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1 Introduction

This article is a summary of our work [8]. The molecules of nematic liquid crystal flows as
in a liquid phase; however, they have the orientation order. In order to analyze the biaxial
nematic liquid crystal flows, Beris and Edwards [3] proposed the N x N symmetric, trace-
less matrix as the director fields, which is called Q-tensor. In this article, we consider the
coupled system by the Navier-Stokes equations with a parabolic-type equation describing
the evolution of the director fields Q.

ou+ (u-V)yu+ Vp = Au+ Div (7(Q) + 0(Q))  inRY for t € (0,7),

divu =0 in RY for ¢t € (0,T), .
2Q+ (u-V)Q—-S(Vu,Q)=H in RY for t € (0,T), (1.1)
(1, Q) =0 = (10,Qo) in RV,

Here, 0, = 9/0t, t is the time variable, u(z,t) = (ui(z,t),...,un(z,t))" is the fluid
velocity, where M denotes the transposed M, and p = p(x,t) is the pressure. For a
vector of functions v, we set divv = Z;VZI 0;vj, and also for N x N matrix field A

with (j, k)™ components Ajj,, the quantity Div A is an N-vector with j* component
Zszl OxAji, where O = 0/0xy,. The tensors S(Vu, Q), 7(Q), and o(Q) are

S(V0.@) = (€D(w) + W) (@ + 1)

" (@ + %I) (ED(u) — W(w) - 2 (@ " %I) Q: v,
T(Q)=26H: Q (Q—I—%I) —& lH (Q—{—%I) + (Q—I—%I) H} —VQ o VQ,
o(Q) = QH - HQ,
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where D(u) = (Vu + (Vu)?)/2 and W(u) = (Vu — (Vu)?)/2 denote the symmetric
and antisymmetric part of Vu, respectively. A scalar parameter £ € R denotes the ratio
between the tumbling and the aligning effects that a shear flow would exert over the
directors. Moreover, I is the NV x N identity matrix,

H = AQ - aQ + b(Q* — tr(Q*)I/N) — ctr(Q*)Q,

and the (7, j) component of VQ ® VQ is Zi\j,ﬁzl 0;Qap0;Qap-
In this article, we consider the global well-posedness for (1.1) for small initial data in
the following solution class:

ue () W((0,7), Ly(RM)N) N Ly((0,7), Wi (RV)N),
Qe () Wp(0,7), W, (RY;Sp)) N Ly((0, T), WHRY;Sy))

q=q1,92

(1.2)

with certain p, ¢1, and g.

Mathematically the Beris-Edwards model (1.1) has been studied by many authors
in recent years. Concerning strong solutions, Abels, Dolzmann, and Liu [1] showed the
existence of a strong local solution and global weak solutions with higher regularity in
time in the case of inhomogeneous mixed Dirichlet/Neumann boundary conditions in a
bounded domain without any smallness assumption on the parameter £. Liu and Wang [7]
improved the spatial regularity of solutions obtained in [1] and generalized their result to
the case of anisotropic elastic energy. Abels, Dolzmann, and Liu [2] also proved the local
well-posedness with Dirichlet boundary condition for the classical Beris-Edwards model,
which means that fluid viscosity depends on the Q-tensor, but for the case & = 0 only.
Cavaterra et al. [4] showed the global well-posedness in the two-dimensional periodic case
without any smallness assumption on the parameter £. Xiao [13] proved the global well-
posedness for the simplified model with ¢ = 0 in a bounded domain. He constructed a
solution in the maximal L,-L, regularity class. Recently, Schonbek and the second author
in [10] proved the global well-posedness for any £ and small initial data in the class (1.2).
The difference between [10] and the present article is the linear terms of the model. More
precisely, the problem (1.1) is separated into the linear part and nonlinear part as follows:

