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1 Introduction

This is a summary of the paper [17] and thus the details are left to the original paper [17].
Let n > 3. We consider the time-periodic motion of a viscous incompressible fluid gov-
erned by the Navier-Stokes equation:

ov—Av+v-Vuo+Vqg=div I in R x R",

diveo=0 in R x R",
(1.1)
v(-,z) =0 as |x| — oo,
v(t,) =v({t+T,-) forallteR.
Here v = (v1(t,x), -+ ,v,(t,x)) and ¢ = q(t, ) denote, respectively, the unknown velocity

and pressure of the fluid, while I = (F};(¢, z))7;=, is a given periodic tensor with div I" =
(>, 04, (t,x))?zl denoting the periodic external force. Furthermore, 7" > 0 denotes a
fixed period.

The existence and uniqueness of (1.1) are studied in many manuscripts such as [13, 8,
19, 4, 18, 2]. The time-periodic problem is traditionally investigated via the initial value
problem, however, a new method to analyze the time-periodic problem without discussing
the initial value problem was invented by Kyed [10]. He introduced the reformulation of the
time-periodic problem on a group G := R/TZ x R™. The advantage of the reformulation is
the availability of the Fourier transform on . The time-periodic Navier-Stokes equation is
studied by using this reformulation method in, for instance, [10, 12, 6, 7, 5]. In these papers,
the time-periodic Navier-Stokes equation in which v(-,x) goes to nonzero vector at spatial
infinity, instead of (1.1)s, is considered. This is, as is well-known, a crucial difference from
our problem (1.1). As far as the author knows, the time-periodic Navier-Stokes equation
with (1.1)3 is investigated without discussing the initial value problem only in [15, 16, 1]. In
[15, 16], the author established the existence of solutions v to (1.1) with the pointwise decay
properties such as |[v(t,z)] = O(|z]*™") and |Vu(t,z)| = O(Jz| ™) as |x| — oo uniformly in
time and, furthermore, it was shown that the decay rates of this solution are optimal. It
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was proved in [1] that the time-periodic Navier-Stokes equation in three dimensional exterior
domains admits a strong solution v such that ||v(-, )| zr0r) With 2 < p < oo decays like
L.

We state our strategy to study (1.1) in advance of the main results. We employ the
reformulation introduced in [10] to study the problem (1.1) and thus our argument does not
depend on the initial value problem. We also consider the decomposition of time-periodic
functions introduced by Kyed [10]. For a T-periodic function v, we define its steady part Pv
and purely periodic part P, v by

Po(z) = %/0 v(s,z)ds, Pru(t,z):=v(t,z)— Pv(x).

In this paper, Pv and P v are often abbreviated as vs and v, respectively. Using this
decomposition, we decompose (1.1) into two equations:

—Avg + v - Vus + Vg =div Fy — P(v, - Vu,)  in R™,
(1.2) div vg =0 in R",
vs(z) = 0 as |z| — oo,
and

Oy — Av, + Py (v, - Vu,) + Vg, = div F), — v, - Vv, — v, - Vo, in R x R",

(1.3) div v, =0 in R x R",
' v, ) =0 as |z| — oo,
vp(t, ) =v,(t+T,-) for all ¢ € R.

The equation (1.2) can be obtained by substituting v = vs + v, in (1.1) and then formally
multiplying (1.1) by P. Notice that P(P,v) = 0 for all T-periodic functions v. Subtracting
(1.2) from (1.1) yields the equation (1.3). We can verify that v = vs + v, is a solution of
(1.1) if and only if v; and v, are solutions of (1.2) and (1.3) respectively. We study the
problem (1.1) through the analysis of (1.2) and (1.3). The equation (1.2) is the stationary
Navier-Stokes equation with the external force div(Fy — P (v, ® v,)) and we analyze it using
the standard theory for the steady Stokes equation. In the analysis of the equation (1.3), it
is important that all the terms in (1.3) are purely periodic, that is, the steady part of each
term in (1.3) is 0. The time-periodic Stokes equation with purely periodic data is studied
by using the Fourier transform mentioned above and we see that purely periodic solutions of
the Stokes equation can have some additional regularity in time. This additional regularity
plays an important role in constructing a solution of (1.3).

