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Abstract

In this paper, we give a sufficient condition for R-boundedness of an integral operator de-
fined on the half-space. The assumption is simply bounded and holomorphic, which is easy to
check. As applications, we derive resolvent estimate and maximal regularity for the Stokes equa-
tions with various boundary conditions. We can treat Dirichlet, Neumann and Robin boundary
conditions in a unified manner.
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1 Introduction and main theorem

We consider the following integral operators on the half-space ]Rf =RN-1 x (0, 00);

Tl () = [ 15 m(€'an -+ ) Fo o)

Ty[m,\]g(x,t) = E)_\l/ []:g_,lm)\(f,,l']\[ +yN)fx'£9]($,yN»A)dyN,
0
= [ F, 5 TIma)Fisr (€77 9)] (1),

where A = v + i1, symbols m, m) are C-valued functions, and f : Rﬂ\_f — Cand g: Rﬂ\_f xR — C.
Let F,» and ]-"5_, 1 denote the partial Fourier transform and its inverse;

Folfligham) = [ e e, Flale) = gy [ e ol e

RN-1

Let £ and 5;\1 denote two-sided Laplace transform and its inverse, defined as

LA = [ 0= Ferle AN L5100 = 5 [ Modr = F L gl
—0o0 —0o0

where A = vy + it € C.

The main theorem of this paper is Lq(Rf )-boundedness of the operator T'[m] and R-boundedness
of the operator of T'[m,]. The latter is related to L, (R, Ly(RY)) boundedness of the operator T [m,]
with weights e, Here 1 < p,q < 0o.

Let us review some definitions. Let X and Y be Banach spaces with norms || -||x and ||- ||y, and
let £(X,Y) denote the set of all bounded linear operators from X to Y. We use £(X) := L(X, X).



Definition 1.1. A family of operators T C L(X,Y) is called R-bounded, if there exist constant
C >0 and 1 < p < oo such that for each m € N {T;}7; C T,{z;}]L; C X and for all se-
quences {e;(u)}jL, of independent, symmetric, {—1,1}-valued random variables on a probability
space (2, A, u) the inequality

m m
1> eiTizsln ) < C1Ygjaln,x)
=1 j=1

is valid. The smallest such C is called R-bound of T, which is denoted by R(T).

Note that when X and Y are Hilbert spaces, T C L(X,Y) is R-bounded if and only if 7T is
uniformly bounded.

To state our main theorem, we introduce two types of sector domain. Let 9 > 0,2,7 € (0,7/2)
and

Yeno = {A € C\{O} [ [A[ = 70, [arg A < 7 — €},
Yie ::E&o:{)\GC\{OH|arg)\|<7r—€},
¥, = {2 € C\ {0} | |argz| <n}U{z € C\ {0} | 7 —n < |arg z|}.

Let H°°(D) be the space of bounded and holomorphic functions on an open set D C C¥~!. The
main theorem is as follows.

Theorem 1.2. (i) Let m satisfy the following two conditions:

(a) There exists n € (0,7/2) such that {m(-,xn),zy > 0} C HOO(Z,@V_l).

(b) There exist n € (0,7/2) and C > 0 such that SUPg/ N -1 Im(&,zn)| < Cay' for all zy > 0.
Then T[m) is a bounded linear operator on Ly(RY) for every 1 < q < occ.

(ii) Let vo > 0 and let my satisfy the following two conditions:

(¢) There exists n € (0,7/2 — ¢) such that for each xx >0 and v > o,

if]\] =] (T,f’) — m)\(f,,:L"N) eC

is bounded and holomorphic. .

(d) There exist n € (0,7/2 —€) and C > 0 such that sup{|mx(¢',zn)| | (1,¢) € Ef;{} < Czy' for
all v > v and xn > 0.

Then T[my](€ Ly(RY)) satisfies that there exists a C > 0 such that

R{(10,)°T[m,] | T € R, B € {0,1}} < C
for every 1 < q < co. Also, we have that Ty [my] satisfies
le™ T [malgllz, @,z @) < Cle™"dllL, @ z,@)

for every v > v and 1 < p,q < oo.

As applications of this theorem, we can consider the Stokes equations with various boundary
conditions. For the sake of simplicity we set some external forces are zero although we can generalize
them.



