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An E_. -ring is a spectrum equipped with commutative multiplicative law up to coherent
homotopy.

Lurie refined the notation of E..-ring by using oo-operad Na(Fin,). In 2001, Mandell,
May, Schwede and Shipley considered diagram spectra, especially Z-indexed ring spectra.
Lurie consider Z-grading on E.,-ring by using Z with order preserving morphisms. I think
some professionals already noticed that the symmetric monoidal structure on discrete
graded rings and modules are obtained by the Day convolution.

We have symmetric monoidal co-categories Na(OF) — Na(Fin.) and Na(O0F) —
Na(Fin,). By using these symmetric monoidal co-categories, we concretely define graded
E,-rings and graded modules over them, and study their properties. We construct projec-
tive schemes associated to connective N-graded E..-rings in spectral algebraic geometry.
Actually, Torii and I gave these construction in more general situation, please see [8]. In
this paper, I use an expedient ; I state their properties by using oco-operads.

Under some finiteness conditions, we show that the oco-category of almost perfect quasi-
coherent sheaves over a spectral projective scheme Proj(A) associated to a connective
N-graded E.-ring A can be described in terms of Z-graded A-modules.

1. GRADED E,-RINGS AND GRADED MODULES

For a symmetric monoidal category consisting of one object {0} with the unique iso-
morphism, we have a category Fin,. The map {0} — N and {0} — Z are the symmetric
monoidal functors.

Definition 1.1. Let C® — NaA(JFin,) be a symmetric monoidal oo-category. We ob-
tain a symmetric monoidal co-category Funn, in,)(Na(Z), €)® — Na(Fin,) by the Day
convolution which is denoted by .



We use the notation Algg ,o(M) for the fibration M — O of oc-operads and given
oo-operads O — 0.

For X € Funy, (gin.)(Na(Z), (3)@, X, is the value at i € Z of the underlying functor of
X.

We take the symmetric monoidal co-categories Sp® and Mod$%, where R is an E,-ring.

Key diagram. Consider the following diagram

Na(Fin,)<—Na (0%)<—— N (Fin,)
A
A(o0) Ao

Sp® ,

where the map 0 is induced from {0} — Z, the map i is the structure map of symmetric
monoidal structure and A(oo) is the operadic left Kan extensions of A along i. Then,

(i) Ag is an En-ring, i.e., Ag is an object in Algy, gin,)/na (#in.) (SP?),

(i) A(co) is an Eo-ring, i.e., an object in Algy, (gin,)/n, (Fin,) (SP)-
Especially, the functor (—)o commutes with the graded tensor. We call A(co) the under-
lying E.-ring of A. Roughly speaking, A(c0) is such as a form of direct sum with respect
to grading.

Definition 1.2. e We define the oo-category of Z-graded E.-rings by

AlgNA(S”in*)/NA(?in*) (Funy, gin.) (Na(Z), Sp)®),

and call its object a Z-graded E..-rings.

e We say that a Z-graded E-ring A is connective if each A; for ¢ € Z is a connective
spectrum.

e Let R be an E-ring. We define the oo-category of Z-graded E..-rings over R by

AlgNA(S"in*)/NA(S"in*) (FunNA(?in*) (Na(Z),Modg)®),
and call its object a Z-graded E..-rings over R.

We denote by CAlgr(Z) and CAlgy(N) the oo-category of Z-graded and N-graded
E.-rings over R, respectively. We identify objects of CAlg(N) with that of CAlg(Z).

1.1. Modules over graded E..-rings.

Definition 1.3. For a Z-graded E.-ring A and an E_.-ring R, the co-category of Z-graded
A-modules is
MOdA(FU-nNA(?in*)(NA(Z)u Sp)®)7

where the notation Mod4(—) is in the sense of Lurie. Let us denote the oo-category of

Z-graded A-modules by Mod 4(Z).
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We call a morphism in CAlg(Z) and Mod4(Z) a morphism of degree 0 or a morphism
of graded E_.-rings and of graded A-modules.