Ju — Au+ Vp + Div (AQ — aQ) = f(u,Q), in RY for t € (0,7),

divu=0 in RY for t € (0,7), L3
9,Q — fD(u) — AQ +aQ = G(u, Q) in RY for t € (0,7, (1.3)
(0, Q)|i=0 = (1o, Qo) in RV,

where
B =2¢/N,

f(u,Q) = —(u-V)u+Div[2dH: QQ+I/N) - (¢+1)HQ+ (1 — ) QH — VQ ® VQ]
— BDiv {b(Q* — tr(Q*)I/N) — ctr(Q*)Q},
G(u,Q) = —(u-V)Q+£(D(u)Q +QD(u)) + W(u)Q — QW (u) — 26(Q+I/N)Q: Vu
+b(Q?* — tr(Q*)I/N) — ctr(Q*)Q.



On the other hand, AQ — a@Q is removed from the tensor 7(Q), and so u part and Q part
of linearized equations are essentially separated in [10]. This is a big difference between
[10] and the present article.

Before stating the main result of this article, we summarize several symbols and func-
tional spaces used throughout the article. N, R and C denote the sets of all natural
numbers, real numbers and complex numbers, respectively. We set Ng = N U {0} and

R, = (0,00). For any multi-index o = (ay,...,ay) € NI, we write |a| = a; + -+ + ay
and 09 = 07" --- Oy with © = (z1,...,zy). For scalar function f, N-vector of functions

g, and N x N matrix ficlds G, we set
V=07 f [al=k), V'g=(00g;|lal =k j=1,....N),
VG = (2G| |a| =k, j,0=1,...,N).

For Banach spaces X and Y, £(X,Y") denotes the set of all bounded linear operators from
X into Y, £(X) is the abbreviation of £(X, X'), and Hol (U, £(X,Y)) the set of all L(X,Y")
valued holomorphic functions defined on a domain U in C. For any 1 < p, ¢ < oo, L,(RY),
W;”(]R{N ) and qujp(RN ) denote the usual Lebesgue space, Sobolev space and Besov space,
while || - [|z, @), || - [lwp@y) and || - ||gs  @~) denote their norms, respectively. We set
WRYN) = Ly(RY) and W;(RY) = B; (RY). C(R") denotes the set of all C> functions
defined on RY. L,((a,b), X) and W,"((a,b), X) denote the standard Lebesgue space and
Sobolev space of X-valued functions defined on an interval (a,b), respectively. The d-
product space of X is defined by X9, while its norm is denoted by || - ||x instead of || - || xa
for the sake of simplicity. Let

So = {Q e RY |Q = Q",t:Q = 0}.
The space for a tensor is defined by

N
X(RY; ) = {G RV =S| [Gllx = > 1Gyllx < OO}

ij=1
for the Banach space X. We set
WHARY) = {(f,G) | f € W' (RY)Y, G e W (RY;S)},
I(E, G)llyyme ey = [Ellwyn vy + (|G llwe ).

Let F, = F and ‘7:6_ ' — F~1 denote the Fourier transform and the Fourier inverse
transform, respectively, which are defined by setting

FO = FAN© = [ e @ Flw) = gy [ oty

The letter C' denotes generic constants and the constant C,, . depends on a,b,.... The
values of constants C' and C, . may change from line to line. We use small boldface
letters, e.g. f to denote vector-valued functions and capital boldface letters, e.g. G to
denote matrix-valued functions, respectively. Furthermore, we set spaces and norms:

J,(RY) ={u € L,(RY)" | divu =0 in RV},
Dyp(RY) = {(u,Q) [u € (BY/PRY)Y N J,(RY)), Qe B P(RY;S))},
Xpar = {(w,Q) [u e L((0, 1), WHRY)™) n W, ((0,1), Ly(RM)™Y),
Q € Ly((0,1), W2 (RY;So)) N W, ((0, 1), W, (RY;S0))},



N(u, Q)(T)
b b
= Z (H <t>"(u, Q)HLOO((O,T),Wg’l(]RN)) + || <t >" 9(u, Q)||Lp((O,T),W$’1(RN)))

9=41,92

+ <t >"V(u, Q)HLP((O,TLWJIQ(RN)) + <t>"(u, @)HLP((O,T),Wgz;S(RN))v

where < ¢t >= (1 +t2)/2, b is given in Theorem 1.1 below.
The following theorem is our main result of this article.

