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1 Introduction

This is a note of survey based on the joint work with Lorenzo Brandolese.
We consider the incompressible Navier-Stokes equations on the whole space
in R", n > 2.

ou—Au+u-Vu+Vr=V-f in R"™ x (0, 00),
(NS) divu =0 in R™ x (0, 00),
u(-,0) =a in R™,

where, v = u(xz,t) = (ui(z,t),...,un(x,t)) and 7 = 7(x,t) denote the un-
known velocity vector and the pressure of the fluid at (z,t) € R™ x (0, 00),
respectively. f = (sz(z’t))kl:l,...,n denotes the external force. While, a =
a(z) = (a1(z),...,a,(x)) is the given initial data.

In this note, we consider the decay rate of a rapidly dissipative Navier-Stokes
flow compared with the well known optimal rate. For the energy decay problem
of the Navier-Stokes flows, there are many results, for examples, Masuda [13],
Schonbek [16], Wiegner [17], Kajikiya and Miyakawa [9]. So, nowadays, it is
well known that

n+2

(1.1) [u() | L2@ny < CL+6)""F, ¢>0,

especially, if a € L*(R™) with [;, (1 +|z|)|a(z)| dz < co. The rate as in (1.1) is
optimal in general, describing the rate of the leading order terms of the nonlinear
terms. Indeed, Fujigaki and Miyakawa [8] gave a precise asymptotic expansions
for the linear part and the nonlinear part, respectively, such as

(1.2)  lim 275079

t—o0

u;(t) + ; B (") /Rn yra;(y) dy

+ > Fj,ke(-,t)/o /n ugue(y, s) dyds

k=1

=0
La(R™)




forall1 < ¢ <ocandforall j=1,...,n, if a € L™(R") is small enough and

satisfies [o, (1 + |z|)|a(z)|dz < co. Here, Ey(x) = (4mt)~2 exp(—%) is the
usual heat kernel and Fj ¢(z,t) denotes the kernel function which represents

the operator ‘e!2PV-’, defined by
Fjpe(z,t) = 0Ey()d,1 + / 0;0k0Es(x)ds for j,k,0=1,...,n.
t

Since the principal terms is explicitly obtained, if we make the flow rapidly
decaying, it suffices to investigate the coefficients of the principal terms in the
asymptotic expansions (1.2). Indeed, Miyakawa and Schonbek [15] clarified that

_nt2
|u(®)]|L2@ny =o0(t™ %) ast— oo,

if and only if
/ y®aly)dy =0,
]Rn

/ / upe(y, 8) dyds = oy -~ (A).
0 n

for some ¢ € R. However, in general, it is difficult to confirm the condition (A),
since we need the whole information of the unknown velocity both on the space
and time region.

For the condition (A), Brandolese [1] introduce a spatial symmetry, so-called
cyclic symmetry, as follows:

(a) u; is odd function with respect to z; and is even function with the others,
(b) wi(z1,z2,. .., &n) = u2(Tn, T1,. .., Tne1) = Un(T2,...,Tpn,T1).

On the other hand, as a viewpoint of a control problem, it is natural to
consider that for any initial data whether we are able to make the flow faster
decaying by another approach.

So, the aim is to control the flow with the aid of external force. For this
purpose, we introduce the forcing term with a divergence form V - f. In this
situation, we see that

t n e}
/0 [TIBPY - f5(s) ds ~ k; Fye®) /0 /R fey. 5) dyds

as t — oo. Hence, the principal terms of the forcing term are given by the same
kernel function Fj e as the nonlinear term, we generalize the condition (A) in
case with the external force.

Proposition 1.1 (Brandolese-O. [3]).

lu(t) — etAa”LZ(]Rn) = o(t_nTH) ast — oo



if and only if

(B) /o /n (fld(y, s) — ugue(y, s)) dyds = cbyy, fork,£=1,...,n,

with some ¢ € R.

Here, we note that the condition (B) is easy to be obtained as an analogy
of Miyakawa and Schonbek [15]. However, we regard the condition (B) as a
quantitative condition. Indeed, in the previous result [3], we introduce the
following external forces. Let ® € C5°(R™ x [0.00)) with [~ [5. ®(z,t) dzdt =
1. Then each component of the forcing term is defined by

(13) fkg(l’,t) = )\]d(I)(ZC,t), k,g = 1, e, n,

for some constants A\ge € R. Substituting the external force fi, as in (1.3) into
the condition (B), we see that

(1.4) Ak :/ / uge(y, s)dyds, k #4L.
0 n

Therefore, our problem is reduced to find the coefficients A, such that (1.4)
holds true. Finally, we note that the method that how we construct such Agy
is the main matter. Moreover, the fewer restrictions of the choice of ® are the
better, as a viewpoint of controlling problem.