Remark 1.4. The oco-category of Z-graded A-modules over R can be defined as
Mod 4 (Funy, gin.) (Na(Z), Modg)®).

1.2. Localizations of graded E..,-rings. For X in Sp(Z) and g € Z, we define a twisting
X(g) in Sp(Z) by X(g)y =~ Xyiy for ¢’ € Z.

Let A be a Z-graded E..-ring and let a € my(A) be homogeneous of degree g € Z.
We regard a as a morphism a : A — A(g) of Z-graded A-modules. Since Mod4(Z) is a
presentable oo-category, there exists a localization functor

L : ModA(Z) — Mod4(Z)

with respect to the map a : A — A(g). As in the nongraded case, L(M) is equivalent to
Mla™'], where M[a™'] is a colimit of the sequence

M2 M(g) % M(2g9) % -

in Moda(Z). The localization L is smashing given by L(—) ~ Ala™'] ®4 (—) and is
compatible with the symmetric monoidal structure on Mod 4(Z). We can regard [ : A —
Ala'] a morphism in CAlg(Z). We obtain an adjunction

l; . MOdA(Z) = MOdA[a—l}(Z) . l*,

where the left adjoint [, is a symmetric monoidal functor given by M — Afa™'] @4 M,
and the right adjoint [* is a fully faithful lax symmetric monoidal functor.
By [3, Remark 7.3.2.13], this adjunction induces an adjunction

l! : CAlgA = CAlgA[a_l} : l*,

where the right adjoint I* is fully faithful. Hence Iy : CAlg,(Z) — CAlgyp,—1(Z) is a
localization functor.

If a is invertible in 7y(B), we have an equivalence
MapCAlgA(Z)<A[a_l]7 B) — MapCAlgA(Z) (A, B)

since there is an equivalence | A ~ A[a™'] in CAlg,(Z).
We define an oo-category

CAlg%" ()

to be the full subcategory of CAlg,(Z) spanned by those objects of the form A[a™?] for

some homogeneous element a € my(A). We define CAlgSOZ(aAf) (Z) to be the full subcategory

of CRing,4)(Z) spanned by those objects of the form mo(A)[a™"] for some a € mo(A).
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Definition 1.5. A spectral scheme X is a projective spectral scheme if there exists a
collection {U,} such that U, covers X and there exists A € CAlg(Z) such that (U,, Ox) ~
(Spec (Ala; o), Ospec (aa-1]y)) for each U, and for degree (more that) 1 elements a, €
mo(A(0)).

2. QUASI—COHERENT SHEAVES ON PROJECTIVE SPECTRAL SCHEMES

Definition 2.1. Let A be a connective N-graded E..-ring. We say that A is Noetherian
if m9(A) is a Noetherian N-graded commutative ring and 7,(A) is a finitely generated
N-graded 7y(A)-module for any n € Z.

Let A be a connective Noetherian N-graded [E..-ring. In this section we assume that A
satisfies the following condition:

There are finitely many elements of m9(A;) which generate my(A) as an N-graded com-
mutative ring over mo(Ay).

Let A be a connective Noetherian N-graded E..-ring. Set X = Proj (A). We take a set
{ai}i_, C m(A;) of generators of my(A) as an N-graded commutative ring over my(Ap).
We define a Z-graded Eo.-ring B by B = Afa;'] x --- x Ala,;!]. Let g : A — B be the
canonical morphism of Z-graded E.-rings. We take a Cech nerve

Clg)%
of ¢ in the opposite co-category of CAlg(Z). Then C(g)$ is an augmented cosimplicial
object of CAlg(Z) such that C(g);' ~ A and C(g)" ~ B" for n > 0, where B" is given
by
nt1
B"=B®4- @4 B.

By using the functor (—), : CAlg(Z) — CAlg, we obtain C(g)§ as the composite of (—)g
with the restriction C'(g)* = C(9)%|a.