The aim of the paper [17] is to establish the existence and uniqueness of solutions to (1.1)
in the sense of distributions. It is shown that if F’ is sufficiently small in an appropriate sense,
then there exists a solution v of (1.1) with information on the classes of Pv and P v. The
steady part Pv and the purely periodic part P, v belong to suitable P spaces corresponding
to the classes of PF and P, F respectively. In addition, slightly more regularity of P v in
time is inherited from that of the purely periodic solutions to the Stokes equation. It should



be noted that this additional property of P, v is obtained thanks to the decomposition of
(1.1) into (1.2) and (1.3). Furthermore, we will see that if the solution v is sufficiently
small in a suitable sense, then there exists no other solution of (1.1) in the same class as v.
We emphasize that this assertion is not a consequence of simple uniqueness theorems which
assert the coincidence of two small solutions. In our uniqueness theorem, we assume only the
smallness of one solution and no additional condition on the other solution.

This summary is organized as follows. In Section 2, we state the main results. We study
the existence of solutions to (1.1) in Section 3. The theories for steady and time-periodic
Stokes equations are investigated and we will see the additional regularity in time of purely
periodic solutions to the Stokes equation by analyzing their representation via the Fourier
transform. Based on the theory of the Stokes equations, solutions vs and v, to the nonlinear
problems (1.2) and (1.3) are constructed and we will obtain a solution v = v, 4+ v, of (1.1).
Section 4 is devoted to the study of uniqueness of solutions constructed in Section 3. We will
consider the equations which the difference w of two given solutions, its steady part w, and
purely periodic part w, should obey. Applying the regularity theory for the Stokes equations,
we will establish the L? property of ws and w,. Furthermore, in order to get information
on the class of d,w,, we will also show that w, is indeed a strong solution. Combining the
properties of wy and w,, we obtain a suitable L? property of w and we take w as a test
function in the weak form of its equation to derive the uniqueness.

2 Main Results

Before stating our results, we introduce some function spaces. In what follows, we adopt
the same symbols for vector and scalar function spaces as long as there is no confusion. For
1 <r < o0, the usual Lebesgue and Sobolev spaces are denoted, respectively, by L"(R") and
WL (R™) with norms [ - ||zr@r) and || - ||wirgs). Furthermore, for 1 < r < oo, we define
the homogeneous Sobolev space H!(R™) by the completion of C5°(R"), the space of smooth
functions with compact support in R”, in the norm ||V - || ).

We need the spaces of T-periodic functions. Set Cg5..(R x R") = {p € C*(R x
R");¢(t,x) = @t + T, x) and ¢|pm € C°([0,7] x R")}. For 1 < r < oo and a Banach
space X with norm || - ||x, L}, (R; X) stands for the Banach space of all T-periodic functions

per

v : R — X such that the restriction v|jgry € L7(0,7; X') with norm

1 (T r
ol = (7 [ Iollcde) (<7 <000 ollz o = esssup ol
T Jo 0<t<T

Notice that if 7y < r1, then the embedding L7\ .(R; X') C L7

o - (R; X) is continuous. In the case

X = L"(R"), we simply write L, (RxR") with norm [|-[|, := ||-[| s, .- @&ny). If X = L*(R")
for s # r, we denote its norm by || - |l;s == || - [|z;., ®:zs®n)). Note that CF5.. (R x R") is

dense in L7, (R x R") for 1 < < oo. The space W 2" (R x R") is defined, for 1 <1 < oo,
by the completion of Cgf,, (R x R") in the norm || - [[10, == ([0 - I} + X2 )51<2 105 - (IR

Furthermore, subspaces of these function spaces, consisting of purely periodic functions, are



denoted by

Copert R X R™) := {p € Cg5..(R x R"); Pp = 0},
L', (R X):={ve L, (R;X);Pv =0},

per, L per
wh2r (R « Rn) — {v € W172,T(R > R”);Pv = ()},

per, L per

It is easy to see that (5., | (R x R") is dense in L7, | (R x R") for 1 <7 < oo,
We also introduce some exponents used in this paper. For 1 < r < n, we define the
exponent r* by 1/r* := 1/r — 1/n. For a parameter 0 < A < 1 and given 1 < r < n, we

define the exponents ), and ), by

2r ,
on:2_)\r if Ar <2,
(2.1) ay, < 00 if Ar=2,
Qyp = 00 it Ar> 2,
and
nr
2.2 =
(22) B n—(1=XNr
The exponents ay, and (3, are used in this section and Section 3. By C = C(-,--- ,-) we

denote various constants depending only on the quantities in parentheses.
Now we state the main results. The first result is on the existence of solutions to (1.1).

