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1 Introduction

We consider a viscous incompressible flow past a rigid body ¢ C R3®. We suppose that
0 is translating with a velocity —(t)ae;, where a > 0, e; = (1,0,--- ,0)T. Then by taking
frame attached to the body, the fluid motion which occupies the outside of & obeys

( Ou+u-Vu = Au — ady,u — Vp, reD, t>0,
V-u=020, re D, t>0,
ulop = —aey, t>0, (1.1)
u—0 as |x| — oo,
u(z,0) = uy, reD

\

where D = R*®\ & is the exterior domain with C? smooth boundary 9D and the ori-
gin of coordinate is assumed to be contained in the interior of ¢. The functions v =
(ui(z,t),us(w, ), uz(x,t)) T and p = p(x,t) denote unknown velocity and pressure of the
fluid, respectively, while u is a given initial velocity. The large time behavior of solutions to
(1.1) is related to the stationary problem

Us - Vug = Aug — a0y us — Vs, reD,

V- us =0, reD,
(1.2)

uslap = —aey,

us — 0 as |x| — oo.

The pioneer work due to Leray [27] provided the existence theorem for weak solution to
(1.2), what is called D-solution, having finite Dirichlet integral without smallness of data,
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however, his solution had little information about the anisotropic decay structure caused by
the translation. Later on, Finn [10, 12-14] succeeded in constructing a stationary solution,
termed by him physically reasonable solution, exhibiting a paraboloidal wake region behind
the body, that is,

us(z) = O((1+|2) (1 + 2] — 1)) (1.3)

if a is small enough. The L? stability of us, that is the problem (1.1) with uy = us + b
(b € L3(D) : perturbation), was first proved by Heywood [17,18]. On the other hand, by the
decay structure (1.3), we have us € LI(D) for ¢ > 2, but u, ¢ L*(D) in general due to Finn
[11], see also Galdi [16], thus it is reasonable to seek a solution to (1.1) in the L? framework.
The L9 stability was proved by Shibata [30] (see also Enomoto and Shibata [7]), in which the
key is the L9-L" estimate of the Oseen semigroup developed by Kobayashi and Shibata [25]
(see also Enomoto and Shibata [6,7]).

As in the stationary problem (1.2), we expect that nonstationary solutions to (1.1) exhibit
the paraboloidal wake region, but the literature for concerning this issue is Knightly [22],
Mizumachi [29] and Deuring [4, 5] only. Deuring [4] used a representation formula for the
solution to the Oseen system to deduce

Viu(e,t) = O((1+[al) ™ 3(1 + [a] =) 7)

for + = 0,1 uniformly in ¢ under some assumptions on the initial perturbation from the sta-
tionary solution and on the solution u. In [5], by employing another integral representation,
he also established the estimate

Vi (ule, ) = us) = O((L+ [al) 373 (1 fof —20) 75 73)
for ¢ > 0 without the boundary condition except the zero-flux condition.

As mentioned above, the wake structure uniform with respect to time has been investi-
gated by [4,5,22,29], while the purpose of the present paper is to derive temporal decay rate
with the wake structure captured. To accomplish our purpose, we develop the theory of the
Oseen semigroup in L spaces with the weight (1 + |z|)*(1 + |z| — 21)?, in particular, derive
the anisotropically weighted L9-L" estimates of the Oseen semigroup. We then apply those
estimates to construct a nonstationary solution to

¢

v = Av—a0y,v—v-Vv—v-Vus —us-Vo—Ve¢o, xzeD, t>0,
V-v=0, z€D,t>0,
vlogp = 0, >0, (1.4)

v—0 as|z| — oo,

| v(z,0) =b=uy—u;, €D
in the anisotropically weighted L9 framework, where (v, ¢) is defined by

u(z,t) = v(z,t) +us, plz,t)=o(x,t)+ ps.



Here, we note that the condition
-1<f8<q—-1, -3<a+p<3(q—-1) (1.5)

is the necessary and sufficient condition on «, 8 so that (1 + |z|)*(1 + |2| — x1)® belongs
to the Muckenhoupt class o7, (R?), which ensures the weighted L¢ boundedness of singular
integral operators, see, for instance, Garcia-Cuerva and Rubio de Francia [15, Chapter V],
Torchinsky [32, Chapter IX] and Stein [31, Chapter V]. The proof is accomplished by checking
the definition of <7, (R3). This fact with ¢ = 2 was already known from Farwig [8] and the
sufficiency of (1.5) was proved by Kraé¢mar, Novotny and Pokorny [26]. We then employ such
weights to apply the weighted L? theory for the Stokes resolvent problem and the Helmholtz
decomposition in weighted L7 spaces developed by Farwig and Sohr [9].

