Sphericity of the Standard Presentation of Fibonacci Group

Haruki Fukaura and Akihiro Yamamura
Akita University
1-1 Tegata-gakuen, Akita, 010-8502, Japan
m8022310@s.akita-u.ac.jp, yamamura@ie.akita-u.ac.jp

Abstract

We show that the standard presentation of the Fibonnaci group F(2, n) with $n \ge 3$ is spherical, that is, it has a reduced spherical diagram. We discuss reducibility of the diagram.

1 Introduction

The Fibonacci group is introduced by Conway [4]. It is presented by

$$F(2,n) = \langle x_1, \dots, x_n \mid x_1 x_2 = x_3, \ x_2 x_3 = x_4, \dots, \ x_{n-1} x_n = x_1, \ x_n x_1 = x_2 \rangle. \tag{1.1}$$

It is known that this group has orders 1, 1, 8, 5, 11, 29 when n = 1, 2, 3, 4, 5, 7 and the others have infinity orders. Regarding geometric properties, H. Helling, A.C. Kim and J. L. Mennicke [5] showed that for even $n \geq 8$, F(2,n) are fundamental groups of certain closed hyperbolic 3-manifolds. In addition, they showed that F(2,n) is Noetherian and torsion-free, every abelian subgroup of F(2,n) is cyclic, and F(2,n) have solvable word and conjugacy problems for even $n \geq 8$. C.P. Chalk proved in [3] that F(2,n) is hyperbolic for odd $n \geq 11$. It is shown that F(2,9) is also hyperbolic by using GAP package (for running the Knuth-Bendix completion program) KBMAG developed by D.F. Holt.

D.L. Johnson [6] introduced the generalized Fibonacci group

$$F(r,n) = \langle x_1, \dots, x_n | x_i x_{i+1} \cdots x_{i+r-1} = x_{i+r}, i \bmod n \rangle.$$

Many authors study the order of F(r,n) for various parameters r and n and the classification has been completed. As a byproduct, the asphericity of F(r,n) is shown for (r,n)=(4+7k,7), (6+9k,9), (9+6k,6), (l-1+(2l-1)k,2l-1), (l+(l+2)k,l+2), (l+(2l)k,2l) with $l \geq 4, k \geq 0$ in [2]. We report the irreducibility of the spherical diagrams over F(2,n) in this paper.

2 Spherical diagrams over F(2, n)

Spherical diagrams of finitely presented groups are discussed in [8]. We follow terminologies and notations in the textbook. A reader is referred to the textbook for fundamental results on finitely presented groups and diagrams.

2.1 Cells of F(2, n)

The Fibonacci group is presented by (1.1). We define $w_i = x_i x_{i+1} x_{i+2}^{-1}$ for i = 1, ..., n (where the indexes are and will be either 1, ..., n in mod n). Then the set of relators of F(2, n) is $\{w_1, ..., w_n\}$. The \mathscr{R} -cell corresponding to each relator w_i is a triangle, and the three vertices are a_i , b_i , and c_i clockwise from the starting point of the label w_i . See Figure 1.

Figure 1: \mathscr{R} -cells of F(2,n)

2.2 Construction of spherical diagram

The case is divided according to the parity of n. First, we suppose n is odd. Let n=2k+1 ($k\geq 1$). For each $i=1,\ldots,n$, all vertices a_i of \mathscr{R} -cells Π_i corresponding to w_i are pasted together to form vertex o. However, the order of arrangement is clockwise from Π_1 , and for each i, Π_i is followed by Π_{i+2} . Then the adjacent cells Π_i, Π_{i+2} have boundary labels $x_i x_{i+1} x_{i+2}^{-1}, x_{i+2} x_{i+3} x_{i+4}^{-1}$ and the edges oc_i, ob_{i+2} matches the letter (x_{i+2}) and orientation. Thus, by pasting them together for each i, we obtain a circular diagram Δ . $(\partial \Delta = x_2 x_4 \cdots x_{2k} x_1 x_3 \cdots x_{2k+1}$ (cyclic word)).

Figure 2: Δ of odd (n=5)

Moreover, we can paste the edge $a_{i-1}b_{i-1}$ of the new \mathscr{R} -cell Π'_{i-1} corresponding to w_{i-1} onto the edge b_ic_i on $\partial\Delta$ of each Π_i in Δ (since both letters are x_{i+1}). Therefore, by pasting Π'_1, \ldots, Π'_n to each edge of $\partial\Delta$ in such a way, we obtain a circular diagram Δ' . Then the labels that the adjacent cells Π'_i, Π'_{i+2} of Δ' form on $\partial\Delta'$ are $x_ix_{i+1}, x_{i+2}x_{i+3}$, which means that $\partial\Delta' = x_1 \cdots x_n x_1 \cdots x_n$ (cyclic word). Finally, Δ' and its copy rotated by 1/2 are pasted together at their respective boundaries to obtain the spherical diagram $\Delta(n)$.

Next we suppose n is even. Let n=2k $(k \geq 2)$. First, as in the odd case, the edges of the \mathscr{R} -cell Π_i corresponding to each w_i are pasted together so that clockwise Π_i, Π_{i+2} are adjacent to obtain a circular diagram. However, we get two diagrams Δ_1 , which started to be arranged from Π_1 , and Δ_2 , which started to be arranged from Π_2 . (They consist of $\Pi_1, \Pi_3, \ldots, \Pi_{2k-1}$ and $\Pi_2, \Pi_4, \ldots, \Pi_{2k}$ respectively and the boundary labels are $\partial \Delta_1 = x_2 x_4 \cdots x_{2k}, \partial \Delta_2 = x_1 x_3 \cdots x_{2k-1}$ (cyclic word).)

