovy) as GLy, (C)-modules for each o € &,,, we have W(7g,, 4,1, Yev) =
9



W(TB,,.0dy,ove» Ye,w)- This implies that there exists a constant ¢, € C* such that WEZ) (v) =

?l/U
chfd)m v, (V) for each v € Viaom. Based on an inductive argument for the Whittaker func-

tions due to [Jac09] and [IM22], we obtain the following proposition:

Proposition 3.3. For each o € G,,, we have ¢, = 1. In other words, we have WEZ)VH (v) =

w) (v) for each v € Vyaom.

ody,ovy

Proposition 3.3 shows that w) (v) has a distinguished property in W(7g,, d, vys Yev)-

dy,Vy
Concerning the Rankin-Selberg zeta integrals, we also find a good property on ngi),uv (v)
as follows. Let d, € Z",v, € C", d, € Z" ! and v/, € C"!. Then for each W €
W(TB,, dy s Yew), W€ W(nB,_ a1, —co) and s € C with sufficiently large Re(s), we
consider the following archimedean local Rankin-Selberg zeta integral Z(s, W, W'):

Z(s, W, W) = / W (ta(9)) W (9)]| det g~ dg.
Np-1(C)\GLr-1(C)

In [HMN], we prove the following theorem, which gives an explicit formula for the archimedean
local Rankin-Selberg zeta integrals:

Theorem 3.4. Suppose that d'4°™ < gdomV,

(i) (Vygaom ® Vigaom ) V"™V is one dimensional and it is spanned by the following element:
MGG(d/dom\/)
Here q(M) = Zlgigjgn—l UCAE

(ii) We have

D

MEG(d’domV)

—1)a(M)
(r()—M)fM[ddom} ® Epv-

(—1)aM)

(5) (—5)
Q) Z(s, W, (Earpatom)), Wy 5 (€av)

n—1 y
= (_E v _1)Ei:1 dv’iL(S77TBn7diu X Tanfl,dLvV{;)'

If (dyp,---,dp1) = di™ and d], = d'4°™, Theorem 3.4 is proved in [IM22, Corollary 2.10],
and in fact, our proof of Theorem 3.4 is reduced to the case.

3.2.2. At finite places. As well as the archimedean case, we also need explicit formulas for the
non-archimedean local Rankin-Selberg zeta integrals. For this purpose, we have to impose
some assumptions on 7™ and 71,

To bAegin with, we prepare some notation. Let tr be the ring of integers of F' and put tr =
tr ®z Z. Denote by Dp the discriminant of F' and let § = Hvezp,ﬁn d, € tF be a generator of

different ideal of Tp. Put 6™ to be the diagonal matrix diag(6"~!,...,d,1) € GL,(FA fin)-
For each ideal 91 of Tp, define the mirahoric group /Cy, 1 (91) of level N to be

knj =0 (mod 91) forlgjgn—l,}

K1 (M) = {k = (kijh<ij<n € GLn(tF) knn =1 (mod M)

Then we impose the following conditions on 7(™ and 7(»~1:

° 771({:1) has a IC,, 1(91)-fixed vector for some ideal M of Tp; suppose that N is maximum

among such ideals;

e Il is prime to Dp.

(n—1)

o nf (n-1)

is spherical, that is, mg ~ has a GLy (tr)-fixed vector.

10
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If 7" s spherical, we normalize the spherical vector wSph(m(,n)) in W(Wq()n),i/le’v) so that
u)f,ph(m(,n))((éz(,n))_ ) = 1. Define the non-archimedean local zeta integral Z,(s, W, W') (W €
W™ o), W' € W™D, 0-c) to be

sl
Zy(s, W W') = W (tn(9))W'(g)| det glo *dg

/an(Fv)\GLnl(Fu)
Then we have the following lemma due to [JPSS81]:

Lemma 3.5. The K, 1 (N)-fized subspace of W(?Tg:l), Ve fin) 15 one dimensional. Moreover, for
each finite place v of F, there exists a unique KCp, 1(M)y-fized vector wi™s(m (n)) € W(m()n),d}w)

such that, if Wz(,n_l) 18 spherical,

Z(s, w2 (n), wiP (n ) = @y (80) M5l TV L (s, ) x D).
Here w_n-1) is the central character of Ty =1 ond wSph(m(}n_l)) is the fized spherical vector

of W(m(,n_l),w_w) In particular, if v does not divide N, wess(m(,n)) is given by wiP"( 1(}”))

The vector we (7(™) is called the essential vector in W(mn ,Ye ). We define distinguished
vectors ws (r(M) € W(ngl?l)’ Ve fin) and wPh (1)) € W(Wéﬁfl), Y_c fin) to be

ess(ﬂ_(n))’ wsph(ﬂ_(n—l))

w (1) = Dues g, w5 (] WP ().

®'UGEF ﬁn ’U

3.2.3. Ezchler-Shzmum classes. Here we introduce an explicit construction of a non-trivial

element in chsp (Y v . V(AY)¢), which enables us to reduce the study of critical values of
Rankin-Selberg L- functlons to a study of local zeta integrals and cohomology classes. In the
case of GLg, such explicit cohomology classes are called Eichler-Shimura classes, which can
be found in [Shi71, Section 8] (see also [Hid93, Section 7]) if the base field is the rational
number field and [Hid94, Section 3] if the base field is general. We consider the generalization
of these constructions in the case of GL,, over totally i 1mag1nary fields.

To begin with, recall that the [7("™]-isotropic part of Hcfsg (Y(n) V(AY)e) is given by the
image of the following natural map:

HE (gl oo Kt ™ 00 VIAY)e) 1 — Heig (V" V(A)o),
where gl,, is the Lie algebra of GLj, gl,c = gl, ®r C, gl, o = H'UGEFOOQ[”C7 and K =

Kn1(D). We realize 7(™ as the Whittaker model W(7(™),4).), and hence the definition of
the (g, K)-cohomology immediately shows that

HPF (gl oy Ky 7™ @0 VAY) )1V
= H (gl o, Kot W e c) 90 VN @) 0 Wiy e in) .
The Kunneth formula yields that
HP (gl o0, K W(T) e o) 090 V(AY)0)
>~ ) H(gl,c, C UM W(r(™, ) ®c VAY)),

UGEF}OO

where b,, = n("Q_l) and V(AY) = Vay(C) ® Vyv(C) for the embeddings 0,0 : ' — C
corresponding to v. Furthermore, as in [BW80, Section 1.5], we find that

1P (gl, ¢, C Um)W(r{™, e ) e V(AY))

= (W e) 2 A9l w0 VX))

11
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Here write the Cartan decomposition of gl,, as gl,, = u(n) @ p where u(n) is the Lie algebra
of U(n). Let p! be the subspace of p, consisting of matrices whose traces are zero and
put p’ = p ®r C. We have already chosen a vector w®™s (7)) € W(ﬂ'ﬁn e in) <1V in
Section 3.2.2, and hence it suffices to construct an element in the right-hand side of (3.5) for
the construction of an element in Hgﬁls’g (Y,én), VAY)e).

Note that, considering /\b”pgC as a representation space of U(n) via the adjoint action,
APnp0 o contains V5, with multiplicity one. Hence we have a U(n)-equivariant homomor-
phism V3, — /\b”pgc, which is normalized by giving a specific element E,, € /\b"pgc as the
image of {f7(2,)- We omit the detail of the construction of E;, here, since it needs more nota-
tion although it is easy. Recall that m(,n) is isomorphic to some principal series representation
B,y dy, Of GLp(C ) Due to Proposition 3.3, we may suppose that d, is dominant. Since

7(") appears in chsp (Y v V()\V)), d, and v, are given by the following formulas:
dy =2y + 2pp — W, vy = (W/2,...,w/2),

where we recall that w is the purity weight of A (see (Pur)). Since the minimal U(n)-
type of B, d, v, is given by Vy . we can define a U(n)-equivariant homomorphism Vg, —

W(m(,n), e ) to be W[(i? ,, a8 in Section 3.2.1. Hence, to construct an element in the right-

hand side of (3.5), it suffices to construct a U(n)-invariant element in <Vdv ®c Vap, dc VXY )) .