The resolvent Stokes problem on the half space is as follows;

{/\u—Au+V7r:O in]RﬂY,

. . N
divu =0 in R,

with one of the following boundary conditions on RY = RV~ x {0};

= h i=1,.... N—1
(Dirichlet) {uj i U B ),
UnN = 07

(Neumann) —(Onuj +Ojun) =h; (j=1,...,N—1),
—(28NUN — 7r) = th
(Robin) 4 @~ 00vus =h; (G =1,....N —1),
uny = 0.

Here a > 0, 8 > 0. Note that the end-point case (a, 8) = (1,0) in Robin boundary condition implies
Dirichlet boundary condition. It is called that Dirichlet boundary is non-slip boundary condition,
and Robin boundary is (partial-)slip boundary condition or Navier-boundary condition.

The non-stationary problem is as follows;

U — AU +VII =0 in RY x (0,00),
divU =0 inRY x (0,00),

with initial data Ul;—o = Up and with one of the following boundary conditions;

= H,; i=1,...,.N—1
(Dirichlet) Uj i U R ),
Uy =0,

(Neumann) —(OnU;j+0;Un)=H; (j=1,...,N—1),
—(20nUy — 1) = Hy,
(Robin) 4“5 ~ONU; = Hj (7 =1.....N —1),
Uy =0.

It can be derived from theorem 1.2.

w2 (RY) Dirichlet,
W;(Rf ) Neumann, Robin,
problem (1) admits a unique solution (u,m) € WqQ(Rﬂ\rf) X VAVql(Rf) with the resolvent estimate;

Theorem 1.3. Let0 <e < 7/2and1l < g < co. Then forany \ € ., h € {

C||(Ah, Y2V R, V2h)|| Ly(ry) Dirichlet,
| (Au, A2V, V2, VTF)HLQ(Rf) < { C(A\?h, Vh)HLq(Rf) Neumann,
C'||(AY2h, V)| Ly(rY) Robin,

— [ /
for some constants C = Cnge and C" = Cly . _, 5.



For 1 <p,g<oo,meN, vg>0and s >0, let

Wq (RY) = {7 € Lpoc(RY) | V7 € Lg(RT)},
Lpoyo R, X):={f:R— X | e ™f(t) € Ly(R, X), f(t)=0fort <0},
pO,’Yo(R7X) - {f € Lp70170(R7X) ‘ eiﬁmtazf(t) (R7X)7 Jj=1... 7m}7
Hyoqo (R X) = {f :R— X | ASf := L [INPLIINIE) € Lpos(R, X) for any v > 7}

Theorem 1.4. Let 1 < p,q < 0o and vy > 0. Then for any

He WplO o (R; Ly(RY)) N Ly o0 (R, WQ(]RN)) Dirichlet,
HYZ (R, Ly(RY)) N Lo (R, W (RY)) Neumann, Robin,

problem (2) with Uy = 0 admits a unique solution (U,I1) such that

U € Wio 0o (R, Ly(RY)) 1 Lo (R, WERY)),
I € Lpon (R, W (Rf))

with the maximal Ly-L, regularity;

Clle™(0:H, AyVH,V?H)| (& 1Y) Dirichlet,
_ — 1/2
le= " (0,U,~U, AY2VU, V21, VID| g, @ L,@y) < § Cle MAYPH, VH)|| 12,1, Y) Neumann,
C'le (A2 H, V)|, . 1, vy Robin,

for any v > ~o with some constants C = Ci pq~, and C' = C;V,nq,’y(),a,,@'

At the end of this section, we see some references. In 2001, a sufficient condition for L, (R, X)-
boundedness of Fourier multiplier operators was constructed by Weis [30] in terms of R-bounded
of the symbols under X is H7T space. This breakthrough led a lot of results for the maximal
regularity. For example, see the monographs by Denk-Hieber—Priiss [1] and Kunstmann—Weis
[17]. These were applied to the elliptic operators. Weis’s theorem was applied not only elliptic
operators but also Stokes operator. It has shown by Geissert, Hech, Hieber and Sawada [6] that
the existence of the Helmholtz decomposition implies the analyticity and maximal L,-L, regularity
for the Stokes operators. Moreover we note that Farwig, Kozono and Sohr [3, 4] proved maximal
Lp-f/q regularity for general domains. A general explanation for the Stokes equations was given by
[10]. We heavily depend on the results by Shibata et al. [16, 27]. It was also important for them
to use the theorem due to Weis, where the methods seemed systematic ways in the sense that they
got the resolvent estimate and the maximal regularity at the same time. Since then, there are a lot
of results, e.g. for model problems with Neumann or free boundary conditions [24, 25, 27], Robin
conditions [22, 28], two-phase problems [26]. For the case of general domains, see [19, 20, 21]. On
the other hand, our method will show easier than them since the basis is bounded and holomorphic
although essential ideas are similar. At last, see [18] for the comprehensive results about analyticity
of semigroups, vector-valued harmonic analysis, maximal regularity, parabolic and Stokes equations
and its applications to the free boundary problems. Almost all of our main theorems have already
proved before, but we give a new simple approach to get resolvent estimates and maximal regularity
estimates. Our method has already used for the Stokes equations with various boundary conditions