To establish the anisotropically weighted L9-L" estimates of the Oseen semigroup e~
in the exterior domain D, it is important to derive the estimates in R3. Given ¢ < r <
o0 (¢ # o0) and «, > 0 satisfying f < 1 — 1/q,a+ f < 3(1 — 1/q) (which ensures
(1 + |2))29(1 + |z| — 2,)%7 € 7, (R?)), it follows that

tAq

11+ 2))*(1 + |2] — 21)° VI Sa(t) f ]l e o)
S Ot_%(%_%)_%'i‘%-‘—max{%vg}'ﬂfH(1 + |x|)a<1 + |27| . xl)[ijLq(IW) (16)

for t > 1,7 = 0,1, where S,(t) (a > 0) is the Oseen semigroup in R? and ¢ > 0 is a given
positive constant. But, it seems difficult to apply (1.6) to construct a solution in the nonlinear
problems. Therefore, in Proposition 3.1 we derive the other estimate

(L4 [21) (L + | = 22)* 9 Sa () f |2 @)
_3(1_1y_Jj _3(L_1y_Jig, ;
< Ot 2T TR (U ) (14 o] = 20)° fll g sy + O 20T (1 4 (] = 20)7 f Lo o)

1

_3 1y i B Bl 1y jy,.8
+Ct 3(g—r) 2+2H(1+’x\)afHLq:s(RS)‘i‘Ct 5(g; 7)) 3t +2HfHL44(R3) (1.7)

fort >1,j=0,1and 1 < ¢ <r < oo (¢ # o). The estimate (1.6) is not employed in the
nonlinear problems, but it is seen that the rate in (1.6) is better than the one in (1.7) with ¢; =
q(i=1,2,3,4), that is t 3(1/a=1/1)/2=3/2+a+5/2 \Vith (1.7) at hand, in Theorem 2.2, we derive
the estimate of e™*4 in D. The proof consists of two steps: one is the decay estimate near
the boundary of D; the other is the decay estimate near infinity. This procedure is employed
by Iwashita [21], Kobayashi and Kubo [24] for the Stokes semigroup and by Kobayashi and
Shibata [25], Enomoto and Shibata [6,7] and Hishida [20] for the Oseen semigroup. In those
papers, they derived the decay rate t=3/2¢ for given f € LA(D) in the first step by carrying
out a cut-off procedure based on the Li-L" estimates of S,(t) and on the decay estimate near
the boundary of D for initial velocity with compact support, called the local energy decay
estimate, see Proposition 3.2. However, since the temporal decay rate should be affected by
the spatial decay structure of f, we expect that the decay rate is better than ¢=%/(9) if f
decays faster than L9(D), for instance, (1 + |z)*(1+ |z| —21)? f € LY(D) (o > 0,3 > 0). In
fact, we adapt the same procedure as in those papers, but deduce better decay rate ¢t—3/(20)-7



if (1+]z))*(1+|z|—21)°f € LY(D) (o > 0,8 > 0), where 7 is a positive constant dependent
on a, f3, see Proposition 3.4. The homogeneous estimates of the Stokes semigroup e *4 in
isotropically weighted L? spaces are also deduced by our argument, see the assertion 2 of
Theorem 2.2 and the assertion 2 of Theorem 2.3.

The application of Theorem 2.2 and Theorem 2.3 to the problem (1.4) is given by Theorem
2.4, in which the spatial-temporal estimates

@ 1.3 48
1(1+ [ (1 + 2] = 21)P0 ()l = ot~ 3F5++5), (1.8)
(1 + [2)° (1 + |2 = 22)Vo(b)[ls.0 = o(t~5++2) (1.9)

ast — oo for all r € [3, 00] are deduced if the velocity a and the L3 norm of initial perturbation
b, which is of class (1 + |z|)*(1 + |z| — 1)%b € L3(D), are small enough. The proof of this
theorem is accomplished by adapting the argument due to Enomoto and Shibata [7] to
analyze four norms appeared in the RHS of (1.7). We note that the smallness of ||(1 +
|2])*(1 4 |2| — 1)Pb||13(p) is not assumed in this theorem. The rate in (1.8) with 8 = 0 is
—1/2+3/(2r) = —=3(1/3 — 1/r)/2, which is same as the one of the usual L3-L" estimate of
the Oseen semigroup, and the loss a. This loss is less than the one in Bae and Roh [1].

The next section is devoted to stating the main theorems. In Section 3, we give the
outline of the proof of Theorem 2.2 and Theorem 2.3.

2 Main theorems

In this section, we provide our main theorems. Given 1 < ¢ < oo and «, 8 satisfying

1 1 3 1
——<fB<1l—--, ——<a—|—5<3<1——)7 (2.1)
q q q q
we set
pla) = (14 [z)*(1+ |z — a1)". (2.2)

By checking the definition of the Muckenhoupt class, we find that the weight p belongs to
2y (D) as well as o (R?). Therefore, due to Farwig and Sohr [9], we have the Helmholtz
decomposition and the bounded projection operator Pp : Li(D) — L% (D), then define
the Oseen operator A, : LI (D) — Li,(D) (a € R) by 2(A,) = W>29(D) N W, 9(D) N
LY (D), Agu = —Pp[Au— ad,, u]. We simply write the Stokes operator A = Aq. We already
know from [9] that —A generates an analytic Cp-semigroup (Stokes semigroup) in weighted
L% space whenever the weight belongs to o7, (D) and the Stokes semigroup is bounded in
L((11+|x|)aq<D)7 see [9, Theorem 1.5]. Its L9-L" smoothing action near the initial time was
derived by Kobayashi and Kubo [24, Theorem 1], see also [23]. We state in the follow-
ing theorem that —A, generates an analytic Cp-semigroup in Lgya(D) possessing the L9-L"
smoothing action near the initial time.

Theorem 2.1. Given ag > 0 arbitrarily, we assume |a| < ay.
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1. Let1 < q < oo and let o, B satisfy (2.1). Then —A, generates an analytic Cy-semigroup
{e7a}ing in L2 (D), where p is given by (2.2). If in particular a = 0, then the Stokes
semigroup {e” " }i> is a bounded analytic Co-semigroup in L1 (D).