Theorem 2.1. Letn > 3 and n/2+1 < r < n. Suppose that F' satisfies PF € L”/Q(R”) and
PLF € Ly,  (RxR"). There exists a constant § = 6(n,r,T) > 0 such that if |PF||pn/2mn) +
|PLF||, <0, then (1.1) admits a solution {v,q} satisfying

(2.3) Pve Hi(R"), Pge L:(R")
and
(2.4) Proe Ly,  (RyWY(R™) N LY (R LA(RY),  Pig € Ly, (R xR")

for all 0 < X\ < 1. Furthermore, if PLF € L;.. (R x R") for some 1 < s < r, then the
solution {v,q} satisfies

Pive Li, (R WH(RY)) N L (R LP*+(R™), Prge Li, (RxR")

per, L per, L per, L
forall0 < X< 1.

Remark 2.1. The properties (2.3) and (2.4) of the solution v in Theorem 2.1 imply Pv €
L*(R") and P,v € Ly, | (R; L"(R")) for p < coif r =n/2+1and p = coif n/24+1 <r <n.

Hence, we have v € L', (R xR") if r =n/24+1and v € L2 (R; L"(R")) if n/2+1 <7 < n.

per per



The next theorem is concerned with the uniqueness of solutions constructed in Theorem
2.1. We emphasize that only the smallness of one solution is assumed and no additional
assumption is imposed on the other solution in the next theorem.

Theorem 2.2. Let n = 3 and 5/2 < r < 3. Suppose that the pairs {u,p} and {v,q} are
solutions of (1.1) having the properties (2.3) and (2.4). There exists an absolute constant
6 > 0 such that if .

[Pull s es) + IPrufloc,s < 0,

then {u,p} = {v,q}.

Remark 2.2. The set of solutions satisfying the smallness condition in Theorem 2.2 is not
empty. Indeed, we can easily verify that the solution v of (1.1) constructed in Theorem 2.1
is subject to the estimate

IPollzss + IPrtlles < € (IPFI,3 g, + I1PLF )

L3 (®3
for some constant C' = C(r,T). Thus, v satisfies the smallness condition in Theorem 2.2
provided that [[PF|s/2gs) + [PLF], < C~15. We can deduce from this observation and
Theorem 2.1 that if |PF||ps/2rs) + [|PLF, < min{d, C~16}, then (1.1) admits no solution
satisfying (2.3) and (2.4) except the one constructed in Theorem 2.1. Here § is the constant
in Theorem 2.1 with n = 3.

Remark 2.3. The case r = 5/2 is excluded due to a simple observation that (2.4) does not
imply P1v € L, | (R; L3(R3)) if r = 5/2, see Remark 2.1 above. The uniqueness holds even
for r = 5/2 if we assume P u,Piv € L2 | (R; L3(R?)) in addition to the assumptions in

per, L
Theorem 2.2.

3 Existence

This section is devoted to the proof of Theorem 2.1. We intend to construct solutions
{vs,qs} and {v,.q,} of (1.2) and (1.3) respectively, and then we obtain a solution {v,q} =
{vs +vp,qs + qp} of (1.1). In order to study the equations (1.2) and (1.3), we begin with
the analysis of the Stokes equations. We recall the unique solvability of the steady Stokes
equation:

—Av+Vg=div F inR",
(3.1) divo =0 in R™,
v(x) =0 as |x| — oc.

Lemma 3.1 ([3, 9]). Let 1 <r < oo. For every I' € L"(R"), there exists a unique solution
{v,q} € HY(R™) x L"(R™) of (3.1) such that

Vol Lr@ey + |l or@ry < CIF|| L @eny

with C depending only on n and 7.



Next, we consider the time-periodic Stokes equation:

ov—Av+Vqg=div F in R x R",
dive =0 in R x R",

(3.2)
v(-,z) =0 as |z| — oo,

v(t,") =v(t+T,-) forallteR.