[11, 12] in the half space. Recently we proved the same results for the layer domain, which is applied
for the Stokes equations with Dirichlet-Neumann boundary condition in [13], Neumann-Neumann
boundary condition in [14], and for the heat equation with various boundary conditions in [15].
The structure of the paper is as follows. In section 2, we prepare some known definitions and
theorems. In section 3, we prove the main theorem and how to apply R-boundedness. In section 4,
5, we solve the equations in the half space by partial Fourier transforms. Three types of boundary
conditions are treated similarly. The solution formula is Fourier multiplier type with the symbols

of sum of heat part e”V AHEPeN and Stokes part M (¢, zy) which is defined later. From so called
Volevich’s trick, the solutions are given by an integral form whose integrands are Fourier multiplier
operators which act h and Oyh. Here, we decompose the symbols while paying attention to the
desired estimates. Resolvent estimate is straightforward from the theorem prepared in section 2

and the estimates of e VATIE'*2y and M (€&, zn). Maximal regularity estimates are also same as
resolvent estimates since the symbols are R-bounded in A-variables. In section 6, we remark that
the differences of previous works.

2 Preliminaries

Since key lemma in this paper is operator-valued Fourier multiplier theorem, we need some prepa-
rations for the base spaces and the symbols. Almost all of results in this section can be found in
the book [18].

Definition 2.1. A Banach space X is said to belong to the class HT if the Hilbert transform H,

defined by
Hf = 1 lim /(5)

T e—+0 [t—s|>e t—s

ds,

is a bounded linear operator on Ly(R,X) for some 1 < p < oco. In this case we write X € HT.

Let R := R\ {0} and R” = [R]". Given M € C(R",L(X,Y)), we define an operator Ty :
FID(R", X) — S(R",Y) by means of

Tyo:=F 'MF¢, forall Fé € D(R",X).
Theorem 2.2 (Weis [30]). Let X, Y € HT and 1 < p < co. Let M € CY(R, L(X,Y)) satisfy

RH(&%

Then the operator Thr is a bounded linear operator from L,(R, X) to L,(R,Y"). Moreover

YM(E) | €€R,j=0,1}) =k < 0.

1Tl 22,30 Ly (YY) < CF
for some positive constant C depending on X, Y and p.

Definition 2.3. A Banach space X is said to have property («) if there exists a constant o > 0
such that

m m
1Y asieigiai|axex) < ol Y sigiai|Lyaxex)
ij=1 ij=1
for all ai; € {—1,1}, 245 € X,m € N, and all symmetric independent {—1,1}-valued random vari-
ables {e;}%, resp. {}}7, on a probability space (2, A, p) resp. (U, A, p'). The class HT (a)
denotes the set of all Banach spaces which belong to HT and have property («).



Remark 2.4. For any Hilbert space E, we have E € HT («). If (S,%,0) is a sigma-finite measure
space and 1 < p < oo, then Ly(S,E) € HT () as well.

Theorem 2.5. Let 1 < p < o0, X, YV € HT (), and suppose that the family of multipliers
M cC C"R™, L(X,Y)) satisfies

REEM(E) | € R a € {0,1}", M € M}) = k < o0.

Then the family of operators T = {Ty | M € M} C L(Ly(R™, X), L,(R™,Y)) is R-bounded with
R(T) < Ck, where C > 0 only depends on X, Y and p.

To verify the Lizorkin condition in above theorem, a useful sufficient condition is known in terms
of holomorphic and boundedness, which is denoted by the class H°.

Theorem 2.6 ([18, Proposition 4.3.10]). Let X,Y be Banach spaces and suppose that, for some
0 <n < /2, the family of multipliers M C H>(X}, L(X,Y)) satisfies

R{M(z)|z¢€ EZ,M eEM}) =k < o0
Then ‘
R{EEM(E) | € €R™ |a| =k, M € M}) < w/(sinn)",
for each k € Np.