Theorem 1.1. Assume that N > 3. Let 0 < T < 00, 0 < 0 < 1/2, and let p = 2 or
p=24 0. Let ¢ and qo be numbers such that

N2+o0)
> 219 e N =34,
G =2+o, QQ_N—(2+0) /
g2 >N if N >5.

Suppose thatb = (N—0)/(2(2+0)) ifp =2 andb = N/(2(240)) if p = 2+0. Then, there
exists a small number ¢ > 0 such that for any initial data (1, Qy) € i, Dy p(RY) N
WL (RN with

q1/2

2
Z:= Y [l(u0, Qo)llp,,,m~) + (w0, Qo)llyyo1, vy < €,

i=1
problem (1.1) admits a unique solution (u, Q) with
(u’ Q) 6 vaquT m Xp7q2yT

satisfying the estimate

N(u,Q)(T) <e

Remark 1.2. 7" > 0 is taken arbitrarily and e is chosen independent of T'; therefore,
Theorem 1.1 yields the global well-posedness for (1.1).

2 Idea of the proof of Theorem 1.1

Theorem 1.1 can be proved by the Banach fixed point argument. To explain our idea
more precisely, we rewrite symbolically (1.1).

{@u —Au=f(u) RN forte(0,7),

U|y—o = Ug in RY,
where u = (u,Q) and f(u) = (f(u), G(u)). Moreover, A is a linear operator
Au = (PAu — PDiv (AQ — aQ), f/D(u) + AQ — aQ)
defined for (u, Q) € D(A), where P denotes the solenoidal projection and
D(A) = (WZ(RM)N 1 J,(RY)) x W2(RY;Sy).
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Let p, ¢1, and ¢» be exponents given in Theorem 1.1. Let ¢ be a small positive number
and let Zp . be the underlying space defined as

Ire ={u € Xpq 7 N Xpgo,1 [Ult=0 = o, N(u)(T) <,
sup [|Q(, )|l Loy < 1}

o<t<T

Given v € Zp,, let u be a solution to the equation:

ou—Au= f(v) inRY fort € (0,7), 2.1)
Ul4=o = ug in RY. '
The key estimate to apply the Banach fixed point argument is
N(u)(T) < Cé. (2.2)

Assuming that we know the linear operator A is the sectorial operator and the following
several theorems concerning the estimates for the solutions of the linearized problem, we
explain the outline of the proof of (2.2). For this purpose, we set u = u; + uy, where u;
satisfies the time-shifted equations:

Oy + Muy — Auy = f(v), inRY fort € (0,7), 2.3)
Us)y—o = 0 in RY '
with some large constant A\; and us satisfies the compensation equations:
atUQ - AUQ = >\1U1, in RN for t € (0, T), (2 4)
U2|t:0 = Ug in RN. .
Firstly, we consider (2.3). Replacing f(v) with f, we have the linearized problem:
ou+ Mu — Au = f, in RY for ¢t € (0,7), 2.5)
lj—g = 0 in RY. '

The solution of (2.5) satisfies the maximal L,-L, regularity estimates as follows.

Theorem 2.1. Let 1 < p,q < oo. Let b > 0. Then, there exists a constant \y > 1
such that the following assertion holds: For any f € Ly((0,T), W' (RY)), problem (2.5)
admits a unique solution u € X, ;7 possessing the estimate

b b
| <t>"Qull, om)mwor@yy T 1 <t>"ully omwes@yy
<O <t > fllo, omwe @y

By Theorem 2.1 and the estimates for nonlinear terms, we have

N(uw)(T) < CN(v)(T)* < Cé, (2.6)

N)(T) = D 1<t >" Oanlly,qomywer@ny + 1 <> wlly, o wer@n):
9=41/2,q1,92



Secondly, we consider (2.4). Note that the linear operator A generates a continuous
analytic semigroup {e'};>o on