The next lemma and proposition on the equation (3.2) are essentially based on the refor-
mulation mentioned in Introduction. We briefly review the theory. Set T := R/TZ and
G =T xR". We define the map 7 : RxR" — G by 7(t, x) := ([t], x) and let II := 7o 1) xrn-
The restriction IT is a bijection from [0, 7) x R™ to G, and via IT we identify G with [0, T") x R™.
Hence, via the compositions with 7 and II7!, there is a natural correspondence between T-
periodic functions in R x R™ and functions on G. The Haar measure dg on the locally
compact abelian group G, unique up to a normalization factor, is chosen as the product of
the Lebesgue measures on R™ and [0,7"), and we have

[uris =1 [ [ wonsmaas

The Lebesgue spaces on (G are denoted by L"(G), and L"(G) is homeomorphism with L}, (R x

R™). The advantage of the reformulation is the availability of the Fourier transform on G.
The Fourier transform and inverse Fourier transform are defined by

1 (7 . .
Tl =+ / / v(s,y)e T dyds,  Fg'v] =Y / ok, €)™ TR g
0 n n

kez /R

respectively. Notice that Z#¢ = Fro.Fgn. For more details on the analysis on G, see [10, 11].
The next lemma on the unique existence of a purely periodic solution to (3.2) was essen-

tially proved in [5, Theorem 9] via the so-called transference principle and the Marcinkiewicz

multiplier theorem. For later convenience, only the proof of uniqueness is given here.

Lemma 3.2. Let 1 <r < oco. For every F' € Ly | (R xR"), there exists a unique solution
{v,qy e L7, | (R;WL(R™) x L7 | (R x R"™) of (3.2) such that

per, L per, L

vl r.. @wrr@eyy + llall- < ClIF,

per

for some constant C' = C(n,r,T). Furthermore, if ' € L;_. | (R x R") for some 1 < s < 00,
then the solution {v,q} satisfies

v E Lo (RW(RY), g€ Ly, (R X RY).
Proof. We prove only the uniqueness. The uniqueness of purely periodic solutions can be
proved in the same way as [11, Theorem 4.8]. Suppose {v,q},{?,q} € L}, | (R; W (R")) x
Lo (R X R™) are solutions of (3.2). The pair {v — @,q — G} is a solution of the Stokes
equation (3.2) with F' = 0. We reformulate the equation on the group G and multiply it by
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the Helmholtz projection Py on G, see [11, Lemma 4.3], to eliminate V(¢ — ¢). Then we
apply the Fourier transform to get

<|§|2 - 22—%) Falv—1] =0.
T
Since [£|?+i25k = 0 if and only if {£, k} = {0, 0}, it suffices to show that F¢[v—17](0,0) = 0.
We can easily see that P, (v — ©) = v — v holds and the Fourier transform of this relation is
given by (1-9z(k))Zclv—0] = Fglv—2] by [11, Lemma 4.7]. This implies .Z¢[v—20](£,0) =0
for all & € R™. In particular, we have .Zg[v — 9](0,0) = 0. Consequently, we derive v = ¥
on GG and thus v = ¢ in R x R". By the equation (3.2); with F' = 0, we get V(¢ — ¢) = 0,
and thus ¢ — ¢ = h(t) for some purely periodic function h. Since ¢ — ¢ € L . | (R x R™), we

per, L
deduce h(t) = 0 and thus ¢ = ¢ in R x R™. Therefore, we derive {v,q} = {0, ¢}. O

Remark 3.1. As we can see in the proof above, the uniqueness of purely periodic solutions to
the Stokes equation (3.2) holds even in larger class of solutions. In particular, we can verify
the coincidence of {v,q} and {0,q} even if the latter is a purely periodic strong solution.
Lemma 4.5 below is based on this observation.

The L" theory of the Stokes equation is established in Lemma 3.2, however, this is not
sufficient to construct a solution of (1.3). Indeed, Lemma 3.2 does not yield a good estimate
of the nonlinear term P, (v, ® v,) such as ||v, ® v,||, < C||v,||?. To overcome this difficulty,
we need the following proposition. Recall the definitions of the exponents a), and 8y, in
(2.1) and (2.2). This proposition is essentially proved by Galdi-Kyed [7]. The proof is based
on the detailed analysis of the representation of the unique solution v in Lemma 3.2 via the

Fourier transform:
o [0 () £56Y 5 1]

€12 + ik €12
Proposition 3.1. Let 1 <r <nand 0 < A< 1. Ifve Ly, | (R;WY(R™)) is a solution of
the Stokes equation (3.2) with I' € Ly, | (R x R"), then we have

v € LI (R; LA (R™))

per, L

with the estimate
1vllax,.8:, < CIF]:

for some constant C' = C'(n,r,\,T).
Combining Lemma 3.2 and Proposition 3.1, we get the following.