From above theorem, we do not need to show R-boundedness of the derivatives when multipliers
are bounded and holomorphic. To take over R-boundedness, we need a dominated theorem below.

Theorem 2.7 ([18, Proposition 4.1.5]). Let X, Y be Banach spaces, D C R", and 1 < p < 0.
Suppose K C L(L,(D,X),Ly(D,Y)) is a family of kernel operators in the sense that

Kf(z) = / k(z,2")f(2")d2', x € D,feLy(D,X),
D
for each K € K, where the kernels k : D x D — L(X,Y) are measurable, with
R({k(x,2"): K € K}) < ko(x,2"), x,2’ € D,

and the operator Ko with scalar kernel ko is bounded in L,(D). Then K C L(L,(D,X), Ly,(D,Y))
is R-bounded and R(K) < ||Kol|L,(D)-

Moreover we use the following theorem of the boundedness of a kernel operator.

Lemma 2.8 ([27, Lemma 5.5], [16, Proposition 1.4.16]). Let X be a Banach space, k(t,s) be a
function defined on (0,00) x (0,00) which satisfies the condition: k(At,\s) = A "1k(t,s) for any
A >0 and (t,s) € (0,00) x (0,00). In addition, we assume that for some 1 < q < 0o

/ k(1, )]s~V 9ds =: A, < .
0
If we define the integral operator T' by the formula:

A0 = [ ks

then T is a bounded linear operator on Ly(Ry, X) and

1T,y x) < AgllfllL,®y x)-
We use the theorem for k(t,s) = (t + s)~! which satisfies the assumption.



3 Proof of theorem 1.2 (Sufficient condition for R-boundedness)

Proof. (i) From the assumptions, equivalence of uniformly boundedness and R-boundedness on
Hilbert space C and Theorem 2.6, we have

RUEOgm(¢ an) | € € RN N a e {0,13V1)) < Cyaryy!
This means that for each xny > 0,

IT[m]f (s 2n) |l o, @y-1) S/O [Fetm(& s en + yn) For (o yn) |l L, wnv-1)dyn

Nl fCym)li,@my-1)
TN + YN

<C

from Fourier multiplier theorem. And then, by Lemma 2.8,

ITTm]fll L, @yy < CllF L, @y

for some C' > 0.
(ii) From the assumptions, equivalence of uniformly boundedness and R-boundedness on Hilbert
space C € HT («), and Theorem 2.6, we have

R{E“08(r0,) ma(¢,an) | € € RV r e Roa € {0,137, 8 € {0,1}}) < Cyay,
where v > 7. This means that for each xn > 0, > 7o,
{(r0:)P Folma( an) Fo | 7 € R, B€ {0,1}} C L(Ly(RNTY))

is R-bounded and its R-norm is less than CZL']_VI by theorem 2.5. Combining theorem 2.7 with
D=(0,00),X=Y= Lq(]RN_l),ko(xN,yN) = (zy +yn) ! and Lemma 2.8, we have

{(70-)°Tmy) | T € R, B € {0,1}} C L(Lg(RY))

is R-bounded. We use operator-valued Fourier multiplier theorem to get F, . T[my]Fi, is a
bounded linear operator on Ly (R, Ly(RY)), which conclude

He_'VtTW[mA]QHLp(R,Lq(Rf)) < CHe_'VtgHL,,(R,Lq(Rf))

for every v > v9 and 1 < p,q < oo. O

4 Solution formulas for the Stokes equations on the half space

We give the solution of the resolvent problem (1) with A € X. by Fourier multipliers for each
boundary condition. We apply partial Fourier transform with respect to tangential direction x’ €
RMN~1. In this section and section 5 the index j runs from 1 to N — 1 if we do not indicate. We use

A= ,/Zj.vz_ll sz and B := v\ + A2 with positive real parts.



4.1 Dirichlet boundary

In this subsection we focus on Dirichlet boundary condition. By partial Fourier transform, we have
the following second order ordinary differential equations;

(B? = 0%)i; +i&7 =0 inay >0,
(B* - 0%)an + 0yt =0 inzy >0,
N-1
Z ijﬂj +Oytny =0 inzy >0,
j=1
@=h on zn = 0.
We find the solution of the form
(¢ xN) = aje N 4 Bie BN (j=1,... . N),  #(¢,an)=ye AN
Then, the equations are
{aj(B2 — A?) + z'fjfy}e_AzN =0,
{an(B* — A%) — Ay}e™ N =0,
N-1 N-1
(Z ’i()fjfj — A(MN)E_AQCN + (Z iﬁjfj — BﬁN)e_BxN = 0,
j=1 j=1
aj+ B =hj, an+ By =hy.

