Self-injective inverse semigroups

Kunitaka Shoji

Department of Mathematics, Shimane University, Matsue, Shimane, 690-8504 Japan

In the paper [1] and [2], it was shown that the injective hull of a semilattice is an S-distributive completion C(S) in which S is large. For an inverse semigroup S, B.Schein [3] gave a method of construction of S-distributive completion C(S) of S. By a similar way of the construction of completions, B. Schein [5] described the injective hull of an inverse semigroup as the set F(S) of all filters of S. B.Schein [4] showed that an inverse semigroup S is self-injective if and only if S is a S-distribute completion and E-reflexive. By making use of Schen's completion, K.Shoji [6] showed that for any E-reflexive inverse semigroup S, there exists an inverse semigroup S such that (1) S is a subsemigroup of S, (2) S is the injective hull of S as a right S-set and (3) S is a self-injective semigroup. In this paper, we shall show that S is not always closed under set products.

1 Completions and injective hulls of inverse semigroups

Definition. Let A be a right S-subset of a right S-set B. Then A is called large in B if a homomorphism $\rho: B \to C$, where C is any right S-set, with the restriction $\rho|_A$ being an injection, is itself an injection. A is called $strictly\ large$ in B if for any $b, c \in B$ ($b \ne c$), $\exists s, t \in S^1$ with $bs, ct \in A$ but $bs \ne ct$.

Definition. A right S-set A is *injective* if for any right S-set B, C, any injection $\alpha : B \to C$ and a homomorphism $\rho : B \to A$, there exists a homomorphism! $t : C \to A$ with $t : C \to A$ with $t : C \to A$.

Definition. Let A be a right S-subset of a right S-set B. A right S-set A is called the *injective envelope* of B if A is large in B and B is an injective right S-set.

(**B** is the minimal injective right **S**-set conaining **A** as a right **S**-subset.)

Definition Let S be an inverse semigroup and M be a right S-set. Define $a \le b$ if $a \in bE$ for $a, b \in M$. Then \le is a partial order relation stable under all operations of A (that is, for all $a, b \in M$ and $s \in S$, $a \le b \Rightarrow as \le bs$). The order relation \le is called *natural order*

Definition A subset A of M is called a *tail* if $a \in A$ and $b \le a \Rightarrow b \in A$ for all $a, b \in M$. In other words, B is a tail exactly when $BE \subseteq B$ (or, equivalently, $BE^1 = B$).

A subset A of M is called *compatible* if there exists a mapping $B \to E^1$ ($b \to e_b$ for every $b \in B$) such that $be_b = b$ and $b_1e_{b_2} = b_2e_{b_1}$.

Definition. If $B \subseteq M$, $a \in M$ and $B \subseteq aE^1$ (that is, $b \le a$ for all $b \in B$), then a is called an *upper bound* of B. A minimal upper bound of B is any minimal (with respect to \le) element of the set of all upper bounds of B. A unique minimal upper bound is called the *supremum* of B and is denoted as $\bigvee B$. The supremum $a = \bigvee B \in M$ is called the S-distributive supremum if $as = \bigvee (Bs)$ for all $s \in S$.

M is called *complete* if any compatible subset B of M, there exists the supremum of B in M.

Definition. An element a is called a *face* of B, if

- (i) \boldsymbol{a} is an upper bound of \boldsymbol{B} and
- (ii) for all $s, t \in S^1$, Bs = Bt implies as = at.

(a face is a minimal upper bound.)

Result 1([5]). A right S-set M over an inverse semigroup S is injective if and only if every compatible subset of M has a face.

Definition. A subset F of a right S-set M is called a *filter* if the followings hold:

- (1) F is compatible and a tail,
- (2) for each $e \in E$, if Fe has a face a, then $a \in F$.

Let C(S)={all the compatible tails of S} and $\mathcal{F}(M)$ ={all the filters of M}.

Let a mapping $\tau: M \to C(M)$ $(m \to mE)$. Then τ is an embedding of M into $\mathcal{F}(M) \subseteq C(M)$. We identify M with the S-subset M of the right S-set $\mathcal{F}(M)$.

Result 2([5]). (1) C(S) is an injective right S-setcotaining S as a right S-subset.

