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Abstract

The theory of Rankin-Cohen bilinear holomorphic differential op-
erators is well explored for scalar-valued cases, mainly by the work of
Ibukiyama. Not so much is known when we start from vector-valued
automorphy factors. We will describe some constructions starting
from nonholomorphic operators of Maafl-Shimura type. We focus on
operators of order one, but by some compatibility with tensor prod-
ucts we can cover more general situations. For the case of symmetric
tensor representations we can however give quite complete results by
a direct approach. Some parts of the presentation are based on the
Mannheim PhD-thesis 2021 by Julia Meister.

1 Introduction

Rankin-Cohen operators are a usefull tool in the theory of holomorphic modu-
lar forms on hermitian symmetric domains. Also, by their combinatorial and
representation theoretic properties, they are of independent interest. We
refer to [5] and many subsequent papers by Ibukiyama in this regard. So
far, the focus was always on cases, where one starts from scalar valued func-
tions. In the present note however, we explore some cases, where the starting
point are vector-valued functions, equipped with stroke operators attached
to higher dimensional representations.

To explain our method, we recall the classical Rankin-Cohen operators for
S Ly, changing weights from k& and [ to k& + [ + 2:

fogl=1-f-g—k-f-d (1)

for arbitrary (holomorphic) functions f and g on the classical upper half
plane. The equivariance property of this bilinear operator is best explained
by the identity

[f, 9] =1-6c(f)-g— k- f-a(g) (2)



where 0, = % + % is a nonholomorphic operator changing weights from &
to k + 2.
In the three main sections 2-4 of this paper we shall generalize the identities

(1), (2) from above from different viewpoints.

In section 1 we give the preliminaries, in particular, we explain the framework
of equivariant differential operators following Shimura [7]. In section 2 we
show that (1), (2) can be generalized to give Rankin-Cohen brackets which
change arbitrary automorphy factors p and p’ to (irreducible sub-) represen-
tations of p ® p’ ® Sym?. This result is obtained using some multiplicity one
property and does not provide an explicit formula.

Section 3 then shows that in the framework of symmetric tensor represen-
tations, we can get a complete and explicit construction of R-C-brackets
changing automorphy factors p = Sym' and p/ = Sym™ to Sym!*T™*P for
any m, [, p.

In section 4 we presents the main result of [6], namely an explicit construc-
tion of an R-C-bracket changing the automorphy factors p = Sym! ® det®
and p' = det! to p ® Sym? ® det™. This result (although predicted by the
abstract considerations of section 2) is obtained independently of section 2
by explicit compution of the R-C bracket in question. A nice feature here
is that this explicit construction is compatible with taking arbitrary tensor
products of the standard representation Stand = Sym' with itself. Taking
into account that (by H.Weyl) any polynomial irreducible representation oc-
curs in some Stand”, we therefore get a construction of R-C-brackets starting
from arbitrary (irreducible) p and p’ = det’; this construction is then explicit
provided that the embedding of p into some Stand®” is made explict.

2 Preliminaries: Maaf3-Shimura-differential op-
erators and R-C-brackets.

2.1 Basic notations

As usual, we denote by H,, = {Z = X +iY € C™" | Z = Z)Y > 0} the
Siegel upper half space, and by (g, 2) — g < Z >:= (AZ + B)(CZ + D)™*
A B
C D

the action of the symplectic group Sp(n,R) on H, with ¢ = €
Sp(n,R) € GL(2n,R). For a polynomial representation p : GL(n,C) —



GL(X) we put
Cr(H,, X) == {f:H, — X | fis C}

and by Hol,(H,, X) we denote the subspace of X-valued holomorphic func-
tions. On both spaces there is an action of Sp(n,R), defined by a stroke
operator

(f 1o 9)(2) = p(CZ+ D) (flg< Z>)

2.2 Differential operators (following Shimura)

Let p be a representation of GL(n,C) and T := Sym,,(C) = {X € C"*"| X =
X'}, For finite-dimensional complex vector spaces X, Y, we denote by S;(Y, X) =
Home(Y, X) the vector space of all C-linear maps of Y into X. We now de-
fine a representation (see [7, (12.7a) fiir p=1])

p&T:GL(n,C)— GL(S,(T,X))
by

(p=7)(g)(h)(u) = p(g)(h(g'ug))

with g € GL(n,C), h € S1(T,X) and u € T. For the special case X = C
and p = the trivial representation, we get a represention 7 of GL(n,C) on

S1(T) b
by (9)(h)(u) = h(g'ug)

with g € GL(n,C), h € S1(T) and u € T.