Note that there is a faithfully flat affine morphism f: U — X, where U = Spec(By),

and we have an equivalence U, =~ Spec(C(g)g) of simplicial objects of affine spectral

schemes. Since f : U — X is an effective epimorphism, we have an equivalence
U = X

in S/}Rfquc, where the left hand side is the geometric realization of the simplicial object
U,.
We have an oo-category QCoh(X) of quasi-coherent sheaves of O x-modules on X, which
is stable presentable symmetric monoidal with unit Ox by [5, Proposition 2.2.4.2].
There is an equivalence
QCoh(X) ~ lign Modpgs
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of symmetric monoidal stable co-categories.

Recall that Sp(Z) is a symmetric monoidal stable presentable co-category, so that it is
a commutative algebra object of Prg,, where Prg, is the co-category of stable presentable
oo-categories and colimit-preserving functors. We denote by CAIg(TrISJt) the oo-category
of commutative algebra objects of Prg,. By [3, Theorem 4.8.5.16], we have a functor

Mod(_)(Z) : CAlg(Z) — CAlg(Prg,),

which assigns to D € CAlg(Z) the symmetric monoidal co-category Modp(Z) of Z-graded
D-modules.

By applying the functor Mod(_y(Z) to C(g)% and using the equivalences Modgn(Z) ~
Modpgy for n > 0, we obtain a symmetric monoidal functor

Mod.4(Z) — lim Mod s;.

Definition 2.2. We define a functor

(=) : Mod4(Z) — QCoh(X)
to be the composite of the functor Mod 4(Z) — lima Mod B with the equivalence between
lima Modpge and QCoh(X). We call M the quasi-coherent sheaf on X associated to a
Z-graded A-modules M.

—

By the construction, the functor (—) : Mod4(Z) — QCoh(X) is symmetric monoidal.
Recall that we have defined the shifting functor (¢) : Mod4(Z) — Moda(Z) given by
M(q), ~ My, for M € Mods(Z) and ¢,n € Z. For q € Z, we define Ox(q) to be the

quasi-coherent sheaf A(q) on X.
Proposition 2.3. The quasi-coherent sheaf Ox(q) is locally free of rank 1 for any q € Z.

Proof. 1t suffices to show that the restriction m |y is equivalent to f~l|v for any affine
open set V = Spec(mo(A)[f o) of the underlying projective scheme Proj (m(A)), where

—_~—

f is an element of mo(A) of degree 1. The restriction A(q)|y corresponds to an A[f~!]o-
module A[f~'],. The multiplication by f¢ induces an equivalence of A[f !]o-modules
between A[f~'], and A[f™']o. Thus, there is an equivalence of quasi-coherent sheaves

—_—~—

between A(q)|y and Aly. This completes the proof. O

For a quasi-coherent sheaf .# of Oy-modules on X and ¢ € Z, we define % (q) =
F Qox Ox(q).
If .7 is the quasi-coherent sheaf associated to a Z-graded A-module M, then we have

—~—

an equivalence .% (q) ~ M(q) of quasi-coherent sheaves.

The functor (—) is obtained from the augmented cosimplicial diagram Mod(_)(Z) o

C(9)% : Ay — CAlg(Z) — Cato. Since the functor Mod(_y(Z) : CAlg(Z) — Cat o factors
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through the oco-category fP'r’Igt of stable presentable oo-categories and colimit-preserving
functors, we see that the functor (/:3 : Mod 4(Z) — QCoh(X) is a morphism in Prg,.
Thus, there exists a right adjoint I',(X, —) : QCoh(X) — Mod4(Z) to (f:S
The equivalence QCoh(X) — lima Modpge(Z) of co-categories implies an equivalence

MapQCoh(X)(Mv F) =~ lign Mapyiod e (z) (B* ®a M, T(Us, F (x)))
of mapping spaces. Since we have an equivalence
Mapyiod e (z) (B ®a M, T'(Us, F(x))) = Mapyoq,,z) (M, I'(Us, F (%))
of cosimplicial spaces, there is a natural equivalence
Mapqconx) (M, F) = Mapygoq ,(z) (M, im T'(Us, Z (+)).