(2) $\mathcal{F}(M)$ is the injective hull of S, for every right S-set S.

Let $C'(S) = \{$ all the compatible tails H of S satisfying $HH^{-1}, H^{-1}H \subseteq E \}$.

Result 3([3]). Let S be an inverse semigroup. Then C'(S) is an inverse semigroup and is an S-ditributive completion of S.

Definition. An inverse semigroup S with the semilattice E of idempotents is called E-reflexive if for any $a, b \in S$, $ab \in E$ implies $ba \in E$.

Result 4([4]). Let S be an inverse semigroup. Then S is self-injective semigroup if and only if S is complete, S-distibutive and E-reflexive.

If S is E-reflexive, then C'(S)=C(S). By Result 2 and Result 3, C(S) is a self-invective semigroup.

Result 5([6]).Let S be an E-reflexive inverse semigroup with semilattice E of idempotents. Let $\tau: S \to C(S)$ ($s \to sE$). Define a relation \equiv on C(S) as follows:

 $H \equiv F(H, F \in C(S))$ if and only if the followings hold:

- (1) $HF^{-1} \subseteq E$ (equivalently, $FH^{-1} \subseteq E$),
- (2) $HS \cap FS$ is strictly large in HS and FS.

Then (i) the relation \equiv a congruence on C(S),

- (ii) $C^0(S) = C(S)/\equiv$ is a complete, S-distributive, E-reflexive inverse semigroup, (equivalently, $C^0(S)$ is a self-injective inverse semigroup) and
- (iii) there exists the embedding $\tau_0: S \to C^0(S)$ and $C^0(S)$ is the injective hull of S, where τ_0 denotes the composite mapping of τ and the natural mapping induced by the congruence \equiv .

By Result 2 and Result 5, there exists an S-isomohism $\xi : \mathcal{F}(S) \to C^0(S)$ with the restriction of ξ to S is the identity mapping of S. Consequently, the operation of S on the right S-set $\mathcal{F}(S)$ extends to a multiplication of $\mathcal{F}(S)$ so that $\mathcal{F}(S)$ becomes a self-injective inverse semigroup.

So we have

Question Whether or not $\mathcal{F}(S)$ is closed under set product?

Example Let $\Gamma = \{1, 2, 3, 4, 5, 6, 7, 8\}$ be a semilattice depicted in Figure 1. Let S be a semilattice Γ of groups G_i (i=1,2,3,4,5,6,7,8), where G_i (i=1,2,4,5,6,7,8) is a copy of the free group generated by a and b and G_3 is a copy of the cyclic group generated by ab. The multiplication of S is defined by $x_ix_j = x_{ij}$, where for any $x \in G$, x_i is the image of x in G_i . Let $H=\{a_1,a_4,a_6,a_7,a_8\}$ and $F=\{b_2,b_5,b_6,b_7,b_8\}$. Then H and F are filters of S, but HF is not a filter. Actually, $HF \cup \{ab_3\}$ is a filter of S, Hence $\mathcal{F}(M)$ is not closed under set product.

Figure 1

References

- [1] G. Bruns and H. Lakser, Injective hulls of semilattices, Canad. Math. Bull. 13 (1970), 115-118.
- [2] C. S. Johnson, Jr. and F. R. McMorris, Injective Hulls of Certain S-Systems over a Semilattice, Proc. Amer. Math. Soc. 32(1972), 371-375.
- [3] B. M. Schein, Completions, translational hulls and ideal extensions of inverse semigroups, *Czech. Math. J.* **23** (1973), 575-610.
- [4] B. M. Schein Injective monars over inverse semigroups, G. Pollak (Ed.), Algebraic Theory of Semigroups, Szeged (Hungary), 1976, Colloq. Math. Soc. J. Bolyai, vol. 20, North-Holland Publ. Co., 1979, 519-544.
- [5] B. M. Schein, Injective hulls of monars over inverse semigoups, J. algebra 378(2013), 207-216. (Notices Amer. Math. Soc. 23 (1976) 640-641(abstract)).
- [6] K. Shoji, Completions and injective hulls of *E*-reflexive inverse semgroups, *Semigroup Forum* **36** (1987) 55-68