By the linear independence of e 4~ and e 5%~ we are able to find the coefficients aj, B and 7;

& e B _ i W = Bhy
a]_A(B—A)(Zf h'— Bhy), an= 54

A+B

Bj=hj—aj, Byn=hy—an, v=-— (i€ - h' — Bhy),

where & - b/ = Ziv:_ll &xhi. We introduce the new notation

—Bxn _ ean:N

, G
M zn) = A
to treat B — A in the denominator. Then, we have
- &6 ; i¢;B ;
(€ an) =Y {W‘Bm + JT’“MA@',xN)} hi(€.0) + == M€ v (€,0),
k=1
N-1 ) )
an( on) = {i&GMa(E zn)} hil(€,0) + (7PN — BML(¢, an))hn (€, 0),
k=1
([ ig(A+B) . (A+ B)B .
ﬁ(f,,JJN) = {—kTe_AxN}hk(f,,O) + Te_AxNhN(fl,O),
k=1



To simplify, we define the symbols;

¢fk(z\75/,$1\r) = §e BN 4 %Mx(ﬁl,xz\r), gbe()\,f’,:rN) = igiB (&, zn),
N kN € an) = i&GMA(E zN), ¢R NN E zn) = e B - BM,(¢ ),
O R RO = P,

which derives the solution formula;

(¢, zN) Zqﬁjk)\g en)he(€,0) (j=1,...,N),

k=1

N
#(& an) =Y xBN & an) (€, 0).
k=1

In the next step, we use the Volevich trick a(¢’,0) = — fooo Ina(€',yn)dyy for a suitable decaying
function a. We obtain the solution formula;

uj(r) = — Z {/0 fgl [(OnoT N 2N + yn)) Forbi] (z,yn)dyn
~|—/0 }‘g—,l [¢fk(>\7£/,:mv + yn ) Faor (Onhi)] (m,yN)dyN} (j=1,...,N),
N o0
Z {/ [(OnxE (N € v + yn)) Farhie] (2, yn)dyn
—1

s [T PO+ ) o) <x,yN>dyN}.
0

Since Laplace transformed non-stationary Stokes equations (2) with F' = G = 0 on R are the
resolvent problem (1), we have the following formula for Dirichlet boundary condition;

Uj( =Ly Z {/ "(OndPL (N & oy + yn ) Fu LH] (2, yn)dyn

" /0 Fo [P\ € + yn) Fo £(Ow Hy) (x,ymdyN} G=1,...N),

8

{/0 Fo' 10X (A € on + yn)) Fo LH] (2, yn)dyn

o0

N
O(z,t) = —L3" )
k=1

_l’_

Feo! [XE (N € an + yn) Fo L(ONHy)] (x,yN)dyN} :
0



4.2 Neumann boundary

The corresponding ordinary differential equations are as follows;

( (B? - 9%)i; +i&7 =0 inay >0,
(B* - 0%)ay + 0y =0 inxzy >0,
N—-1

> itig + Oyt =0 inay >0,
j=1

~

—(8Nﬁj+ifjﬁN) :ilj, —(28NﬁN—ﬁ) =hy onxzy=0.

The solutions are given by
e o gaBB-A 2%;€,B , .
(& o) =) {(%C - %) PNy %jkB)MA(f 7$N)} hi(€',0)

<—z'(B —A) g BN 4 i€;(A% + B?)

k=1

M)\(é./a .’IZ'N)) }AIN(£,7 0)7

D(A, B) D(A, B)

N—-1 .
) = S B B B g€ ) fu(€.0)
1 9
2 2 X
N-1. o . 2 2 A
#(¢aw) = Y { 2SI E) ey (¢, 4 DAL ED e g0),

k:1 ) 9

where D(A, B) = B3+ AB? +3A%2B — A3. It is known that D(A, B) # 0 for A € ¥, ¢ € RV=1\ {0}
in [23, Lemma 4.4]. For the details of Neumann boundary condition, see also [27]. Let

