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1 Introduction

We report on the formation of singularities in one-dimensional hyperbolic compressible Navier-
Stokes equations, a model proposing a relaxation leading to a hyperbolization through a nonlin-
ear Cattaneo law for heat conduction as well as through the constitutive Maxwell type relations
for the stress tensor. There are in general no global C! solutions for the studied system, for
some large initial data. This is in contrast to the global large well-posedness for the non-
relaxed, classical system. Relations to incompressible Navier-Stokes equations, and possible
higher-dimensional situations are also addressed For detailed results, proofs and references see
the joint work with Y. Hu and N. Wang [2].
Consider the one-dimensional non-isentropic compressible Navier-Stokes equations,

pt+(pu)z = 0, (1)
puy + putiy +pr = Sg, (2)
per + puey +pug +q, = S’U,x, (3)

p,u,e,p, S, q: fluid density, velocity, specific internal energy per unit mass, pressure, stress ten-
sor, heat flux.

Classical relations:
q= —kby, S = puy, (k, > 0).
Here: Nonlinear Cattaneo law of heat conduction
T1(q +u - qz) +q+ Kb, =0, (4)
and the Maxwell type constitutive relations for the stress tensor
To(St+u-Sy) + 5 = puy. (5)

e and p satisfy

e=Cof+ ¢+ 252,
klp wp

= Rpf — —q> — =52,

p=Rpb =550 ~ 2,5

with positive constants 71, 72, C,, R. We consider the Cauchy problem for
(p,u,0,5,q) : Rx[0,+00) > Ry xRx Ry xRxR,
with initial condition

(p(z,0),u(x,0),6(z,0),S(x,0),q(z,0)) = (po, wo, b0, So, qo)- (6)



Local existence and global existence for small data are known. In the singular limit 7 = 7 =
7 — 0, smooth solutions converge to solutions of the classical Navier-Stokes equations on finite
time intervals. For the classical Navier-Stokes system (73 = 72 = 0), smooth solutions exist for
arbitrary initial data away from vacuum (Kazhikov [3]). Here we have a blow-up for some large
data. What is the “correct” model?

2 Effects of Relaxation

— 2nd-order thermoelasticity: relaxed/classical; linear/nonlinear, small/large data: same
behavior
— Thermoelastic plate:
Wt + A?w + A0 = 0,
0; +divg— Auy = 0,
Tq +q + Vo =
7 = 0: Exponential stability in bounded domains, no regularity loss for the Cauchy problem
7 > 0: No exponential stability in bounded domains, regularity loss for the Cauchy problem
Here we will have an effect of the relaxation only in the nonlinear system, having the same
behavior for the linearized system.
— Isentropic compressible Navier-Stokes equations with linearized constitutive equations:
same effect (blow-up for large data while linearized similar)
— Semilinear heat resp. damped wave equation: Relaxed systems, linear or nonlinear, behave
similar.
— Incompressible Navier-Stokes equations:

u + (u-V)u+ Vp=divS divu =0,
7S¢+ S = pu(Vu + (Vu)'),

leading to
Tuy — pAu+u +Vp+7Vpy =

—(u-V)u— (tur - V)u — (7u - V)uy,

with a quasilinear nonlinearity. Known results: Global small (smooth) solutions; linearized
systems behave similar.

3 Blow-up Result

For some small 6 > 0, (p,0,q,S) take values in
Q:=(1-61+9)x(1—=0,140) x(—6,0) x (—0,9).
Theorem 3.1 (Local Existence). Let (pg,uo, 00,90, S0) : R = R be given with
(o — 1,u0,60 — 1,90, 50) € H?, YV € R, (po, 00,40, So) € .

Then, the initial value problem (1)-(6) has a unique solution (p,u,0,q,S) on a mazximal time
interval [0,Ty), for some Ty > 0, with

(p—1u,0—1,q,5) € C°0,Tp), H*) N C' ([0, Ty), H")

and
Vr € Ra vt e [07T0)7 (p(x,t),G(x,t),q(x,t),S(x,t)) € Q.



Lemma 3.2 (Finite Propagation Speed). Let (p,u,0,q,S) be a local solution to (1)-(6) on
[0,70). Let M > 0. Assume the initial data (po — 1,up, 00 — 1, qo, So) are compactly supported
in (=M, M) and (po, 0o, q0,S0) € Q. Then, there exists a constant o such that

(p('at)’u('at)v9("t)’Q('at)’S("t) = (1’0’1’0’0) = (ﬁ,ﬂ, 57 q, 5)
on D(t) ={z € R||z| > M +ot}, 0<t<Tp.
Let
F(t) := /Ra:p(x,t)u(x,t)dx,

Glt) == / (E(z,t) — B)da,
where : !
E(z,t) := p(e + §u2)

is the total energy and

E:=pe+ %ﬂQ) = C,.
Theorem 3.3 (Blow-up Result). We assume that the data

(po — 1,u0,60 — 1,90, So)
are compactly supported in (—M, M), and that

G(0) > 0.