For this purpose, we need some claims from the finite dimensional representation theory by
using Gel’fand-Tsetlin basis as follows:

Lemma 3.6. Let \, N € A,,.

(i) We have a unique injective GL,,(C)-homomorphism I/\ : Vi — Vi ®c Vi,

IbY
which is chamgtem’zed by I/{\_’;\/\,(gH()\H\/)) =&y ©EH(N)-
(ii) Let (1,"™, Vy°™) be the complex conjugate representation of (tx,Vy), that is,

Vo =, M (g) = (@) (g € GL,(C)).

Then a C-linear map IcorlJ V=V Com 2y = (—=1D)IMgyy is o U(n)-isomorphism.

(iii) The following element gives a U(n)- mvamant element in Vy ® Vyv:
_ B (—1)aM)
[ldV)\] L Z r(M) £M ®£M\/

MEG())

Due to Lemma 3.6, we define a U(n)-invariant element in Vy, ®c V2, ®c V(AY) to be the
image of [idy,] via the following composite maps:

id®12€n,2)\v+w
d
Va@c Vov ———— Vg ®c Vop, ®c Varviw

AV AV +w
1d81d®12>\\/+w
%

Va ®c Vap, ®c Vv @c Vaviw
conj

1d®id®id®I| T

Vi, ®c Vap, ®c V(AY).

Finally we obtain a cohomology class in chsp 7 ,é"), 17()\\/)(3), which we denote by §(7(™)
and call Eichler-Shimura class of (™).

3.3. Definition of Whittaker periods. For each A = (\;),er, € ALF and o € Aut(C),
define @A € AIF by “\y = A\y-10, (0 € Ip). Put Q(A) = CLe€AM(©) [ A=A Dofine also

a-twists O‘Wrgn) of 7T§n) to be an) Rc.o C for 7 = fin,c0. Note that if the highest weight

associated with 7T<(>2) is A, then the highest weight associated with “7783) is given by “X. Then

[Clo90, Théoreme 3.13] yields that there exists a unique cohomological irreducible cuspidal
12



automorphic representation “7(™ of GL, (F4 ) such that the finite (resp. infinite) part of “7(™)
is given by awgzl) (resp. awé’g)) and also that Q(Wéﬁ)) .= ¢loeAu(©) | *m=r} is 4 number
field. Define the field of rationality of 7(™ to be Q(7(™) := Q(ﬂ'f(i?l))Q()\). Let t(7(™) be

the ring of integers of Q(7(™) and P the prime ideal of t(7(™) which is induced by the fixed
isomorphism Q(7(™) ¢ C % C,. Then, since the t(ﬂ(”))(q})-module

HPF (g, o Ko™ 00 VX)) 1 1 Hoggh (VY VA )y )

7,007

is free of rank one over t(ﬂ(”))(qg), let us choose a generator 7(m(™) of this module. Since
HPF (gl oo, Kn; 7™ 06 V(AY) ) 1™ is one dimensional over C, and it is spanned by the
Eichler-Shimura class d(7(™), there exists a constant p°(7(") € C* such that

5(mwt)) = pP(w )y (x ™).

We call pP(7(™) the (Betti-)Whittaker period of 7(™. Note that p(7(™) is determined up

to a multiplication by an element in t(w(”))?p), and hence we can discuss the integrality with

respect to this period pP(7(™).

Remark 3.7. To describe the behavior of critical values under the action of o € Aut(C),
we need to choose pb(aﬂ(”)) in a compatible way under the a-twist of cohomology groups
and 7("). In this article, we omit this point of view for the sake of simplicity. See [RS08,
Definition/Proposition 3.3] for the details of a-twists and the choice of p°(“7(™). Note that

Raghuram-Shahidi define their periods up to multiplication by rational constants, but we can
discuss in a similar way by using our integral models.