Remark /7, 5.94, (12.19)] We can identify S1(T, X) with S1(T) ® X by the
rule (h ® x)(u) = h(u)x for h € S1(T), x € X and u € T, in particular we
can identify Sy(T) with Sym? (as GL(n,C)-representations.
Now we define a differential operator introduced by Shimura ([7, (12.12 a)])
by

D:C>*H,,X)— C>*(H,, S| (T, X))

D(f)(u) = > Uz‘,j%
1<i<j<n ’

with u € T' = Sym,,(C™™).
We also need the following



Proposition [7, (12.18 & 12.10, e=1)] Let p : GL(n,C) — GL(X) and
f € C®(H,, X) we define D, f € CJg (H,, S1(T, X)) by

D,(f)(u) = p(Y)'D (p(Y) ) (u).
For M € Sp(n,R) the operator satisfies D,(f |, M) = D,(f) |,0r M.

To define RC-brackets in general, we start from three polynomial represen-
tations p, o/, p” with representationm spaces X, X', X”. A bilinear map

[]: CX(Hy, X) x CF (H,, X) — C5/(H,, X”)
is called RC-bracket, if it is equivariant, i.e. for all g € Sp(n,R) we have

[F |p 9,G |p’ gl = [F, G] |p” g

and it should be described by partial holomorphic derivatives of F' and G. It
is called to be of order v, if the total of derivatives is v .

3 RC-brackts of order one: the general case

We want to construct such RC-operators for the case, where f and ¢ are
vector-valued, starting from Maass-Shimura operators D,(f) and D, (g) and
then using linear combinations of D,(f) ® g and f ® D, (g).

We start from the observation that D,(f) breaks up naturally into two parts,
following [7, 31.28]

Dy(f)(w) = P(y~",u)f + D(f)(u).

We aim at some uniqueness properties of P.
First we observe that

w_{TxX s ST X)~T®X
|l (v,z) = wuw Pv,u)(x)

defines a bilinear map and hence an endomorphism ¢ of T'® X.
Following [7, prop.13.15(4)] we have for all h € GL(n,C)
P(hoh!, b "ul ) (p(x)) = p(h)P(v,u)(x)
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We rephrase this for the map 1):

(p@7)(h) o) = (dopzT)(h)

We do the same for D, (g)(u) = Q(y~*,u) + D(g)(u) and obtain an endo-
morphism ¢ of T'® X’ with equivariance for PR

We extend both z/; and g5 to endomorphsims 12) and (ﬁ of X ® X’ ® T which
are now p ® p’ ® T-equivariant. R R

We now consider the restriction of ¢/ and ¢ to an irreducible subspace X of
X ® X' ®T; then on X the endomorphisms 1/} and ¢ are proportional. We
may therefore choose a linear combination of D,(F') ® g and f ® D,(g) such
that (at least on X) the nonholomorphic parts P(y~!,u) and Q(y ™', u) get
cancelled: We obtain

Theorem Let p, o/ be polynomial representions of GL(n,C) and let X be an
irreducible subspace of X X'®QT. Then there is a nonzero linear combination

aD,(f) ® g+ Bf % Dy(g) (3)

which after restriction to X defines a nonzero RC-bracket
] : Hol,(H,,X) x Hol,y,(H,,X") — Hol(H,, X)

Remark The explict calculations in section 4 will show that the coefficients

a, B in (3) will indeed not be the same on all the irreducible subspaces X C
XX ®T.

Remark We do not claim here that this is the only possible X-valued RC-
bracket of order one. We also do not claim that both o and B are nonzero.
Already for n = 1 one can see that for weights k and [ being zero, there are
two linearly independent RC-brackets.

4 RC-brackets for symmetric tensor repre-
sentations

Here we study the case of syymetric tensor representations. We use the ex-
plicit direct approach from [1] for the nonholomorphic differential operators.
Let (z1,...,2,) be a row vector consisting of n inderminates. We put V' =
Czy & --- @ Cx,. we identify the [— symmetric tensor product V¥ of V



with Clzy, ..., x,];, the space of polynomials homogeneous of degree I. Then
GL(n.C) acts on V¥ by

(gv)(x) = det(g)* - v(zg)

for g € Gl(n,C) and v € VO,
For a VW-valued function f € C>(H,, V") we define elements of C>(H,, V (+2))
by

D(f) = - fla)
Nf= oYl = ¥ el f
We put
onf=k-Nf+Df
Then

Okt (f |ky M) = Sppi [ka42 M

holds for any M € Sp(n,R).
Furthermore, we have the commutation rule

DNY = —uN"*' + N¥D (v >0) (4)
Using the r—fold iteration

v .
Okgs = Okgl42r—2 0+ O Oppy

we can now define a nonholomorphic RC-bracket by

(H,, V') x CF (HL., V™) — Cor (H,,, V'*™)