Oj §& (BB — A)) ey | 2568
B D(AB)B D(A, B)
—i8(B—A) _poy (A + B

‘A;'\,[k()\7€/7xN) = ( MA(&I,.TN),

N ! _ /
N , i (B—A) gy, , 2i§AB ,
¢N7k()\7€7xN) - D(A,B) € D(A,B)MA(f?mN)j
A(A+B) _ A(A%* + B?)
N / e S Bz n e S !/
¢N,N()‘7§7xN) - D(A B) € D(A,B) MA(fa£N)7
—2i§; B (A +B) aey Ny oy ATBATH B
then, the solution formula is written as Dirichlet boundary.
4.3 Robin boundary
The symbols of the solutions are given by
9; BEi&k _ §i&k
R ! _ ik _ J Bxy J /
PN = (SR T @ BB+ BA T BA et Blat AT )

10



iP¢;B ~Bay . _¥B(a+ BB)

R / _ !
O aN) =~ T BYA (o + BA+ B)a o)
(N an) = m/\&\(f,aﬂw),
B B
¢%,N(>‘7§,a$1\7) = e_BxN - %MA(&C%‘N%
R / o _Z£(A+B) —Axpn R / _ B(A+B)(O‘+BB) —Axpn
XJ(A’f’xN)_(O/—F,BJ(A—i—B))Ae ) XN(Avfa:L'N)_ (()’—FB(A—FB))AE :

For the details of Robin boundary condition, see [22, 28] although they only treated the case
hy =0.

5 Proof of the resolvent estimates and maximal regularity esti-
mates
5.1 Dirichlet boundary

In section 4, we obtained the solution formulas for Dirichlet boundary condition. We use the
following identity;

N-—1 N—-1 .
B2 \l/2 i&
_ 2 _ _ 1/2 mo.
=AY G l= = Mo ) i),
— m=1

From now, we restrict the case hy = 0 for simplicity. We decompose the solution operator so
that the independent variables become the right-hand side of the estimates;

N-1

uj(x) ==y {/Ooo Fol [B20nop (N € on + yn) Far (A = A )] (2, yw)dyn

k=1

+/ Fo! {/\1/23_2¢fk(>\7€',$1v +yN)fx’(/\l/28Nhk)} (z, yn)dyn

0

N-1

Z {/Oof HBPoNxE (N € an + yn) Far (A — AVR)] (2, yn ) dyn
—1 0

+/ f71 [Al/QB_QXkD(Nf',:EN +ZJN)]:x’(/\1/28Nhk)} (7, yn)dyn

0

- Z / Fe [i&mB72XE (0 € on + yn) For (OmOn i) ($ayN)dyN} :
0

Let sz_ (A, & xy) and SP (N, ¢, xx) be any of symbols;

B 20N P (N, & xn),
S@(A,{',:EN) = \/2p—2 D AL an),
i&m B~ 2¢J7 (/\75,733]\7) m € {17"-7N_1}a

11



B_QONX]?(A7€,7xN)7
SPN € an) == AV2B2\D(\ ¢ ),
EnB PO ay)  me (L. N1},

We are able to confirm that all of the symbols are bounded in the sense that

sup {<|A| + A2 18] + 1€l1€e DISE T+ (A + [€DIon SO + 103 S| + €l |1SP| + |6Ns£|}
(A g)ez.xsh 1
00'=1,...N—1

< Crxy' (3)
for any j € {1,...,N}, 0 <e <7/2 and 0 < n < min{r/4,e}, because of the identity

OINMA(E zn) = —e PV — AML(€ zn),
OXMA(E  zn) = (A4 B)e B™ 1 A2 M,\(¢, zn),
OYMA(E  xn) = —(A*+ AB + B?)e  P*N — AM,\(¢ xy)

and the estimate, essentially given by Shibata-Shimizu [27, Lemma 5.3]; Let A := ,/Zj-v: SLIE 2.

Lemma 5.1 ([11]). Let 0 < e < 7/2, 0 <n < /2 and m = 0,1,2,3. Then for any (\,{',zn) €
¥e x B % (0,00), we have

cA<ReA<|A| <A, (a)
c(INV? 4+ A) <ReB < |B| < |\Y? + 4, (b)
[Ope BN | < (IN]V2 4 Ayme oM Dan < C(IA12 4 Ayt RL, ()
Ome AmN| < Ame Aoy < CATTHmg L ()
IMA(E an)| < C(AMZ 4+ A) T A e, (e)
R MA(E )| < COAM? + A) 7> (m # 0), (f)

with positive constants ¢ and C, which are independent of X\, &', xy.