2. Letl < g <r <o (q# o0) andletc, B satisfy (2.1). For every multi-index k (|k] < 1),
there exists a constant C' = C(D, ag,q,7,, 5, k), independent of a, such that
_3(1_1y_lK
[(L+1al)* (14 2] = 20) 0k Pofllrp < Ct7267D 72 |14 [2))* (1 + [2] = 21)° fllop
forallt <3, f € LID).

In the following theorem, the assertion 1 asserts the large time behavior of the Oseen
semigroup. We note that the exponents ¢; (i = 1,2,3,4) in the next theorem may not
coincide with each other. The assertion 2 yields the homogeneous estimates for the Stokes
semigroup in isotropic L4 space.

Theorem 2.2. 1. Given ayg > 0 arbitrarily, we assume a € [0,a0]. Let 1 < ¢; < oo (i =
1,2,3,4), 1 <r < oo and o, B > 0 satisfy
l<@u<g<qu<r<oo (i=23), (2.3)
. 1 ) 11 . 1
a<mn<3|(l——),17, f<min<sl—— -3, «a+F<min<3(l——|,1¢.
a3 7 3 a1
(2.4)
We set
pr(@) = (L4 |2 (1 + [x] = 20)P", po(x) = (14 [a| = 20)P®,  ps(x) = (1 + [a])*®.
(2.5)

Then there exists a constant C (D, ag, q1, 2, q3, G4, 7, @, B), independent of a, such that
11+ [z (1 + |2 = 21)%e Pp f

4
B O R v -
<ON T [ (L o] — 20)%

qi,D (26)

3
forallt >3, [ € ﬂ Li(D) N L% (D), where v;, 0;,m; are defined by

i=1
(71772773774) = (Oé,0,0[,O), (51762753764) = (ﬁ757070>7
(171777277737774) = (0,0[, §7a+ g) . (27)

2. Leta=0. Let 1 <q<r <00 (q7# o) and o > 0 satisfy 0 < a < min{3(1 — 1/q), 1}.
Then there exists a constant C(D,q,r, ) such that

(4 [2))* fllg.p

for allt >0 and [ € L}, ,yaa(D).



In order to study the nonlinear problem, we next deduce the estimate of the first derivative
of e7*«_ For the Stokes semigroup e * in the L9 framework, it was proved by Maremonti
and Solonnikov [28] and Hishida [19] that the restriction 1 < ¢ < r < 3 is optimal in the
sense that we cannot have

_3¢1l_1y_1
IVe ™ Ppfllrp < Ct 25072 fllyp

for 1 < g <r < gy with g9 > 3. However, the next theorem yields that the range of exponent
is enlarged in weighted L? space than the one in L? space. In particular, for the Stokes
semigroup in L{, |, s (D), it is proved that the condition (2.9) below is optimal.

Theorem 2.3. 1. Given ag > 0 arbitrarily, we assume a € [0,a0]. Let 1 < r < oo,
1 <qg < oo (i=1,234),a,p > 0 satisfy (2.4). If a < 2/3 (resp. a > 2/3), we
suppose

1<g,<q<q <r<min 5 5 (i=2,3)
Q4 =~ ¢ > 1 > 1_04_6’1_37& — 4

3
<resp.1<q4§qi§q1§r<m (7,:2,3))

Then there exists a constant C (D, ag, q1, G2, q3, G4, 7, @, B), independent of a, such that
11+ 2D (1 + || = 20)° Ve ™ Pp fll.0

4
3Ly 1., ] v
< OX T ) (U o] - ) S
i=1

qi,D (28)

3
forallt >3 and [ € ﬂLZ"Z_(D) N L% (D).
i=1
2. Leta=0. Let 1 <q<r <oo(q# o0) and oo > 0 satisfy 0 < o < min{3(1 —1/q), 1}.
We also suppose

l<g<r< ) (2.9)
-«
Then there exists a constant C'(D,q,r, «) such that
11+ [2))* Ve Pp fllnp < CL 2673 (14 [2]) g0 (2.10)
for allt >0 and [ € L ,ua(D).

Let us proceed to the nonlinear problems. To study the stability of a stationary solution
ug, we consider the integral equation

t
v(t) = e tHap — / e~(t—MAa p) [U -Vu+wv-Vus + ug - Vv} dr. (2.11)
0

For the problem (2.11), we have the following. The proof of this theorem is accomplished
by adapting the argument due to Enomoto and Shibata [7].
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Theorem 2.4. Let o, (8 satisfya >0, 0 < 8 < 1/3, a+ < 1. Then there exist constants k =
k(a,B) >0 and £ = e(a, B,a) > 0 such that if 0 < a*/* < k and if b € L?1+|x|)3a(1+|x|—x1)36<D)
fulfills ||bl|s.p < €, then the problem (2.11) admits a solution v which enjoys

f 5

(1 + |z])" (1 + |z| — 961)‘”'1;(15)”[17D = 0<t—%+2%+%+7 ),
LI

1L+ ) (1 + |2] = 21) Vo) |30 = ()(t_%+%+ 2)

as L — oo for all g € [3,00] and i = 1,2,3,4, where v;,0; are given by (2.7).