Xo(RY) = Jo(RY) x W (R™; o)

for 1 < ¢ < oo such that u = e*tuy is a unique solution of (2.1) with f(v) = 0. Moreover,

there exist constants v; and C' such that

[u(®)]| x,@yy < Ce™||luollx, @y, 10vu(t)]|x,@yy < Ce™ t uo| x, @y, @2.7)
[0pu(t) | x,&vy < Ce™uoll pay

for any ¢ > 0. (2.7) and a real interpolation method (cf. Shibata and Shimizu [11, Proof
of Theorem 3.9]) yield the following theorem.

Theorem 2.2. Let 1 < p,q < oo. Then, for any uy € Dy ,(RY), (2.1) with f(v) = 0
admits a unique solution u = e*ug possessing the estimate:

le™ Ol g, wor ey T lle " ully g, w2y < Cliwollp,, @) (2.8)

Jor any v > 7.

Moreover, {e'};~¢ satisfies the decay properties and a standard estimate.

Theorem 2.3. Let u be the solution of (2.1) with f(v) = 0 for ug € X,(RY). Then, u
satisfies the following estimate:

; N1 _1y_J
||V]u||wz9»1(RN) <ct =l 2(||u0||W(9»1(RN) + ||U0||W19,1(RN)),

_M(l_l)_l <29>
Hatung’l(RN) <Ct 2y (HUOHW(?*I(RN) + ||UOHWZ?*1(RN)>
fort>1,1<qg<2<p<oo,j=0,1,2. Moreover,
||uHWp2’3(]RN) + HatuHW,?"I(RN) < CHUOHWE‘B(RN) (2.10)

for0<t<1.

Remark 2.4. (2.10) follows from the fact that {e**};>¢ is the continuous analytic semi-
group.

The Duhamel’s principle implies that
t
uy = ey + )\1/ ey (-, 5) ds. (2.11)
0

For the first term of (2.11), we use (2.9) if £ > 1 and (2.8) if 0 < ¢t < 1. On the
other hand, for the second term of (2.11), we use (2.9) and (2.10) in order to esti-
mate fot_l eAt=9)y, (-, ) ds and ftt_l eAt=3)y, (-, s) ds, respectively. For the later part, what
uy(t) € D(A) for t > 0 is a key observation. Therefore, by (2.6), we have

N (u2)(T) < C(T + N (uy)(T)) < Ceé?. (2.12)
Combining (2.6) and (2.12), we have (2.2).



3 ‘R-boundedness of solution operators

According to section 2, the key statements to prove Theorem 1.1 are the maximal L,-
L, regularity for the time-shifted equations, the generation of the continuous analytic
semigroup {e**};>o, and the estimates for {e#*},~o. In order to show these statements,
we analyze the following resolvent problem:
{Au—Au+Vp+M%MAQ—m@:£,qu:O in RV,

AQ - fD(u) - AQ+aQ =G in RV (3.1)

where ) is the resolvent parameter varying in a sector
Sen = {AEC | arg A < 7 — €, ]\ > Ao}
for 0 < e <7/2 and Ao > 0. Moreover, we set an angle oy € (0,7/2) by

o if § =0,
7= { arg(1+1|8]) if g #0. (32)

In this section, we especially consider R-boundedness of solution operator families for
(3.1). Here, we introduce the definition of R-boundedness of operator families.

Definition 3.1. A family of operators 7 C L(X,Y) is called R-bounded on L(X,Y),
if there exist constants C' > 0 and p € [1,00) such that for any n € N, {T}}7_, C T,
{fi}j=1 € X and sequences {r;}}_; of independent, symmetric, {1, 1}-valued random
variables on [0, 1], we have the inequality:

{/ N Z:m(u)ijjII%”/ du}l/p <cf [ N zi;w)fjn& i}

The smallest such C' is called R-bound of 7, which is denoted by R.x.v)(T).

1/p

The following theorem is the main result of this section.