We remark that the paper [27] treated for ¢’ € RN¥=1\ {0} although above theorem is ¢’ € ig}\/—l.
Since we have prepared theorem 1.2, we do not need the estimate of derivatives of the symbols.
From this lemma, we have that

|00 SD], [OR R o] < COUNY2 + A)~HHma it
0P| < CAM2 + A) AT ma

for m =0, 1,2, 3, therefore the inequality (3) holds. The inequality (3) corresponds to the estimates
A, )\l/gﬁgu, O¢Opru, )\1/28Nu, OpONu, 8]2\,u, and Oy and Oy respectively.

We also see that the new symbols Sqf; and SP, multiplied )\, & and Oy, are holomorphic
in (1,¢) € f]nN . Therefore we are able to use theorem 1.2. This derives the existence part of
theorem 1.3 with Dirichlet boundary condition. The uniqueness was proved in [16, p.121] where
they considered the homogeneous equation and the dual problem.

For the non-stationary Stokes equations we have, by theorem 1.2 again.
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5.2 Neumann boundary

Using the result in section 4, we have the following form

uj(z) ==Y {/0 Fo' [Al/QB_QaNQs;Yk()\af,ﬁEN + ZJN)]:x’O\l/Qhk)} (z,yn)dyn
k=1

N-1 .o
- Z / Feo' [i6mB?0N0N(N & 2N + yn) Far (Omhi)] (2, yn )dyn
m=1 0 ‘
# [T O o ) POt <x,yN>dyN} G=1,....N),

N 00
@) == { |t [0 € ) P 20| (o)
k=1

N-1 oo
-> / Fol [i&mOnxy (A€ v + yn)For (Omhi)] (2, yn)dyn
m=1"0

+/0 ,/.-Zl [X;CV()\, 6’7 TN + yN)J-"x/(Z?Nhk)] (.7:7 yN)dyN} .
Let Sé\;_ (N & zn) and SN(X &, xx) be any of symbols;

Al/zBizaNqS;'\fk()‘?g,al'N) or,
S{Z()\,fl,ﬂfN) = z’me_28N¢§Yk()\,£’,xN) or,
‘A;\fk()ﬁ 5,7 .’IZ'N),
N2B-20, N (\ & an) or,
57]1'\[()‘75/7‘7:]\7) = igmB_QaNX]kv()‘»flyl‘N) or,
X}]gv()V 6,7 .TN)
We are able to confirm that all of the symbols are bounded in the sense that
sup {<|A| + 218l + 1€el1€e DISR T+ (A 4 1€e)|0n Sa | + 103 S| + 1&el 1SN | + |8N53¥|}

()‘76/)626 Xié\[_l
{0=1,.. . N—1

< C’x;,l
by the estimates in lemma 5.1 and the following lemma.

Lemma 5.2 ([11]). Let 0 < ¢ < w/2. Then there exist n € (0,£/2) and a positive constant ¢ such

that
N2+ AP < DA, B)|  (Aex.,& e,

where D(A, B) = B® + AB% + 3AB? — A3.

This is a generalization of [23, Lemma 4.4] in which they proved for ¢ € RV=1\ {0}.
The symbols of Neumann boundary conditions satisfy

’aﬁqsé'\fk’a @3@5%@\7 ’ajn\?¢§\,fzv\y ]8]“\}¢%7N| < C(IAM2+ Ay 2ma L

13



OR XS < COAY2 + A)t A

ORXN] < CATH !
for m =0,1,2,3. Since the new symbols are holomorphic in (7,¢’) € f]f?\f , we apply theorem 1.2 for
Neumann boundary condition.

We can prove existence of the solution. The uniqueness is proved in [27]. Non-stationary problem
can be treated similarly.