Corollary 1. Let 1 <r < n. For every I' € L;er’L(R x R™), there erists a unique solution

{v,g}y e L7, | (R WL (R™) x LT | (RxR") of (3.2) such thatv € L,>" (R; LA (R™)) and

per, L per, L per, L
[0llzy,, @wrr @) + 0]y 6., + lalle < CIE,
with C = C(n,r, T, \).



Based on the theory of the Stokes equations, the equations (1.2) and (1.3) are investigated.
Recall that for given T-periodic function v we denote its steady part Pv and purely periodic
part P v by v, and v, respectively:

vs i=Prv, v, :=Po.

Functions ¢s, gp. Fs and F, are defined in the same way. For n/2 + 1 <r < n, we define the
space X, by, if r =n/2+1,

Xy = LEL (R WHEH(R™) 0 I242, (R x RY)
with the norm || - |X%+1 = max{|| - L/ i /241 (g0 | * [|n42} and, if n/2 + 1 < r < n,
X L;er J_(R7 Wl’rGRn)) N Lper L(Rv Ln<Rn))
with the norm [ - ||x, := max{[| - ||;,, @wrr@m) | - lon}. Let Ky be a solution operator

defined by Lemma 3.1 with r = n/2:
K:Fy € L*(R") = v, € Hy(R")
and K, defined by Corollary 1:
Ky Fp€ Ly (RXR") =, € X,

Notice that K, is indeed an operator from L7, (R x R") to X, thanks to Corollary 1.
Furthermore, given F, € L™?(R") and F, € L",, | (R x R"), we define the operator K on
H! ,(R") x X, by

per, L

K(vs,vp) = {K(Fs — vs ® vs — P(v, @ vp)), Kp(Fp — v5 @ vy, — v, Qs — P (v, D0y)) },

where u @ v := (uv;)}';—;. We note that P commutes with differential operators and thus
Pdiv (u®wv) = div P(u®wv). The same is true for P, . The operator K is well-defined as we
see in the next lemma.

Lemma 3.3. Let n/2 +1 < r < n. Suppose F, € L"/*(R") and F, € L,
operator K maps Hi/Q(R”) x X, to itself with the estimate

(R x R™). The

per, L

1K (0 )l oy, <0(HFHL2(W 1+ 0y e XX)

for some constant C' = C'(n,r,T).

Now we give the proof of Theorem 2.1.



Proof of Theorem 2.1. For small constants § > 0 and p > 0 to be determined later, we
assume that [|Fy[|pne@ey + [Fpll < 0 and let B, C H, »(R") x X, be a closed ball in

H; /Q(R”) x X, centered at 0 with radius . We show that K is a contraction map from B,
to 1tself. o
For {v,,v,} € B, we have by Lemma 3.3
HK('Us/Up)HH%(R”)xXT <y <HF5HL’2’(Rn) + HFPHT + H{vvap}Hi]%(R")xXT>
< Ol (5 + “2)7

where (] is the constant in Lemma 3.3.
Let {vis,v1p}, {v2s,v2p} € B, We put wy := v15 — vas and wy, = vy, — vg,. Standard
calculation yields

[ Ks(Fs — v1s ® vis — Plorp @ v1p)) — Ks(Fs — v25 ® vas — P02 ® vap))|| g1, ey
2
< COllvgs @ wg + ws @ vog + P(v1p @ w, + w, R UQP)HL%(RH)
(3.3)
<C (H{Ul&vlp}HH}L(R")xXT + ||{U237U2p}||H}L(R")><XT) [{ws, wp 1, (moyx x,
2 2 2

< 2Cu|{ws, wp || 1 oy x.,
2

and
[ Kp(Fy — v15 ® v1p — v1p ® V15 — P1(v1p @ 01p))
— Kp(Fp — Vs @ Vg — Vgp & Vo — P¢(02p ® U2p))| X
(3 4) <C st ¥ V1p + V2p B Ws + Wp K V15 + V25 & Wy + ,PJ—(wP & U1p F Vgp X wp)Hr

< € (Hon oy ey, + 1ot e, ) 1 iy e,
< 20w Ml ey,
From (3.3) and (3.4) we can verify
1K (vis, v1p) — K(“2sa“2p)HHl%(Rn)xxr < 201 pl[{v1s, vip} — {“23?1}2;0}”1-'11%(]1%”)><Xr'
Now, we set
(3.5) b= —, p=—
so that
I (o)t o, <