Hence we obtain I'y(X, .#) ~ lima I'(Us, Z (x)).

le show that the functor T, (X, —) is fully faithful. Recall that B = Afa;'] x --- x
Ala; ', where {a;}I_, C mo(A;) is the set of generators of 7y(A) as an N-graded commu-
tative ring over mo(Ag). We have the faithfully flat affine morphism f : U — X, where
U = Spec(By). Note that there is an equivalence I'(U, f*Ox (x)) ~ B of Z-graded E.-
rings and hence that I'(U, f*.% (x)) is a Z-graded B-module for a quasi-coherent sheaf .#
of Ox-modules on X. We have the restriction map I',(X, #) — ['(U, f*%(x)), which
induces a map

Boal'u(X, F) =T, f7(x))

of Z-graded B-modules. We shall compare I'(U, f*.# (%)) with the scalar extension B ® 4
(X, 7).

Lemma 2.4 (cf. [8]). Let F be a quasi-coherent sheaf of Ox-module on X. There is a
natural equivalence

BwaTu(X,F) — (U, [*F (%))
of Z-graded B-modules.

Proof. We have U = Vi x --- x V,, where V; = Spec(A[a; ']o) for 1 < i < r. This implies
a decomposition

DU, [7 7 (%)) = T(Vi, F (%)) x - x T(V,, F (%)),

where ['(V;, % (%)) is a Z-graded Ala; ']-module for 1 < i < r. Since T'(V;, Z (%)) is a
Z-graded Ala; ']-module, the restriction map T'.(X,.%#) — T'(U, f*%(x)) induces a map
I.(X, %)a; '] = [.(V;, F) of Z-graded Ala; ']-modules. It suffices to show that this map

is an equivalence for any 7 with 1 <7 <.
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Let P be the partially ordered set of all nonempty finite subsets of {1,...,7}. We set
Vi =NV for I € P. By [5, Proposition 1.1.4.4], we have an equivalence

T\ ~ 1 Z
(X, F) = lim D (Vy, F ()

of Z-graded A-modules. Note that the right hand side is a finite limit indexed by P. Since
filtered colimits commute with finite limits, we obtain an equivalence

Lu(X, F)[a; '] ~ Hm(F(V7, Z (+))[a; '])

Iep ¢

of Z-graded Ala; ']-modules. By definition, we have an equivalence
L(Ve, Z(#))la; '] = T(Viugy, Z ()

for any I € P. We consider a functor 6 : P — Mod A[ai—1]<Z> which assigns to I € P the
Z-graded Ala; ']-module I'(Viygy, # (x)). Let P; be the subset of P consisting of finite
subsets of {1,...,7} which contain i. Since the functor 6 is a right Kan extension of the
restriction to P;, we have an equivalence

lim D'(Viuggy, & (+)) = lim D(Vy, F (%))

By [5, Proposition 1.1.4.4], we have an equivalence

A ~ |i o
L(Vi, # () = lim D(Vy, 7 (x)).
Thus, we have an equivalence T'(V;, % (¥)) ~ T'.(X, .#)[a; '] of Z-graded Ala; ']-modules.
U

Especially, we can see that he functor ', (X, —) : QCoh(X) — Mod4(Z) is fully faithful.

We have the adjunction (—) : Mod4(Z) = QCoh(X) : I'.(X, —) of co-categories. Since
the left adjoint (—) is a symmetric monoidal functor, the right adjoint I',(X, —) is a lax
symmetric monoidal functor. In particular, I',(X, Ox) is a Z-graded E-ring and there
is a map

A —T.(X,0x)

of Z-graded E.-rings. For a quasi-coherent sheaf .# of Ox-modules on X, I',(X,.%)
is a Z-graded I',(X,Ox)-module. We note that the Z-graded A-module structure on
(X, Z) is obtained from the Z-graded I',(X, Ox)-module structure through the map

A — T, (X, Ox) of Z-graded E..-rings.
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3. THE PROPERTIES OF QUASI—COHERENT SHEAVES ON SPECTRAL PROJECTIVE
SCHEMES

The definition of projective schemes by using quasi-coherent sheaves may be valuable
in the non-commutative geometry. For example, for a field £ and finitely generated
commutative graded k-algebra which is generated by degree 1 elements, Artin and Zhan
shows that there is an categorical equivalence between the category of certain coherent
sheaves on projective scheme of A and the category of finite graded right A-modules.
Verevkin also studied injective objects and Ext-groups in the category of finite graded
A-modules.