3 Outline of proof of Theorem 2.2 and Theorem 2.3

This section is devoted to the anisotropically weighted L9-L" decay estimates of the Os-
een semigroup in the exterior domain. We fitst prepare the anisotropically weighted L9-L"
estimates of solutions to the Oseen equation in R3:

Ou — Au+adyu+Vp=0, V-u=0 z€R> (>0, u(z,0) =g, xcR® (3.1)

Given g € L(R?), we denote a solution to the heat equation by e'*¢, which is given by the
formula:

o= () [ o

If in particular, g € LZ(R3), then we see that Vp = 0 and that

u(z,t) = (Sa(t)9)(w) := (e"2g)(x — atey) (3.2)
solves the problem (3.1).

Proposition 3.1. 1. Gien ay > 0 arbitrarily, we assume a € [0,a0]. Let q,r satisfy
1<qg<r<oo(q# o) andlet o, > 0 satisfy

6<1—1, a+ﬁ<3<1—1>. (3.3)
q q

For multi-indez k satisfying |k| < 1, there ezists a constant C = C(ag,q,7,, 5, k),
independent of a, such that

_3(1_1y_Ik| p
I+ J2)* (1 + o] = 21)P05Sa(8) Pas [llrs < O™ 72 (14 |2)™ (1 + ] = 1) f| o
(3.4)

forallt <1, fe Lg(]R?’).



2. Given ag > 0 arbitrarily, we assume a € (0,ao]. Let q; (i =1,2,3,4),r satisfy 1 < ¢; <
r<oo (g #o00,i=1,23,4) and let o, > 0 satisfy

1 ) 1 1 1
0§a<3<1——>, O§6<m1n{1——,1——}, a+6<3<1——>.
a3 0 42 q1

For multi-index k satisfying |k| < 1, there ezists a constant C' = C(ag, q1, q2, 3, G4, 7, @, B, k),
independent of a, such that

1L+ [2))* (1 + [o] — 1) 05 Sa(t) Pee f |l

4
< Czt—%(é—%)—‘—%m

=1

(L o] = 2) f

(14 |z

4:,R3 (3.5)

3
forall t > 1, f € () L&(R?) N L% (R?).

i=1
3. Leta=0. Let 1 <qg<r<oo(q#00) and 0 < a < 3(1 —1/q). For multi-index k
satisfying |k| < 1, there exists a constant C' = C(q,r, o, k), such that

31 1y Ikl N
(1 + ) O5So(t) Ps fllrs < O 26772 |(1 4 [a])* f g0 (3.6)
for allt >0 and f € L{,, 10, (R?).

Proof. From

T+ |zD*A + || — 21)” < C{A+ )" A+ Jyl — )’ + A+ |z — y)* (A + |y| — 11)”
+ (L4 ) A+ |z =y = (31— 11))”
+ (L4 ]z —yD* A+ |z =yl — (21— )"},

we have
(L4 2))* (1 + [a] = 21)° |05 Sa(t) Pes f ()|
< O G (L Iyl (1 + 1] = 30) 1 oo 1) (&) + G (1 Iyl = 30) Pos 1) (2)
+ Gapox (14 1Y) Pes f]) () + Gap * |PR3f|<x)}v (3.7)

where
Graert) = (4;)? () b (5)). 59
Clo(o, ) = (4% ’ (ﬁ)w i ("” ;jgt“)‘(lﬂxm (3.9




Gl ) = (ﬁ) (%ﬂ)w i (‘C;—\j;elﬂ(u 2] — )P, (3.10)
Gapl,t) = (4%) (ﬁ)w " (‘”’3;—261)‘(1+ 2D+ 2] — )%, (3.11)

hi(2) = 0Fe 1A, (3.12)
By changing variables z = (z — ate;)/(2V/1), we get
Ik

1G1(0) e < CL73 72 42 (3.13)

for ¢ > 0 and s € [1,00). Moreover, it holds that

|Car(D)]]2 e < CE3o-o+3 ((1 + at) / Ok s 43 / ke e dz)
R R
< O3 (1 4 at)oe 4 130,
and that
a0 < Cortoort / O s+ (Vi [ (ot e

< ORI (L 418

thereby,
1Gen(t)llozs < CU37 375, ||Gap(t)llops < O3 375 (3.14)
forall t <1,s € [1,00),
|Gex(®)llms < CE37 384 || Gap(t)|lps < O3 25 (3.15)

for all £ > 1,s € [1,00), where constant C' is independent of a. From
s . PELP: as ko—|z[%|s
1Gae(t)|Sps < Ct2°72%%2 { (1 + at) |0Fe™ 1275 dz
R3
(1 + at)™ (Vi) / |0k e 2|2 dz 4 (Vi) (et / |9 e I# | |y st dz}
R3 R3

< Ct—%s—%'s—i—%{(l + at)as(l T t%s) + t%5+§5},

we find

|Gas(®lspe < CE 22 (3.16)



forallt <1,s € [1,00),

1Gag(8) ]| ps < Cage3= 'z Fatats (3.17)

forallt > 1,s € [1,00), where constant C'is independent of a. Given q,q; <1 (i = 1,2,3,4),
we set 1/sg :=1—1/¢+1/r € (0,1], 1/s; :=1—1/q; + 1/r € (0,1] (i = 1,2,3,4). Then
collecting (3.7)—(3.17) and using the weighted L¢ boundedness of Pgs imply that

11+ 2D (1 + 2] = 21)° 05 Sa(t) Pes f ()|
< C(HGLkHstBH((l D+ fyl = 91)" Pes fllgrs + 1| Gaellsoms 11+ [yl — y1)” Pes £l g s
+ |G llso re | (1 + [y])* Pra flg re + HG4,kHso,R3HPRSqu,R3)
< ORI (1 + Tyl = 30) g
for t <1, f € LY(R?) and that
1L+ ) (1 + |] = 21)7 05 Sa(t) Ps f () s
< C<||G17k||sl,R3H (T4 D)™+ [yl = 92)° Prs fllgure + 1Gbllsors | (1 + [yl = 91) P S]] go s