2
1R (w1, v1p) = K (vas, vap) [ 173, ey, < 51018 019} = {028, v2p 1y Ry,
2 2



Therefore, K is a contraction map from B, C H}L /Q(R”) x X, to itself, provided that ¢ and
p satisfy (3.5). Hence, there exists a unique fixed point {vs,v,} € B, such that

{vs, v, } = K(vs,vp),
that is,

US - KS(FS - US ® US - P(Up ® Up)))
vy = Kp(F) — 05 ® vy — 1y ® s — P1(v, ® vp)).

By the definitions of K, and K,, we deduce that v, € H}L /Q(R”) and v, € X, are solutions

of (1.2) and (1.3) respectively. The existence of associated pressures ¢, € L™?(R") and
G € Ly (R x R") follows from Lemmas 3.1 and 3.2. Consequently, the pair {v,q} :=
{vs + vp,qs + qp} is a solution of (1.1).

Since v, € L7, | (R; W (R™)) is a solution of the Stokes equation (3.2) with F replaced

by Fy —vs ® vp — v, ® vs — P1(vp, ®vp) € L7, | (R x R™), we see by Proposition 3.1 that

vp € L2 (R; LA (R™))

for all 0 < A < 1. The regularity property of v, follows from the next lemma which can be
proved via the bootstrap argument. O

Lemma 3.4. Let n/2+1 < r < n and vs € L"(R™) with divvs = 0 in R™. Suppose
that {v,,q,} € X, x L. (R x R") is a solution of (1.3) with F, € L, (R xR"). If

per, L per, L

Fy,€ Ly, (RxR") for some 1 < s <, then the solution {v,,q,} satisfies

v, € L5, | (RyWY(R™)) N LY (R; LA (R™)), g, € L5, (R x R"™)

per, L per, L per, L

forall0 <\ < 1.

4 Uniqueness

In this section, we consider the uniqueness of solutions to (1.1) constructed in Theorem 2.1.
Suppose that the pairs {u, p} and {v, ¢} are solutions of (1.1) having the properties (2.3) and
(2.4). The difference w := v — v and 7 := p — ¢ obey the equation

ow—Aw+w-Vu+v-Vw+Vr=0 in R x R",
(4.1) divw =0 in R x R",
w(t,)=w(t+1T,-) forallteR.

As in the previous section, we analyze this equation by decomposing it into two equations
which the steady and purely periodic parts of {w, 7} should satisfy:

(4.2) {—Aws + ws - Vug 4+ vs - Vwg + Vg = —P(w, - Vu, + v, - Vw,) in R",

div ws =0 in R",

10



and

(4.3)
dyw, — Awy, + P (w, - Vu+v - Vw,) + Vr, = —(w, - Vu, + v, - Vwg)  in R x R",
div w, =0 in R x R",
wy(t,) =wy(t+1T,-) for all t € R.

Here wy, us,vs, ™5 and wy, uy,, vy, m, denote the steady and purely periodic parts of w,w, v,
respectively. Note that P, (w,-Vu+v-Vwy,) = w,- Vus+vs- Vw, + P (w,- Vu,+v,- Vw,).
We investigate the equations (4.2) and (4.3) to get some useful information on wy and w,.
This yields the information on w and we take w as a test function in the weak form of (4.1):

1 /T
(4.4) ?/ —(w, Opp) + (Vw, V) — (w @ u, Vo) — (v @ w, V) — (1,div ) dt =0
0

for all ¢ € (R x R™). Here, (-,-) denotes the duality pairing on R".

[eS)
0,per

We begin with the analysis of (4.2). Our purpose in the analysis of (4.2) is to establish
the L? property of the solution {w,, m,}. In order to show the regularity property of solutions
to (4.2), we employ the idea introduced in [14]. We decompose vs € L™(R™) into a small part
61 and a regular part 6,.. This decomposition is indeed possible. Since C§°(R") is dense
in L"(R"), for each ¢ > 0 there exists 1) € C§°(R") such that [[vs — ¢¢||znmn) < €. Setting
01 :=vs — 1 and Oy := 1), we get

(45) Vs = 61,6 + 92,67 Hel,e Ln(R") < €, 92,6 € Cgo(Rn)

Note furthermore that v - Vwg = div (01, ® ws) + div (02, ® ws). With this decomposition
of v, in hand, we consider the regularity property of the perturbed Stokes equation

(4.6) —Aw+w-Vu+div (01 @ w)+Vr =div F in R",
‘ divw =0 in R".
For the proof of the next lemma, see [14, Lemma 4.2].