Theorem 3.2. Let 1 < g < oo and N\g > 0. Then, for any o € (0, 7/2), there exist
operator families

A(N) € Hol(Sg 5, LWPHRY), WZ(RM)Y))

q
B(\) € Hol(Xg 5, LW, H(RY), W2 (RY;Sy)))
such that for any X =~y + i1 € Xg, , £ € Ly(RV)Y, and G € W/ (RY;Sy),
u=AN)(f,G), Q=BW(G)

are unique solutions of problem (3.1), and

R ot @y, a,@yy) {(TO:)"SVA) | A € Boxo}) <7, (3.3)
RL(WQJ(RN),BQ(RN))({(TaT)nTAB()‘) A€ Ton}) < (3.4)
for n = 0,1, where Syu = (V2u, \'/2Vu, A\u), T,Q = (V?Q, \'/2V2Q, \Q), A,(RY) =

Ly(RV)NHNHN B (RN) = Ly(RY; RV ) x L, (RY; RN ) x WH(RN; Sy), and r is a constant
independent of \.



Remark 3.3. (i) Since Definition 3.1 with n = 1 implies the uniform boundedness of
the operator family 7, solutions u and Q of equations (3.1) satisfy the resolvent
estimate for any A € ¥, ),; therefore, the linear operator A generates a continuous
analytic semigroup {e'}, satisfying (2.7).

(ii) By Theorem 3.2 and the Weis operator valued Fourier multiplier theorem [12], we
have Theorem 2.1.

From now, we explain the outline of the proof of Theorem 3.2. Firstly, we calculate a
solution formula of (3.1). Taking divergence of the first equation of (3.1), we have

p=—pB(divDivQ — aA~'divDivQ) + A~ div f. (3.5)
Inserting (3.5) into the first equation of (3.1), we have
(A — A)u — fVdivDiv (Q — aA™'Q) + ADiv (AQ — aQ) = f — VA ' divf.  (3.6)
Since the second equation of (3.1) yields
A—A+a)Q=pD(u) + G,

Q can be represented by u; therefore, we only consider a solution formula for u below.
Applying A — A + a to (3.6) we have

u=P\) (A= A+a)(f - VA divf)
+ BV (divDiv G — aA~! div Div G) — BDiv (AG — aG)},
where P(A\) = (A — A)(A — (A — a)) + *(A? — aA). Thus u = (uy, ..., uy) has form:
u; = A;(M(E, G)

with s )
e 5852 (- )
Awiee) -7 A (7
—1 B . N R N ' .
— F P(f, )\) (lé‘j Z gégmGém - ;Z@lﬂ Gjé)
3 N R
_a]-"—l 5] Z ¢ 7; Z i&Gﬂ |
€] pesd
where
PEX) = A+ 6+ [EF +a) + (" + ale)
= (A = A (D) A = A_(lgl)
with

As(le) = = (1€ + 5 \/——aﬁ2lél2 Blel

which has the following expansions :

Ac(le]) = =1+ B7)IEl + 0N,
A-(le]) = —(1 = B*)[¢)* —a+ O(Ig[") as ] — 0,

Ac(le]) = (1 £iBDIEN* +0(1) as [¢] — oo. (3.8)
By (3.7) and (3.8), P(&, A) has the following estimate.
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Lemma 3.4. Let oy be the angle defined in (3.2). Then, for any o € (0o, 7/2) and
(&,0) e RN x %, 4, we have

[P(&,A)] = Cog(IAIY + [€])*
with some constant Cy 5 independent of & and .

Secondly, we prove R-boundedness of A(\), where we have set A(\)(f, G) is a vector
whose j™ component is A;(A)(f, G). We introduce the following lemma proved by [5,
Lemma 2.1], [6, Theorem 3.3], and [9, Lemma 2.5].