5.3 Robin boundary
Using the result in section 4, we decompose as follows;

N-1

DIOEEDY {/o Fo'! [Al/QB_QaNﬁﬁfk(%f',wN + yN)fé’(/\l/Qhk)} (z,yn)dyn
k=1

N-1 o0
- / Fol [ibmB20n0[5 (N € xn + yn) Far (Onhi)] (2, yn)dyn
m=1"0

+/0 Fol [¢ A€ an + yn) Fur (Onhe)] (337yN)dyN} (j=1,...,N),

N-1

HOEEDY {/o Fo' [Al/QB_Qang(Nﬁl,iﬂN +yN)]:x’()\l/2hk)} (z,yn)dyn
k=1

N-1 o
- / Fo' [imB2ONXE A € 2n + yn) For (Omha)] (2, yn ) dyn
m=1"70

+/0 Fo' B € v + yn) Fo (Onh)] (:C,yzv)dyzv}.
Let Sf;_ (N & zn) and SE(X &, 2n) be any of symbols;

A2B= 205l (N & ay) ke{l,...,N—1},

Sﬁ(k,f’,m]\r) = QB 2oNef (N ¢ ay)  ke{l,...,N -1}, me{l,...,N -1},
HACH TN ke{l,...,N—1},
MP2B=20n xRN, & an) ke {l,...,N —1},

Sf’()\,f',:nN) = i&mB_QaNxf()\,f’,:rN) ke{l,...,.N—1}, me{l,...,N — 1},
xE(N & zN) ke{l,...,N —1}.

Using the inequality |a + B(A + B)| > C, 3|B|, we are able to confirm that all of the symbols
are bounded in the sense that

sup (A + Y216l + [llénDISE |+ (A2 + o) |on S| + 0% S5 | + & ISE| + 10w SEI}
(AgNez. xsh T
0'=1,. ,N—1

-1
< Czy

14



The symbols of Robin boundary conditions satisfy

O DT NOR SR k) < CUNY? + A2 et (k= 1,..., N — 1),
RS < CONM? + AT Am

for m =0,1,2,3. Since the new symbols are holomorphic in (7,¢’) € iév , we apply theorem 1.2 for
Robin boundary condition.

This proved the existence of the theorem. The uniqueness is proved in [22]. Non-stationary
problem can be treated similarly.

6 Remark

At last we remark that the differences of the previous works. Shibata et al. considered some theorems
as follows.

Theorem 6.1 ([16, Lemma 5.3.5]). Let € € (0,7/2), 1 < g < 00, v > 0. Let m; (i = 1,2) satisfies
that

\85,(( i\, )| < Cor| BT,
108 ((r0:)'ma (N, €))| < Cur|AI !

for any (A, €') € X pg x (RV1\{0}), o/ € N7, £ =0,1. Define
(K1 (A, m1)g / 1(>\’5’)IAll/Ze_B(xNJ’yN)fx'g(f',yN)} (z,yn)dyn,

[Ka(\, ma)g)(z )—/0 Fo'! Q(A,5’)146‘3(1“”)%9(6’,yN)] (z, yn)dyn,

(Kalhmalal(e) = [ 7 [mah ) e A ) Fg(€' )] oy
[K4(A, m2)gl(z) = /000 Fert [ma(N €)Y APMAE oy + yn) Forg(€ yn)] (z,yn)dyn,
UQMmMM@ZAwQTVMX@MWMWM&WMﬁMEw@wMM%wﬂw,

then, the following holds
RE(Lq(Rf))({(TaT)ZKl(Av mi) | A€ Xeq}) <C
RL(Lq(Rf))({(TaT)EKj(Aam2) | A€ }) <C
forany £=0,1,j=2,...,5.

On the other hand our theorem 1.2 claims that we do not need distinguish as above under
holomorphic condition.

Theories of Priiss et et al.is based on H* property for operators not C-valued functions. The
following theorem is known as Kalton-Weis theorem. We change the notation;

5= {z€ C\ {0} | |arg ] < o).
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Theorem 6.2 ([18, Theorem 4.5.6]). Let X be a Banach space, A € H*®(X), ¢ > ¢4, and let F
be an operator-valued family F C H*(X4; L(X)) such that

FO)(u—A) " = (u=A)'F(\), pep(A), Ae Ty, FeF.

Then there is a constant C'4 > 0 depending only on A and X such that
(1) If supper R(F(24)) < 00, then F(A) :={F(A) | F € F} C L(X) and

|F'(A)|zx)y < CaAR(F(Xy)), F e F.

(1t) If X has property (o) and R{F(z) | z € ¥4, F € F} < oo, then the operator family F(A) is
R-bounded, and

R(F(A)) < CAR{F(2) | 2 € £4,F € F}.

They often use this theorem as A = d/dt whose H*>-angle is 7/2. For the detailed definitions
and their methods, see [18]. On the other hand, theorem 1.2 does not require any knowledge of
operators with H°-property.
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