Lemma 4.1. Let 1 < 1,71 < n and let u,0; . € L"(R") with (4.5). Suppose that {w, 7} €
H} (R™) x L™ (R™) is a solution of (4.6) with F' € L™(R") N L™ (R"™). There exist constants
§=206(n,ro,71) >0 and & = §(n,r9,m1) > 0 such that if

HUHL”(R") S 5, € S g,

then _ _
we H (R") N H} (R, 7€ L™(R") N L™ (R")

with the estimate

[Vl

rro@®mnrr &) + || 7] o @ynzm @ny < C|F || ro meynm mey

where C' = C(n,r9,71).
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Using Lemma 4.1, we get the desired L? property of the solution {w,, .} to (4.2).

Lemma 4.2. Let n = 3. Let us,vs € L3(R3) and, for 5/2 < r < 3, let wy,upy,v, €
L7 (R, WET(R?)). Also, assume that div vy =0 in R* and div w, = div v, = 0 in R x R?.
Suppose that {ws, 7} € H§/2(R3) x L3/2(R3) is a solution of (4.2). There exists an absolute
constant 6 > 0 such that if

HUSHL3(R3) S 67

then .
wy € Hy(R?), m, € L*(RY).

Next, we study the equation (4.3). As in the case of steady equation (4.2), we establish
the L? property of the solution {w,, m,} to (4.3). We use the notation X, forn/2+1<r <n
appearing in the previous section again:

X, =L (RyWY(RY) AL | (R; L"(R™)).

- “per, L per, L

Lemma 4.3. Let n = 3,4 andn/2+1 <r <n. Let wy € L"(R") and u,v € L (R; L"(R™))

per

with up,v, € Ly, | (R; W (R™)). Also, assume that divws = 0 in R® and divv = 0 in

R x R3. If {wy,m,} € X, x L', | (R x R") is a solution of (4.3), then

per, L

w, € L, | (R; WH(R")), m, € Ll (RxR")  for all nn——:r <qg<r.

In particular, we have

Wy € Lpep  (RyWHA(R™)), 7y € Lyt (R X R”).

The weak form (4.4) contains the term 0, and thus we need information on the class of
Oyw to take w as a test function. However, we thus far have no information on the class of
Jww (= Oww,). We can overcome this difficulty thanks to the good uniqueness property of
purely periodic solutions to the Stokes equation (3.2), see Remark 3.1. In order to obtain the
information on the class of dyw,, we show that the solution {wy, m,} € X, x L7 | (R x R")
of (4.3) is indeed a strong solution.

We review the existence and uniqueness of strong solutions to the Stokes equation

ov—Av+Vg=f in R x R",
div v = 0 in R x R",

(4.7)
v(-,x) =0 as |z| — oo,

v(t,)=v(t+T,-) forallteRR.

Lemma 4.4 ([11, 5]). Let 1 <r <n. For every f € Ll (R xR"), there exists a unique

. per, L
solution {v,q} € W;éi’i(R x R") x Ly, (R; HX(R™)) of (4.7) such that
[oll120 + Vel < ClAAL

with C = C(n,r,T).
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We regard the equation (4.3) as the Stokes equation (4.7) with f = —w,- Vu, —v,- Vw, —
wy, - Vuy, — v - Vw, — P (w, - Vu, + v, - Vw,) and use the uniqueness of purely periodic
solutions to the Stokes equation in order to get the following lemma.

Lemma 4.5. Let n = 3,4 and n/2+ 1 <r <n. Let ug,vs,ws € H}L/Q(]R”) and uy, v, € X,.
Suppose {wp, mp} € X, x Ly | (R x R") is a solution of (4.3). Then we have

y W R X RY), 7y € LI (R; e (R)).
The next lemmas on the density property can be proved in a standard manner via the
mollification.

Lemma 4.6. Let 1 < 1,1 < 0o0. Suppose w € L0 (R; Hﬁo (R™)) with Oyw € L]}

per per

There exists a sequence {@n}oey C CF5. (R x R") such that

(R x R™).