00
Syml@det® ymm@det?

by
u I(k+1 r K’
£, g]i,l;k’,m = Z(_l)y (p) I( e By ) it [+ Omwrd

— v)T(k+1+p—v)D(m+k+v)
(5)
We claim that this expression is actually holomorphic:
Using (4) one can rewrite (5) as a polynomial in N (multiplied by holomorphc
derivatives of f and g as coefficients (on the right). Our claim is then equiv-
alent to the statement that these coefficients vanish identically for nontrivial

mlitmtagdethtr’

6



powers of N. Fortunately, the coefficients of (4) and (5) are both indepen-
dent of the degree n and depend only on k + [ and &’ + m; the claim follows
from the same statement for degree n = 1, which is given in Shimura’s book
[7].

Looking only at the constant term in this polynomial in N we get (as in the
degree one case of Shimura):

Theorem RC-brackets of order p for symmetric tensor represen-
tations of degree n

- <p> T(k+1+p)T(m+ K +p) DY (f)-D¥(4)

ch 7 5 = -1)”
ktskrm (S 9) Z( ) v)U(k+1+p—v)I'(m+ K +v)

v=0

defines a bilinear RC-bracket

HOlSyml®detk (H” vl) X Hol (Hna Vm) — Hol Hm Vl+m>

Symm@det*’ Symitm@detk (

5 Explicit calculation
for p = Sym! @ det” and p/ = det’

This section contains the main results from [6]. Throughout, we look at the
special situation

p = Sym!' ® det”, o = det?, n > 2.
Using the notation from section 2, we have
Dy(f)(u) = P(Y~" u)(f) + D(f)(u)

Dyert(9)(w) = QY. u) + D(g)(u)

Both D,(f)-g and f ® Dget,(g) are now X = Sym! @ Sym? ® det**'-valued;
here we tacity identify the representations with their representation spaces.
One knows from representation theory (“Pieri’s rule”, see e.g.[4, Corollary
9.2.4] that Sym'® Sym? decomposes into two irreducible components, which
we call Pieri-component P and Co-Pieri component CP, i.e.

X =370 x (6)



Here the assumption n > 2 comes in.
Accordingly, we may decompose

P cp

PY L u)(f)wg= (P u)(f)®g) + (P u)(f)®g)

cP

FRQY Luwg=(feQY L ug) +(fo QY ' u)y)
We put

af = ¢
87 = 1+k
ot = ¢
1
CP
= 4k
B 2+

The main point is now (in accordance with the considerations of section 2,
but obtained independently) the following
Proposition

o (P u)(f) 2 g)” =87 (F2 QY u)g)”

and
cP

AP (P L u)(f) w0 g) = B (f 0 QY u)g)

To prove this proposition, one has not only to compute P(Y ', u)(f) and
Q(Y 1, u)g explicitly, but also one has to determine explcitly a decomposition
into Pieri - and Co-Pieri-components. This is the crucial technical point of
this section. Then one gets immediately

Theorem: For p = Sym' @ det® and p' = det® we get explicit holomorphic
RC-brackets with values in in the Pieri- and Co-Pieri-components of Sym' ®
Sym? @ det"** by

(f.9) — - (Dy(f)-9)" = BT - (f ® Dy(g))”
and
(f,9) — - (D,(f) - 9)" = BT - (f ® Dy(9))"

We may rephrase the statements above without using the decomposition (6):
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Theorem’: For p = Sym' ® det® and p' = det’ there is a GL(n,C)- equiv-
ariant endomorphism of Sym' ® Sym? such that

L Dy(f) = Lo (f ® Dyee(g))

defines a holomorphic RC-bracket

Using [7, 13.17], one can see that the property above is compatible with
taking tensor products, i.e. if the property of theorem’ holds for p; and p,
(instead of p), then it also holds for p; © py. In particular, it therefore holds
for Stand® for arbitrary v > 1. Now we take into account that any polyno-
mial representation p appears as subrepresentation in some Stand®” (see [3,
Lecture 6]. In principle, we then get for any p a (nonzero) holomorphic RC-
bracket mapping X ,-valued functions f and scalar-valued functions g (with
automorphy factor det’ to X ® Sym?2-valued functions. This construction is
then explicit provided that we have an explicit embedding of p into Stand®".
Hence, in principle, we can cover in this way the case of RC -brackets of
order one with p arbitrary, but p’ scalar-valued.
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