+ |Gkl o2 | (1 + [y Pes f |l gs 3 + HG4,kHS47R3’\PR3f\Vq4,R3>

4
3L _1y_ Ikl
< OYRETITEI (1 ) (14 fo] = )"

qi,R3

3

forallt > 1, f e ﬂ L (R*) N L%(R?). The proofs of the assertion 1 and the assertion 2 are
i=1

complete. We next prove the assertion 3 by using

(1+ |2))[85S0(t) Pes f ()| < C{Gri* (1 + [y])*| Pes f1) () + Goox | Pes () }-
If Ppaf € L(lel)aq (R?), then Lorentz-Holder inequality yields Pgs f € L(30/(3+20.4(R3) with
[ s f]] < N T2 o0 sy 1A 9D P Fllg es- (3.18)

Moreover, we define s5 by 1/s5 = —1/q¢ + 1/r — a/3 + 1, which satisfies 1 < s5 < oo and
1 < (3s5)/(3 + ass) < oo due to a < 3(1 —1/q) and ¢ < r. Then we get Gox(t) €
L55,(355)/(3+a55) (R3) with

1Ga,k (1)

LT (89)

g S Ol G0 s 1 Gn (D115, s (3.19)

L°573Fass (R3)

where 1 < k1 < s5 < Ky < 00,0 < 6 < 1 satisfy 1/s5 = (1 — 0)/k1 + 0/ke. From (3.18),
(3.19), the weighted L? boundedness of Pgs together with Young’s inequality for convolution
in Lorentz spaces, we have

C 3¢l 1y Ik o
1Gae 5 | Pos f) lrzs < C 2472 [(1 4 [])* f g p

forallt >0and f € L(le')aq (R3), which completes the proof. O
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We next consider the decay estimates of e~ f near the boundary of D. Given f € L4(D),
Kobayashi and Shibata [25] derived the decay estimate with the rate t=3/(9 however, given
/€ LZ(D), we use the better spatial decay structure of f at infinity to get the better decay
rate t7%/(20=¢ where p is given by (2.2). Let us start with the so-called local energy decay
estimates derived by [25].

Proposition 3.2 ([25, Theorem 1.1]). Let R > 0 such that R\ D C Bgr_1(0). We set
Dgr:= DN Bg(0). Let 1 < g < 00, ap > 0 and assume |a| < ag. Then there exists a constant
C > 0, independent of a, such that

1974 flla,r + lle™ flwza(pmy < CE2 [ flla.nx
forallt > 1 and f € {f € L4YD) | f(z) =0 for |z| > R}.

Combining Proposition 3.2 and the L?-L" estimates of S,(¢) implies the following estimates
of e~*e f near the boundary when f € Li(D).

Proposition 3.3 ([25, (6.18)]). Let R > 0 such that R®*\ D C Br_1(0) and set Dr =
DN Bgr(0). Let1 < g < o0, ag > 0 and assume |a| < ag. Then there ezists a constant C' > 0,
independent of a, such that

o tA, g A, BRI
10~ [Nlq.ps + lle™ 4 [ llw2a(pp) < CLU% | llgp
forallt>1 and f € Li(D).

Holder inequality tells us that f € L"(D) with some r < ¢ if f € L(D). By making use
of this, we next derive the better decay rate t~3/29=¢ than the one in Proposition 3.3.

Proposition 3.4. Let 1 < ¢ < co. We take R > 0 such that R*\ D C Br_1(0) and set
Dr = DN Bg(0). Fiz ag > 0 and assume a € [0, ap].

1. Leta, 8 > 0 satisfy a+8 < 3(1—1/q) and let s € (max{3q/(3+aq+pq),2q/(24+aq)},q].
Then there exists a constant C(D, ag,q, s, o, 5) such that

_ _ _3 o
18~ Pp fllg,05 + lle™ 4 Po flweangy < O 2 [[(1+ [2)* (1 + |2] = 21)° fl4,0

(3.20)
forallt >3 and f € Li(D), where p is given by (2.2).
2. Let 0 < oo < 3(1 —1/q). Then there exists a constant C(D,ay,q, ) such that
18e ™4 Po flq.05 + €™ P fllwa(gy < C 3 2 [[(1+ |2)* llg0 (3.21)
forallt >3 and f € L‘(]H'xl)aq(D).
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Proof. Under the assumption in the assertion 1, Holder inequality yields

1 lls.0 < 1L+ )™ (1 + 2] — 21) 77

2 pl(L+ |2)* (1 + [2 — 20 fllap (3.22)
for f € LY(D). Let ¢ be a function on R? satisfying
CeC®®RY), (@)=0 | <R-1, C)=1 |a|>R (3.23)

and denote the Bogovskil operator on Ag—1p = {zx € R*; R —1 < |z| < R} by Ba,_, ., see
Bogovskii [2], Borchers and Sohr [3] and Galdi [16]. Note that given bounded domain G with
Lipschitz boudary, 1 < ¢ < co and integer k > 0, B¢ is a bounded operator from WF(G) to
WEL(G)3, thus