Ve, = Vw in L7° (R x R™),

per

Oppn — Oyw in L7 (R x R"™),

per

as n — OQ.

Lemma 4.7. Let 1 < ro,r; < oo. Suppose w € L0 (R x R™) with dyw € L}

per per
There exists a sequence {pn}o2, C C5,. (R x R™) such that

(R x R™).

,per (

On = W in L7 (R x R"),

per
Oyon — Oyw in L7L (R x R™),

per

as n — 0o.
We are now in a position to give the proof of Theorem 2.2.

Proof of Theorem 2.2. We put w := u — v and 7 := p — ¢q. The pair {w, 7} is a solution of
(4.1). We decompose u,v and {w, 7} into steady and purely periodic parts. Then the pairs
{ws, 7} € Hy)0(R?) x X L3/ (R®) and {wy, m} € X, x L7 | (R x R?) are solutions of (4.2) and
(4.3) respectively. We assume that

l|ws]| £3msy < 01,
where §; is the absolute constant in Lemma 4.2, and it follows from Lemma 4.2 that
(4.8) w, € HY(R?), m, € L*(R?).

Furthermore, Lemmas 4.3 and 4.5 yield

(49) Wp € LperJ_(R; W1,2(R3))7 atwp L;;’r’gj_(R X R3)7 Tp € LperJ_(R X R3)

Since WH2(R3) C H}(R?), we deduce from (4.8) and (4.9) that w = w, +w, and 7 = 7, + 7,
satisfy

we L?

per

(R; HA(R?)), O € [ (RxR3), =wel?

per, L per

(R x R%).
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In addition, we have w, € L¥/~3)(R?) and w, € L¥/ "™ (R x R?). The former property is

. . . per’J— .
a consequence of Hy ,(R*)NH,(R?) C H},(, ;) (R?) and the Sobolev inequality H,,, ;) (R?) C

L3/ 2r=3)(R3). The latter property follows from Proposition 3.1 and the choice A = 3—6/r <
1. Hence we have

_3r_
w € L (R x RY).
(R x R?), since u,v € L2 (R; L3(R?)) and

per

We also observe that Vw +w @ u+vQ@w € Lzer
w e L2, (R; L°(R3)).

per

According to Lemma 4.6, there exists a sequence {¢,}>, C C3_.(R x R™) such that

,per

Ve, — Vwin L2 (R x R3) and 0y, — dyw in Lf’,zl(’"”) (R x R3) as n — oo. We take ¢, as

per

a test function in (4.4) and pass to the limit n — oo to get

1 T
(410) ?/ —(’LU, at’LU) + vauiz(Rg) — (w (29 u, Vw) — ('U [} w, V’LU) dt = O
0

In view of Lemma 4.7, we can take a sequence {@n 52, C Cg5,.,.(R x R") such that @, — w

n LY/ (R x R3) and 8,8, — Oyw in Lil" (R x R3) as n — oo. The integration by
parts yields

/0 (w, Do) dt = — / Oy, Eu) dt + (w(T), 3(T)) — (w(0), $4(0)).

Since w and @,, are T-periodic, we pass to the limit n — oo to deduce

T T
/ (w, Oyw) dt = —/ (Oyw, w) dt.
0 0

Hence, we get

(4.11) /T(w,ﬁtw) dt = 0.

Also, the integration by parts yields (v ® w, Vw) = 0 and thus
T
(4.12) / (v ®w, Vw)dt = 0.
0
Combining (4.10), (4.11) and (4.12), we deduce

1 T
Vw3 = —/ (w ® u, Vw) dt.
T Jo

Therefore,
[Vwll3 < lwllzellulloslViwlls < Cillulloosl| Veoll3:

Here C is the constant in the Sobolev inequality || - ||zsmsy) < C1||V - || 2ws). If u satisfies

lulloes < CF
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we obtain

(4.13) |Vwl|3 = 0.

Now, we select the constant é so that

0 < 6 <min{d;, C7}

and assume

sl e ey + luplloes < 0.

Then, all the arguments above are justified. We deduce from (4.13) that w = h(t) with
T-periodic function h. By the class of w, we derive w = 0, that is, u = v in R x R3. This
together with (4.1); gives Vr = 0 and thus 7 is a T-periodic function with one variable ¢.
Since 7 € L2, (R x R?), we derive m = 0, that is, p = ¢ in R x R®. The proof is complete. [

per
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