Lemma 3.5. Let 1 < q < oo, 0 > 0. Assume that k(§,\), £(&,N), and m(&,\) are
functions on (RN \ {0}) x 3,0 such that for any o € (00,7/2) and any multi-index
a € N there exists a positive constant M, , such that

0L R(E N < Magl€'1, 920(&, \)| < Mo |€71,
[0 m(&, M| < Moo (N[ + [€]) e[
for any (£, \) € (RN \ {0}) x X,0. Let K(N), L(\), and M () be operators defined by
(K@) = FURENFEN@) (A€ Eq0),
L) = FUENFON@) (A€ o),
(M) f](w) = F ' [m(ENFO]) (A€ o).
Then, the following assertions hold true:

(1) The set {K(X) | A € g0} is R-bounded on LW, (RY), Ly(RY)) and there exists a
positive constant Cy 4 such that

R @), gy ({K(A) | A € Sao}) < g max My,

|a|<N+1

(2) Let n = 0,1. Then, the set {L(\) | X € Yoo} is R-bounded on L(W}(RY)) and
there exists a positive constant Cy 4 such that

n < '
Rew; @) {LA) | A€ Eop}) < COnyg \allqsl?\/}il M, ,

(3) The set {M(X) | X € Bg5} is R-bounded on L(Ly(RY), W) (RY)) and there exists a
positive constant Cn 4 such that

Rﬁ(Lq(RN),WC}(RN))({MA | A€ Xss5}) < Ongs \a?%?v)frl My,

By Lemma 3.4 and Bell’s formula, P(£, \) satisfies the following estimates.

Lemma 3.6. Let a > 0 and n = 0,1. Then, for any o € (0o, 7/2) and any multi-index
a € NYY, there exists a positive constant C' depending on at most o, ¢ and b such that for
any (§,\) € RN x 3, ¢ with A = 7 +ir,

084 (70,)" P(&, )71} < CAY? + [g]) 1.
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Therefore, we can verify (A, A\Y/2¢;, &;&)ANF with 5,k = 1,..., N satisfies the as-
sumption of Lemma 3.5, which yields (3.3) in Theorem 3.2. Similarly, we have (3.4) in
Theorem 3.2.

Finally, we mention (2.9) in Theorem 2.3. Theorem 3.2 implies that there exist oper-
ators

S(t) € LIXRY), WS RY)Y), T(t) € LIX,(RY), W] (RY;So))

such that for any (ug, Qo) € X, (RY), u = S(t)(ug, Qp) and Q = T'(¢)(uy, Q) satisfy
(1.3) with (f(u, Q), G(u,Q)) replaced by (0, O). In this article, we only explain the L,-L,
decay estimates of the operator S(t). For this purpose, we decompose the solution into
low and high-frequency parts. Let ¢ € C5°(RY) be a function such that 0 < ¢(§) < 1,
e(&) =11if [¢| < 1/3 and (&) = 0if || > 2/3. Let o and ¢, be functions such that

po(&) = 0(€/A0), Puo(§) =1 —(£/Ao),

where Ay € (0,1) is a sufficiently small number. Moreover, we set

(1) (10, ) = mzr [t npin] @

gmzf { / ey (&, )\)SOnDlV@od/\}( )

where n = 0, oo,

A 2 A 2
(6 Ny = %u (2(6, Nt = %légg f,
—  f . = —= _ BlE® =—=
ml(év )\)DIV Qo = P(f )f - Div Qy, m2(§, /\)DIV Qo = P(f )\)Dl Qo,
mg(f, )\)])TV@O = (Clﬁ ) |§§|2§ DIV Qo, m4(§, )\)mo = P(C;/jk) mo.

Here, we set the integral path I' = 't U™ as follows:
F= A eC A= X(0) +5e¥™) 50— 00}

for oy < o < 7/2 with M\g(0) = 2)\¢/sin o, where )g is the same as in Theorem 3.2. In
view of (3.7), the L,-L, estimates of the heat kernel are helpful for the low-frequency
part. On the other hand, since we have the resolvent estimates by using Theorem 3.2
if the integral path belongs to ¥, y, and otherwise Fourier multiplier theorem, we have
exponential decay estimates for the high-frequency part if ¢ > 1. Therefore, we have (2.9)
in Theorem 2.3.
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