[Befllwrsri@) < Cllfllwee (3.24)

with some constant C' = C(G, ¢, k). Set g := e *Ppf —Ba, , ,[(V() e Ppf]. We then
find V- g =0 in R3 and

1Sa(t)gllwsa(pm < Ct2(1+ )75 ||(1+ |21 + 2] — 21)° fllop (3.25)

for all ¢ > 0 due to (3.22), (3.24) and analyticity of e~ta. We take a function Ziuch that
¢ € C=(R%), ((x) =0 for [z[ < R, ((x) =1 for [z] > R+ 1 and set v(t) := u(t) — (Su(t)g +
Bag i [(VC) - Sa(t)g), u(t) := e~ D4 Py £ then the pair (v(t),p), where p(t) is the pressure
associated with u(t), obeys

v —Av+ad,v+Vp=K, V-v=0, z€D, t>0 vlop =0, t>0,

1"(:1:7 0)=(1- Z)e_AaPDf + ]BAR,R—H[(Vg) ’ e_AaPDfL z e D,

where K (t) fulfills supp K (t) C Dgy1 and

1K (O)llwagpy < CE2 (140272 [[(1+ [2)* (1 + ] = 1) g (3.26)

for all ¢ > 0. By Duhamel’s principle, v satisfies the integral equation
t
o(t) = e~Hep(0) 4 / e~ A K (7) dr. (3.27)
0

Since supp v(0) C Dg41, applying Proposition 3.2 and (3.24) leads to
- _ 3 N
10~ A0 (O)llg.Dpsr + e 0 (0)lw2a(pp,yy < CEENA + |2 (1 + Jal = 20)" fllgp  (3.28)
for all £ > 1. On the other hand, it follows from K(7) € Z(A,) and Proposition 3.2 that

—(t—1) Ay —(t—1) A, _3
104 K () lgpps + e K () lwoaopeny < O+t = 1) K@) lweao)

12



for all 0 < 7 < t, which combined with (3.26) yields

t t
/0 Hﬁte_(t_T)AaK(T)"q,DR+1 dT+/O He_(t_T)AaK(T)HW27‘1(DR+1)dT

<Ct =

(L4 |=)* (1 + |2] = 21)" fllap (3.29)
for t > 2. Due to
t
dyu(t) = dyeau(0) —|—/ e DA K (7Y dr + K (1)
0

and v|p, = u(l), collecting (3.26)—(3.29) completes the proof of the assertion 1.
We next prove the assertion 2. We know [ € LB9/G+adq(])) with 11|z /6ranaqpy <
Cl[(L+ [z[)*fllq,p for [ € L{}, ,pae(D). Moreover, from

1058, () Pashl|os < CU 37572 )| s

9
L3Faq ,q(R3)

for all t > 0, |k| <3 and h € L3/B3TD:4(R?) we find that (3.25) is replaced by

1

_1 1_3_ « a
1Sa(t)gllws.apey < CL2 (14 1)2 202 {|(1+ [2])* f]lq,p-

By applying this estimate, we can obtain (3.26) and (3.29) with 8 = 0,s = (3¢)/(3 + «aq).
We thus conclude the assertion 2. The proof is complete. O

To prove Theorem 2.2 and Theorem 2.3, it is convenient to prepare the following lemma.

Lemma 3.5. 1. Let \,s >0, 7> 0,7 € R and r € (0,00] satisfy A < 3/2 and \ < s.
Then there exists a constant C' independent of t such that

/Oé(t—T)_

2. Let s > 0,0 < X <3/2,n€Randr € (0,00]. Then there exists a constant C
independent of L such that

Nl

(

3=

)_

1 1)_]'

(14 7) " m dr < Ot 2 (3.30)

>l
ks,

fort>1.

t—1 .
/ (t— 1) 3G D1 4 1) "% dr < O 3G (3.31)

fort > 2.
3. Let \;r,s >0, n,k € R satisfy

1 1#1—27} 142k —2n 2+ 2k
Ao 3 3

3

1
< <-. (3.32)

> =

13



Then there exists a constant C' independent of t such that

t—1 :
/ (t — T)‘%(%‘%)—%Jrfi(l + 7—)—2%+H dr < Ct=3G=D—3+n (3.33)

2

fort > 2.

4. Let \;s >0, j >0 and r € (0,00] satisfy 1/\ —1/r < (2 — 5)/3. Then there exists a
constant C independent of t such that

t A f
/ (t—7) 2G5 (1 + 1) 2 dr < Ct o (3.34)
t—1
fort > 1.
Proof. We have
4 3 3
tratt i - — > 1,
t ’ ' 25
/2(15 — 1) TP 4 7‘)_2% dr < Ct~s(—9)=3t1 logt if — 23 = —1,
0 s
3
1 f ——< -1
\ ' 2s

3,11 3 /1 1
VA S /A | g > —1
o ' 2 ()\ T) i ’
=1 3 5 3/1 1
/ (t—7) 2014 7) 72 dr < Ct7 2 x  logt if —=(~—=)+n=-1,
L 2\ 7
3 /1 1
1 if — S (x—- < -1
' 2\ 7 i

fort > 2. By A < 3/2, we find min{3/(2s)+3(1/A—1/r)/2—n—1,3/(2s)} > 3(1/s—1/r)/2—n
except for the case r = oo, = 0, thus conclude (3.31) except for the case r = oo, = 0.
If r = co,n = 0, then A < 3/2 yields —3(1/\ — 1/r)/2 + n < —1, which combined with
—3(1/s—1/r)/24+n = —3/(2s) implies (3.31). Since —3(1/A—1/r)/2—1/2+n # —1 follows
from (3.32), we can derive (3.33) in the same way. We use 1/\ — 1/r < (2 — 7)/3 to deduce