4. MAIN THEOREM

In this section, we introduce the main theorem in [HMN]. Let us summarize assumptions
on 7™ and 7" which we made in the previous sections:
o (™ (resp. w(”_l)) is cohomological, which appears in the cohomology group of a
local system V(AY)¢ (resp. V(u")c);

e There exists an integer mg € Z such that AY > p + mol;

. wé?l) has a KC;, 1 (M)-fixed vector and 91 is maximal among such ideals; wf(i?l_l) has a
GL;,—1(tp)-fixed vector.

e The discriminant D of F' is prime to I1;

e p is a prime number which is coprime to DO and satisfies (3.1).
Define t(7(™, 7("=1) to be the ring of integers of the composite Q(7(™)Q(x(»~1) of the
fields of rationality of 7(™ and 7("~1). Denote by By the prime ideal of t(ﬂ(”),w(”_l))

which is induced by the fixed isomorphism Q(7(™)Q(x(*~1) c C 5N C,. Define a constant
Clm,n™ x 7(»=1D) (m € Z) to be

ln n—i)m
C(m, 7™ x 7D =t gy () TDZY
(4.1) y H (2—n(n—l)(\/__1)—bn—1(8\/__1)bn(w—w’)(_1)(m+1)bn)‘
UEEF,OO

Here we recall that ¢ € {£1}, b,, = n("Q_l), and w (resp. w') is the purity weight of A (resp.

p) as in (Pur). Note that, if the prime number p satisfying the above condition is odd,
then C(m, 7™ x 7(»=1) is a unit in t(ﬂ(”)ﬂr(”_l))(%), and hence C(m, 7™ x 7(»=1D) can
be understood as a harmless constant when we discuss the integrality. However, we consider
C(m, 7™ x 7(»=1D) as an important constant to discuss the Kummer congruences for critical
values, since the information m of critical points appears in its definition.
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The following statement is the main theorem in [HMN]:
Theorem 4.1. For each critical point m + % of L(s, () x 77(”_1)), the value

L(m+ %,ﬂ(”) x (n=1))

C(m. ™ (n—1)
() S G o (D)

is indeed contained in t(7(", W(”_l))(%).

Remark 4.2. (i) Theorem 4.1 yields that the unspecific constant appearing in the crit-
ical value formulas in the previous researches, which we mentioned in Section 1.1, is
given by the product of the constant C(m, 7™ x ("~ 1) and L, (m—l—%, 7 g {nt ).

Li-Liu-Sun ([LLS]) proved that the unspecific constant is a product of an easy
constant depending on the critical points, which is similar to C(m,w(”) X 77(”_1))7
Loo(m+ %, 7 % e _1)) and an unspecific non-zero constant which does not depend
on the critical points in the case that the base field is general. This implies that
they also get a formula similar to Theorem 4.1 after suitably normalizing Whittaker
vectors. However their normalization of Whittaker vectors on GL,, a priori depends
on the normalization of those of GLy (1 < N < n—1), and hence the period pP(7(™)
also a priori depends on information of representations GLy. Also it seems to be
difficult to discuss the integrality according to their formulation, since we need an
integral branching rule as mentioned in Remark 3.2.

(ii) The formula for critical values in Theorem 4.1 implies that the product of Whittaker
periods plays a role of Deligne’s period for the tensor product of the expected pure
motives attached to 7(™ and 7"~ . So it is natural to ask a motivic background of
the single Whittaker period pP(7(™) in terms of the expected pure motive attached

to 7(™. The study in this direction can be found in [HN].

Remark 4.3. The key ingredient of the proof of Theorem 4.1 is the cohomological interpreta-
tion of Rankin-Selberg zeta integrals, as we have already mentioned in Section 1.2. Following
the generalized modular symbol method due to [KMS00], we write down all cohomological
manipulations in an explicit way and we reduce the calculation to the explicit formula for
archimedean Rankin-Selberg zeta integrals in Theorem 3.4 (ii), which is essentially due to
[IM22]. We note that a similar strategy can be found in [HN21] in the case of GL3 x GLq
over the rational number field.
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