2 Main results

In this section, we state recent progress of our problem. To state theorems, we
introduce some function spaces.
Let 1 <r < oo.

X, = {ve L. (0,00; L"(R™)); ||lv] x, = esssup t%_%ﬂw(t)”U(Rn) < oo},
>0

Y, = {f € Lig.(0,00; L"(R™)); | fllv, = ess sup 3 f(O) | e ey < 00}

Notice that X, is usual Kato’s space for the velocity field and such space is left
invariant by the natural scaling of (NS), u +— uy, with uy(z,t) = Au(Az, \%t).
The space Y, is the corresponding natural space for the forcing term, and it
is left invariant by the natural scaling, i.e., | fxlly. = ||f|ly,, where fx(z,t) =
A2 f( A, A2t).

We use homogeneous Besov of the form Bﬁ o(R™), with 1 <r, ¢ < oo and neg-
zy where (A f)jez
is the Littlewood-Paley decomposition of the tempered distribution f € Sj.

We define Bﬁ,ao (R™) as the closed subspace of Bﬁm(R") such that

ative regularity s. These are normed by f — H2js||Ajf||rHeq(

lim 27%(| A fl e rny = 0.
j——o00



For any 1 < ¢ < oo, we have of course the inclusions Bﬁyq(R") C Bﬁ,co (R™) C
B; o (R™).
Now, we state our main theorem.

Theorem 2.1. Let 2 <n <r <oo. Let
a€B TR NH YR, V-a=0.

Let ® € LE(R™ x RT), such that [[° [® = 1. There exist 19 > 0 (only
dependent onn and r), and a constant real matriz (oge) (dependent on n, r and
also on a, ®), with

logke| <1 (k,t=1,...,n),

such that if

lall -2 + lallF 1 2lly, <mno

2.1) o
e
and if

f=(fre): with  fre(z,t) = onellall?,_, ®(a. 1),
then there exists a global solution v € X, N L*(R™ x RY) to (NS) such that

(2.2) lim ¢2t50=D|ju(t) — eall, =0  for all1 < g < oc.
t—o0
The above solution u is rapidly dissipative, i.e., |[u(t)||3 = o(t_nTﬁ) ast — 400,
. _nt2
if and only if the initial data a belongs also to B, . * (R™).

Corollary 2.2. Leta € B;;j%(R")ﬁH_l(R"), withn <r < oo. Let R,R' > 0
and

@(:L‘,t) = RnR/d)(R:l?) 1/}(R/t)7

where ¢ is a L>(R™)-function supported in the unit cube [0,1]" and v is a
L>®(R™)-function supported in the interval [0, 1], both with integral equal to one.
There exists nj, > 0 (depending on ¢, ¥, n and r), such that if

HGHBT—}J% < 776
23 ol RP0=H () E <
lall -+ RT3 (R') 2 < oy,

then the conclusion of Theorem 2.1 applies.

Remark 2.1. In the corollary, it suffices to assume that one of R or R’ is
small enough. Hence, we can control the flow by acting an external force for
arbitrarily short time, or acting a force in arbitrarily tiny space region, we can
make the flow decaying faster.



3 Construction of the forcing term and approx-
imate solutions

In order to discuss the way to find external forces, we shall recall the condition
(B). Since (B) can be regarded as a quantitative condition, the method of in-

ductive approximations seems to be effective. Indeed, the essential idea to find
the coefficient Ay, is the following:

AmHD / / ()M (g, s)dyds, k#€, m=0,1,2,....
More precisely, we consider the following procedure:
FO,t) =0,

t
u™(t) = e'Pa +/ e=IAPY . fM)(5)ds
0
t
+/ (t=9)ApPY . (u(m) ® u(m))(s)ds, m=20,1,2,...,
0

where, f(™ is defined by

- c;é )<I>($ t), k#¢,
k}n (IL’,t) = — 1
<c,§k R CHE +c£{3‘”)) (1), k=1,
form=1,2,..., and

c,(;; D _ / / (m_l)uém_l)(y,s) dyds,

Here, we give remark on the definition of { f,g;n)}meN. Let us assume that

form=1,2,....