1

t ) t .
/ (t—7) 2G5 (1 4 )2 dr < Ct—zi/ (t—7) 26D dr <t
t—1 t—1

for t > 1, which asserts (3.34). The proof is complete. O

We are now in a position to prove Theorem 2.2.
Proof of Theorem 2.2.  We derive the estimate on R3\ Br(0). Let ¢ be a function on

14



3
R? satisfying (3.23). Given f € ﬂ L% (D) N L*(D), we define u(t) := e D4 Py f ap(t) :=

=1
Cu(t) = Ba,_, o[VC-u(t)], m(t) := (p(t), where p(t) is the pressure associated with u(t) that
satisfies [, p(t)dw =0 for all ¢ > 0. Then w obeys

w(t) = S (H)w(0) + /t Sa(t — 7)Prs L(7) dr, (3.35)
where

U)(O) = Ce_AaPDf - BAR—I,R[VC : e_AaPDf]7
L($7 t) = _Q(VC . V)u - (Ag)u + a(@xlg)u - (at -A + aafvl )BAR—I,R[VC ' u(t)] + (VC)p
It follows that

1

4
11+ Je))* (1 + J] = 21)° Sa(t)w(0) s < C Y257 (14 [ (1 + o] — 1) f

q:,D

3

fort >0and f € ﬂ Li(D) N L%(D), where ~;, §;, m; are given by (2.7). We use Proposition
i=1

3.3 and the Poincaré inequality to find that (V()p(t) € LF(R®) for all t > 0, k = ¢; (1 =

1,2,3,4) and that

1(VOP() |wgs < CO+ )75 ||l (3.36)

forallt > 0and Kk = ¢ (i =1,2,3,4). Given 1 < ¢; < o0 (i = 1,2,3,4), 1 <7 < 00 and
a, B subject to (2.3)—(2.4), we take \; (i = 1,2,3,4) so that 1 < \; < min{3/2,¢;}, 5 <1—
/A, B<1=1/X, a<3(1—=1/X3), a+5 < 3(1—1/X\;) for i =1,2,3,4. Then due to (3.36),

Proposition 3.3, supp L(t) C Ag—1 g and (3.24), we get L(t) € Lz\liﬂxl)wi(1+|x|—a:1)5m (R3) with

_3 ) )
I+ 2 ) (1 Jo] = 20)% Pra L(0) [ pe < C(L48) 205 (14 |2]) (1 + Ja] = 20)f

qi,D
(3.37)

for t > 0 and 7 = 1,2, 3,4. Similarly, we have

I+ [2D)* (1 + Jo| = 20)° Pra L(1) gy e < C(L+1) 7200 [[(1+ J2[)*(1 + Jo] — wl)ﬁqul’(D' )
3.38

From (3.4), (3.5), (3.37) and (3.38), we apply (3.30) to (A\,r,s,7,m) = (Ni,7,¢:;,0,m;) (i =
1

1727374)7 (331) to (>\77‘7 S, 1, '%) = (Aivr,‘: Ql777l70) ( = 17 27 374)7 (334) to (Aﬂnv S;j) = (9177’7 q1, 0)7
then obtain

t
/ 1L+ () (1 + [@] — 21)7Sa(t — 7) Peo L(7) s d
0

15



(1 ) (1 + o] = 21)”

qi,D

4
< CZ (3G )

fort > 2, f € ﬂLZ@(D) N L*(D) provided that 1/¢; — 1/r < 2/3. Due to w|rs\py0) =
i=1
e~ DA Py we deduce

||(1+|5!’|) (1 + |2 = 21)%e ™ Pp flz\Ba(0)

<C Z —*(qj—;)-i'?h

(L+[z))" (1 + |z — 20)" f

qi,D

3

fort >3, f e ﬂLZﬁ(D)ﬂL‘“(D) if 1/g1 —1/r < 2/3. On the other hand, if 1/¢; —1/r < 1/3,
i=1

then we also have

11+ [2)*(1 + |2] — 21)%e ™4 Pp flly.p, < Ct 207

(1 + 2D @+ [a] = 21)7 fllgu,p

by the Sobolev embedding and Proposition 3.3, thus (2.6) holds if 1/¢; — 1/r < 1/3. The
restriction 1/q; — 1/r < 1/3 is eliminated by the semigroup property and by (2.6). The proof
of the assertion 1 of Theorem 2.2 is complete.

Under the assumption in the assertion 2, we take A so that 1 < A < min{3/2,¢}, a <
3(1 —1/)), then the same calculation as above yields

_3 o
I+ )™ Ps L(1) |, ps < C(L A+ )72 [[(1+[2])* fllg,p

for t > 0,k = A, q. Taking this and (3.6) into account and applying (3.30) to (A\,7,s,7,1) =
(A, 7,q,0,0), (3.31) to (A\,7,5,m, k) = (A, 7,4,0,0), (3.34) to (A\,r,s,7) = (q,7,q,0) lead us to

(1 + |2))%e A Pp fll, e\ gm0 < CL 2@ )|(1+ |2)*fllgn

fort >0, f € L(1+|Z|)QQ(D). The estimate of e ** near the boundary is also derived by the

Sobolev embedding and Proposition 3.3. The proof is complete. O
Let us close the paper with completion of the proof of Theorem 2.3.