Then, there exists ug satisfying

2 4./
F(0) > max{3 agmaxp07 I;laXpo } M?,
-7 -

R
1<’Y:=1+E<3

such that the length Ty of the maximal interval of existence of a smooth solution (p,u,0,q,S) of
(1)-(6) is finite, provided the compact support of the initial data is sufficiently large.

Ingredients of the proof:
— exploit Sideris’ ideas used for compressible Euler equations
— derive a Riccati-type differential inequality for the functional F', starting with

F/(t)> C3 F2—T1(27—_ 1)/q2dl‘_7—2(27_1)+ﬂ/52d$
R R

T 2(1 4 ceat)3 K0 2u
— use an entropy dissipation equation
— choose
0, x € (—oo, —M],
Lcos(m(z+ M)) — £, ze (=M, —M + 1],
—L, re(—-M+1,-1],
ugp(x) := ¢ Lcos(§(z —1)), xz e (—1,1],
L, x e (1,M —1],
Leos(m(z —M+1)+ L%, 2e(M-1,M],
L 0, x € (M,),

where L > 0 is determined in the proof.



4 Linear Stability

The linearized version of (1)—(5) is

Pt t+uUuy =

u — Sy + RO, + Rp, =
Cybs + Rug +q., =
Tig +q+ Kby =
95+ S — pu, =

o oo o o

Case 1: Bounded domain, x € (0,1).
Boundary conditions
u(t,0) =u(t,1) =0, q(t,0)=¢q(t,1)=0.

/01 po(z)dx = /01 0o (z)dx = 0.
R

! 1 C,
Eq(t) := / (—p2 +—u? 4+ =267 + 1q2 + ;—/2152> dx = Eq1(t;p,...,S),
0 4

Without loss of generality,

2 2 2 2K
EQ(t) = El(tﬂ Pty - - 7St)7
E(t) = El(t) + Eg(t.

Theorem 4.1 (Exponential Stability in Bounded Domains). There are constants C,d > 0 such
that for all t > 0 we have
E(t) < CE(0)e %,

The proof is obtained by a standard multiplier method.
Case 2: Cauchy pAroblem, z e R.
V= (p,u,0,q,5), V: Fourier transform of V. Using Kawashima’s approach we obtain:

Theorem 4.2 (Pointwise Energy Estimate). There are positive constants C' and Cy such that

[V (t, 6> < Ce ORIV (0,6)2,  for (t,€) € RT xR,

where h(r) := 1_’;12.

Theorem 4.3 (Decay Rates without Loss). Let [ > 0, and 0 < k < [ be integers, and let
p € [1,2]. Assume that V(0) € H/(R) N LP(R). Then we have

loLv* <c {e_cltH@iV(O)ll2 + 1+ t)_(Q”l_k)II@’;V(O)H%p} : (7)

1
2p

W=

where A =

The number of derivatives necessary on the right-hand side of (7) is not more than the
number estimated on the left-hand side (“no loss”).



5 Isentropic Case

pi+ (pu)e = 0,
PUL + pUUL + Dy = S,
TSi+S = puy.
7 = 0: global large solutions exist, 7 > 0: blow-up for large data, i.e. a similar situation as in

the non-isentropic case.
Linearized Isentropic Case:

Pt + Uy = 07
Uy + Rlpx - S:c = 07
TS+ S — puy =

T=0:
U — RyUgy — Pz = 0,

with some R; > 0.
Bounded domains: exponential stability, Cauchy problem: no loss of regularity.
7> 0:
TUpet + Ut — Ritgy — (TR1 + ) Uige = 0.

(Jordan-Moore-Gibson-Thompson type), again: exponential stability in bounded domains
and no loss of regularity for the Cauchy problem.

6 Remarks on Higher Dimensions:
Higher-dimensional case (n = 2, 3), first classical:
8tp + dlv(pu) = O,
O(pu) +div(pu @ u) + Vp = div(S),
poe + pu - Ve + pdivu + divg = §: Vu,
with the constitutive law for a Newtonian fluid,

S=u <Vu + Vul — %div uln> + Adivul,

and heat conduction given by Fourier’s law,

q=—krV6.
Maxwell splitting: S = 57 + S21,,, with
T_ 2.
S1 = pu(Vu+Vu —;dqun),
52 = Adivu.



Relaxation in Sy (only) and g¢:

Op +div(pu) = 0,
2
pou+pu-Vu+Vp = pdiv(Vu + Vul — EdivuIn) + V.S,

2
pde + pu - Ve + pdivu + divg = p(Vu + (Vu)T — Edivuln) : Vu + Sadivu,

T1(Og+u-Vq)+q+kVO = 0,
73(0pS2 +u-VSy) + 52 = Adivu,

Results: local existence, global small existence for > 0, blow-up for large data for = 0 (joint
work with Y. Hu [1]).
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