Hu(o)(t)HLz(Rn) = o(t_nT”) as t — oo,

where f(9) = 0. In this situation, we have nothing to do, i.e., we have no need to
consider the nontrivial external force to make the flow decaylng faster. Indeed,
by the condition (A) in Miyakawa and Schonbek [15], we observe that

cM / / u,(co)ug s)dyds = 0, k#¢,

A9 = //n (y, s dydb—/ /n y,s)2dyds =Y, k=1

Therefore, we have the consistency, i.e.,

é?”(x,t) =0 forallm=0,1,2,....



Due to the definition of the sequence of external forces { f,?;)}meN, we can
observe that for some fixed n < r < oo,

||f(m)||Yr s ||a||§q_1||q’||Yw m=1,2,...,
under some additional conditions. So, if we assume
lall -1z + llalf_i @]y, <m0

is small enough with some 7y > 0 independent of m € N, then we can expect
the global in time existence of u(")(t) for each m € N, by the usual Fujita-Kato
method.

4 Convergence of the forcing terms { f("”)} and
approximate solutions {u(™}

In the previous section, we establish the way of construction for external forces
and corresponding Navier-Stokes flows. Then we emphasize that our problem is
reduced to the convergence of the coefficients c,(;;) as m — 00, i.e., the conver-

gence of the fores { ™ },,en and simultaneously of the solutions {u(™},,en.
We focus on the coefficients c,(g). We see that

) < / / ™ (g, )P dyds = 1™ |2 g e

To derive the convergence of coefficients, we have to deal with L?(R"™ x R*)
estimates of the solutions u(™) and their boundedness in L?(R™ x R*). So, in
the previous work [3], we derived the above estimate via quantitative energy
decay estimate of the solutions u(™ (t). However, to derive quantitative decay
estimates which are independent of m € N, we need many steps and a lot of
calculations. To avoid such a complicated scheme, we consider to derive the
L?(R"™ x R*) estimates directly at the moment of construction of the approxi-
mate solution (™.
Let the bilinear form GJ-, -] be defined by

Glu,v](t) = —/0 eIIAPY . (u ® v)(s) ds.

Then we have the following lemma for the bilinear form G[-,].
Lemma 4.1. The bilinear operator is continuous:

i) G: X, x X, =5 X, n<r<oo,ie.,
1Gu, v]llx, < llullx, l[v]lx,-
i) G: L*(RT; L*(R™)) x X, — L*(RT; L*(R™)), for2<n <r < oo,

1Gu, v]llL2@nxrt) S llullL2@nxes) llv]lx,



By the virtue of Lemma 4.1, if X,.-norm is small enough then we can obtain
u(™ € X, and also u(™ € L?(R™ x R*) for every m € N. Furthermore, we
observe the convergence of u(™ in L?(R™ x R*) under some additional smallness
on a and .

Indeed, we see that

t
u(m+l)(t) _um (t) = / (=) APy . [f(m-i—l) _ f(m)](s) ds
0

t
" / BEOINVE [(u(m—k—l) _ u(m)) ® u(m+1)] (s)ds
0

t
+/ =IAPY - [u™ @ (umT) — (™)) (s) ds
0
— () + 5 (1) + T (1)
Applying Lemma 4.1, Item ii), we obtain

I Z2]| 2 ®n x&+) 1 Z3 ]| L2 (RP xR+
< (||u(m)||Xr + ||U(m+1)||Xr) w1 — w2 g et

(m+1)

Snllu —U(m)HL?(Ranﬂ-

So choosing 1 > 0 is small enough, independent of m € N, we see that the two
last term can be absorbed by the first one. Namely,

(M) — u(m)HLz(Ranﬂ N ||I§m)||L2(JR”XR*)'

Then, we see that

||u(m)

IZ | 2 xiy S lall o 1@ asz — D L2 gt )-

L 5P (R xRH)
Therefore, if we assume ||a|| z-1|| P a+2n : is small enough, then we ob-

L7 (Rn xR+
tain that

m m 1 m m—
[[am+D) g >||L2(RRX]R+) < 5||u< ) _ 1)||L2(R"><]R+)a

which yields that the convergence of the solutions {u(™},,cy in L2(R" x R*).
Moreover, arguing as before, but using Lemma 4.1, Item i), we see that

[ul™ ) — ™ <) x,
S D — )y,
< lall g Idlly ™ = w = L2 (g et -

Therefore,

m m 1. o m—
[u D —w | < S = D L2 gty



This proves that {u(m)}meN converges also in X,.. A similar argument estab-
lishes the convergence of {u(™},,en in Xo.