Then, for Δ_1 and Δ_2 , by pasting $\Pi_4, \ldots, \Pi_{2k}, \Pi_2$ on each edge of $\Pi_1, \Pi_3, \ldots, \Pi_{2k-1}$ on $\partial \Delta_1$ and $\Pi_1, \Pi_3, \ldots, \Pi_{2k}$ on each edge of $\Pi_2, \Pi_4, \ldots, \Pi_{2k}$ on $\partial \Delta_2$, we obtain circular diagrams Δ'_1, Δ'_2 .

Figure 3: Δ' and $\Delta(n)$ of odd (n=5)

Figure 4: Δ_1 and Δ_2 of even (n=6)

Finally, we know that the boundary labels of Δ'_1 , Δ'_2 are $\partial \Delta'_1 = \partial \Delta'_2 = x_1 x_2 \cdots x_n$, so we get the spherical diagram $\Delta(n)$ by gluing the boundaries with the same labels.

3 Irreducibility of $\Delta(n)$

3.1 A condition for irreducibility

To prove that $\Delta(n)$ is reduced, we show the following lemma.

Lemma 3.1. If the diagram (that is not a trivial spherical diagram) is not reduced, there is some vertex where two edges with the same letter and orientation join.

Proof. Assume that there is a cancellable pair of cells in the diagram, that is, there are two \mathscr{R} -cells π_1, π_2 whose labels starting from vertices u, v are mutually inverse, and u, v are connected by a path t without self-intersection such that the label equal to 1 in the free group.

Figure 5: Δ_1' and Δ_2' of even (n=6)

- (|t|=0) If all edges of $\partial \pi_1, \partial \pi_2$ are glued together, then the diagram contains a trivial spherical subdiagram consisting only of π_1, π_2 , which is a contradiction. So path $\partial \pi_1 \cap \partial \pi_2$ has endpoints and they satisfy the condition.
- (|t| > 0) Since the label of path t is equal to 1 in the free group and has at least one letter, it contains a subpath with label $x^{-1}x$, whose middle vertex satisfies the condition.

3.2 Proof of irreducibility

Using the contraposition of the above lemma, that is, by checking that for every vertex of $\Delta(n)$ there are no vertices where two edges with the same letter and orientation join, we show that $\Delta(n)$ is reduced.

Suppose n is odd. $\Delta(n)$ has 2 vertices of degree n (o and its copy) and 2n vertices of degree 5 (on $\partial \Delta'$).

- For the vertices of degree n, by the construction of $\Delta(n)$, o and its copies have n edges with letters x_1, \ldots, x_n and outgoing orientation, and the letters are all different.
- For the vertices of degree 5, the 2n vertices consist of n vertices connected to o by edges and n unconnected vertices in Δ' .
 - For connected vertices v, suppose edge ov is the common edge of cells Π_i and Π_{i+2} . For v, the edge ov is " x_{i+2} & In", the other two edges of Π_i, Π_{i+2} joining v are " x_{i+1} & In" and " x_{i+3} & Out", the two edges on $\partial \Delta'$ are " x_i & In" and " x_{i+1} & Out". If $n \geq 3$ then for each $i = 1, \ldots, n$ there is no edge with the same letter and orientation.
 - For unconnected vertices, by construction of $\Delta(n)$, the vertices is connected to a copy of o in a copy of Δ' . Therefore, it comes down to the above case.

Suppose n is even. $\Delta(n)$ has 2 vertices of degree n/2 (central vertices of Δ'_1, Δ'_2) and n vertices of degree 5.

- For the vertices of degree n/2, by the construction of $\Delta(n)$, n/2 edges with letters $x_1, x_3, \ldots, x_n 1$ join to the central vertex of Δ'_1 and n/2 edges with letters x_2, x_4, \ldots, x_n join to the central vertex of Δ'_2 , and the letters are all different.
- For the vertices of degree 5, if $n \ge 4$ then exactly the same as the odd case.

From the above, all vertices of $\Delta(n)$ do not have two edges with the same letter and orientation. Therefore $\Delta(n)$ is reduced for any $n \geq 3$ by Lemma.

Figure 6: The vertices o (n = 5) and v

3.3 Conclusion

Theorem 3.2. For any $n \geq 3$, the presentation

$$F(2,n) = \langle x_1, \dots, x_n | x_1 x_2 = x_3, \dots, x_{n-1} x_n = x_1, x_n x_1 = x_2 \rangle$$

is spherical, that is, it has a reduced spherical diagram containing \mathcal{R} -cells.

References

- [1] A.M. Brunner, The determination of Fibonacci groups, Bull. Austral. Math. Soc. Vol. II (1974), 11-14.
- [2] C.P. Chalk, Fibonacci groups with aspherical presentations, Communications in Algebra, 26 (1998), pp. 1511–1546.
- [3] C.P. Chalk, Fibonacci groups, F(2, n), are hyperbolic for n odd and $n \ge 11$, Journal of Group Theory, 24, (2020), 359-384.
- [4] J.H. Conway, Advanced problem 5327, Amer Math Monthly 72 (1965), 915.
- [5] H. Helling, A.C. Kim and J.L. Mennicke, A geometric study of fibonacci groups, Journal of Lie theory, 8 (1998), pp. 1–23.
- [6] D.L. Johnson, Extensions of Fibonacci groups, Bull. London Math. Soc. 7 (1974), pp. 101–104
- [7] R.C. Lyndon and P.E. Schupp, Combinatorial Group Theory, Ergeb. der Math. und ihrer Grenzgeb. 89, Springer, Berlin 1977.
- [8] A.Yu. Ol'shanskii, Geometry of Defining Relations in Groups, Springer Science + Business Media, Vol. 70., 1991.