Proof of Theorem 2.3. Let o, >0and 1 < g4 < ¢ <7 (i = 2,3) satisfy

a<m1n{3<1—l>,1}7 6<mln{1_l71}7 a+5<m1n{3<1—1)71}
q3 g2 3 r

and we also suppose

1<gs<¢g; <r <min 3 3 resp. 1< s <q; <r< 3
g4 > ¢ > 1_&_6’1_3?& p. 4 = (@i = 1—06—,8

16




for i = 2,3 if @« < 2/3 (resp. a > 2/3). In view of the semigroup property and the assertion
1 of Theorem 2.2, to prove the assertion 1 of Theorem 2.3, it is enough to derive

1+ [2)* (1 + [o] = 20) Ve ™ 4 Pp fllp

4

3L 1y 1.

< O+ [a) (U o] = 2) fllep + C Y27t
=2

(1+ [z (1 + |2] = 21) f

qi,D

(3.39)

3

for t >3 and f € ﬂL%_(D) N LYD) N L*(D), where p = (1 + [x])*" (1 + 2| — 1)"". Let s
i=2

satisfy

a il = < so < min{3,r}
max min .
3+ar+pr’ 2+ ar 0 ’

It follows from (3.20) with s = s9, ¢ = r that

_ . 1 .
1L+ ) (1 + [a] = 20)"Ve ™™ Pp fll,,p, < CU2 (14 |2)* (1 + |2 = 21)° f|l,,p

for all t > 3 and [ € L3(D). We use
t
Vao(t) = VSa(t)w(0) + / VSa(t — 7)Pas () dr (3.40)
0
to derive the estimate on R3\ Bg(0), see (3.35). Applying (3.5) leads us to
1+ 2D (1 + |2] = 21)"VSa(t)w(0) |5

4
_ 3¢l _1N_ 1 . . X
< O3]+ J2))(1 + o] = 21)? fllop + C 3422 (1 o) (1 + 2] — 1)

qi,D
i=2
3 o~
for t > 1 and f € (| L%(D) N L5(D) N L*(D). Let {\;}L, satisfy
i=2
N . [3 ~ . [3 . 1
1< A <min—,ry, 1< <min< -, g (1=2,3,4), B<1—=,
2 2 A\
1 1 1 11 1-2n .
ﬂ<1—~—, Q’,<3<1—~—), Ot—|—/3<3(1—~—>, 7——7& T (221,2,3,4>.
)\2 )\3 )\1 )\i r 3

Then by Proposition 3.3, (3.20), (3.21) and (3.24), we carry out the same calculation as in
(3.36), (3.37) to get

11+ )1+ Jo] = 20) Pra L5, e < C(L+ )0 |(1+ |2)*(1 + |2] = 21)" f ]l
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__3
1L+ ) (L + || = 1) Paa L(t) | e < C(1+1¢)" >

o

1+ |2 (1 + [ = 20)° fl|r.p,
_3 _a N
1L+ J2)* Pas L) |5, s < C(L+2) 2 2| (1+ [2])* ]
_3
I+ ) (1 + |2 = 20)" Pra L(#) I3, o < C(1+1) 72

q3,D>

(L+ ) (1 + 2] = 20)™ f

qi,D

for ¢ > 0,i = 2,4. Taking these estimates, (3.4), (3.5) and sy < min{3,7} into account
and applylng <3§O> to ()"7‘75»].’7]) = ()‘171"72717())7()‘72’7'7 Qi7177/i) AgZ = 27374)7 (333> to

(A, rys,m k) = (A,r,r,0,=3(1/so — 1/7)/2), (A3, 7, a3, B/2, —/2), (Ai, 7, G313, 0) (1 = 2,4),
(3.34) to (A\,r,s,7) = (r,1,50,1) assert

t
/ 11+ [2)* (1 + [o] = 21)"VSa(t = 7) Pra L(7) |0 d
0

(1+ [z (1+ |2] = 21) f

4
_ 3¢l 1y 1 .
< |1+ [2)*(1 + [2] = 20) flop + € S ¢ HG D7 E o

=2

3

fort>2,f e ﬂ Li(D) N L5(D) N L*(D). We thus obtain (3.39), from which the assertion
i=2

1 follows. In order to prove the assertion 2, let 7, a satisfy 1 <r < 3/(1 —«a) and 0 < a <

min{3(1 —1/r),1}. We take X so that 1 < A\ < min{3/2,7},a < 3(1—1/X),1/X—1/r # 1/3.
Then in view of (3.21), the same calculation as in (3.36), (3.37) asserts

3

(L + |2)* Prs L(8) s < C(L+ 1) 2 3 |(1 4 |2])* £l

for t > 0,k = X, 7. From this and (3.40), applying (3.30) to (A, 7, s,j,1) = (X,/r, r,1,0), (3.33)
to (A, r,s,m, k) = (A, r,1,0,—a/2), (3.34) to (\,7,s,7) = (r,7,(39)/(3 + aq), 1) leads us to

— _1
1L+ )™ P fllrzo\Bro) < CEZ (L + |2 fllp

for t >0, f e Lj +|x|)w(D). The estimate of Ve~ 4 near the boundary is also derived by the

Sobolev embedding and (3.21), which yields

11+ 2D P fllrp < CZ|(1 + |2)* fllrp

fort >0, f € Lf1+|x|)m (D). This with the assertion 2 of Theorem 2.2 completes the proof. [
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