We denote by v the limit in L*(R” x RT) and in X, N X, of u(™). As
v € L2(R™ x RT), we can define the limit forcing term

A% (x, 1) k#1,

fre(z,t) = {(C](;d —cCND(x,t) k=4,

where -
c,(;zo) = / / veve(y, s)dyds  (k,0=1,...,n),
0 n
and

1 (e IR o
oo = Lol 4 fooy :_/ / v (y, )| dyds.
n nJo Jre

By the convergence u(™ — v in L?(R™ x R*), we can see that the convergence

(m) (00)

Cry — Cpp asm — oo for k, £ =1,...,n. Hence, we obtain that

M — ¢ strongly in Y, N L%(R" x RT),

as m — oo. Finally, we obtain that

t t
v(t) = e®a + / e=IAPY . f(s)ds — / U=IAPY . (v © ) (y, s) dyds.
0 0

So, v and [ is a desired Navier-Stokes flow and an external force.

5 Revisiting Fujigaki and Miyakawa asymptotic
profiles

Since we only assume that a € H~'(R™), the energy decay is lu(t)||L2rny =
O(t_%) as t — oo, which is not enough to apply the theory of the Fujigaki
and Miyakawa asymptotic expansions. Hence, in this section we investigate the
asymptotic expansions of the nonlinear terms.

Here, we notice that the kernel function [, has the following scale prop-
erty;

Fj’u(l‘,t):t_nT+1 ke <%,1), gk, 0=1....n.

Noting this scale property, we investigate the followings.

Let M be a measurable function on R™ x R* which satisfies the following

scaling properties
n+1

(5.1a) M(z,t) =t""2 M(z/Vt1), zeR" t>0.

We also assume that
(5.1b)
M(-,1) e WheR") N WHYR™) and 2-VM(-,1) € LYR"™) N L= (R™).



Here, we note that 9, (M (z/v/t,1)) = —ﬁx VM (z/v/t,1) and that M(-, 1)

is uniformly continuous on R™ by the Morrey inequality.
Then we have the following expansion theorem.

Theorem 5.1. Let n > 1, W € L*(R™ x RT), with |[W(t)| &) = O(3) as
t — 00. Let us introduce the constant A = fooof W(y, s) dyds and let also

¢
U(z,t) = / M(z —y,t — s)W(y, s) dyds.
0 Jr»
Then, as t — oo,

(5.2) H\I/(t) —AM(-, )

= o(t_%_%(l_%)), with 1<q< L.
La(R") n—1
The above results extend to -5 < q < oo, provided W satisfies also |W(t)|| s @n) =
O(t_l_%(l_%’)) as t — oo, for some (3 such that % < % < % + %

Let us apply Theorem 5.1 to each one of the terms of the summation in the
right-hand side, with

M =Fjp and Wi = vpve — fre (Jk,=1,...,n).

The required conditions on M (5.1) do hold, by the properties of F.

Let us check the needed conditions on W. We have v € L?(R™ x R*)
and ® € L'(R" x RT), hence f € L*(R™ x RT) and so W does belong to
LY(R™ x RT). Moreover, the conditions that we put on a and ® insure, In
particular, |[v(¢)]|3 = O(t™!) as t — co. We see that [[W(t)|1 = O(t~!). Then
Theorem 5.1 applies and we get, at least for 1 < g <n/(n—1),

(6.3) |jvj(x,t) — etAaj (x)

+ Z Fjre(-5t) /OOO/WM(yaS)dZ/dS

£,k=1

La(R")

ast — oo. Let us extend the range of the parameter ¢ for the above asymptotic
profile. For any 1 < ¢ < 0o, we note that

W)l < lo@))I3, + I F @)l St 2070

By the last assertion of Theorem 5.1, we now deduce that (5.3) holds true for
any 1 < q < 0.
However, our constructed solution v and external force f satisfies

/ Wie(y, 8) dyds = cdge  for k,0=1,...,n,
0o Jrn

with some ¢ € R. Therefore, we obtain our main theorem on the rapid energy
decay for the Navier-Stokes flow with an external force.
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