Lemma 3.1. For M € Mod(Z), we have M ~ 0 if and only if (M) is Zariski locally
bounded above for any n € Z.

Proof. We take a set {a;}i_; C m(A;) of generators of my(A) as an N-graded commu-
tative ring over mo(Ap). Then there is an affine open covering {V;}/_; of X, where
V; = Spec (Ala; ']o). We have M ~ 0 if and only if ]Tﬂvl ~ (0 for i =1,...,r. Under
the equivalence QCoh(V;) ~ Mod Afa=)o» the restriction M |y, corresponds to an Alfa; 'o-
module M[a;']y. Hence M ~ 0 if and only if Mla; o ~ 0 for i = 1,...,r. This is
equivalent to the condition that m,(M)[a;']o =0 for any n € Zand i =1,...,r. O

Definition 3.2. We say that a Z-graded A-module M is locally bounded above in ho-
motopy groups if the Z-graded my(A)-module 7, (M) is locally bounded above for each
n € Z. We define Mod'}*"(Z) to be the full subcategory of Mod4(Z) spanned by those
objects that are locally bounded above in homotopy groups.

We have the adjunction (—) : Moda(Z) = QCoh(X) : T',(X, —) of stable presentable
oo-categories, where the left adjoint (f:S is symmetric monoidal and the right adjoint
I',(—) is lax symmetric monoidal and fully faithful. By Lemma 3.1, we have M ~ 0 if
and only if 7, (M) is locally bounded above for any n € Z.

Hence we obtain the following proposition.
Proposition 3.3. The functor (f:/) : Moda(Z) — QCoh(X) induces an equivalence
Mod 4(Z)/Mod}*(Z) — QCoh(X)

of stable symmetric monoidal presentable oo-categories. Here, W be the class of all mor-
phisms in Mod 4(Z) whose cofiber lies in Mod'Y*(Z) and the left hand side is the localiza-
tion with respect to the class W.



3.1. The equivalence of Serre theorem. In this subsection, we give a short survey of
a generalization of Serre theorem as in [8]. It is given by restricting the equivalence in
Proposition 3.3 to "finitely generated part”. We prepare some notation for ”finiteness”.

Definition 3.4. Let A be a connective N-graded E..-ring.

(i) Let R be a connective Noetherian E..-ring. Recall that an R-module M is almost
perfect if m, (M) is a finitely generated mo(R)-module for any n € Z and if 7,,(M) = 0
for n < 0 [3, Proposition 7.2.4.17].

(ii) We let Mod"™(Z) be the smallest stable subcategory of Mod4(Z) which contains
A(q) for all ¢ € Z and is closed under retracts. We say that a Z-graded A-module
M is perfect if it belongs to the full subcategory Mod2™ (Z).

(iii) The quasi-coherent sheaf M is almost perfect if a Z-graded A-module M is almost
finitely generated.

(iv) We say that a Z-graded A-module M is almost finitely generated if the following
conditions are satisfied: for each n € Z, the Z-graded my(A)-module 7, (M) is finitely
generated, and, for n < 0, m,(M) = 0. We define an oo-category Mod*®(Z) to be
the full subcategory of Mod(Z) spanned by almost finitely generated Z-graded
A-modules.

(v) Let M be an almost finitely generated Z-graded A-module. We say that M is almost
torsion if the Z-graded my(A)-module 7, (M) is bounded above for each n € Z. We
define an oo-category Mod%*"(Z) to be the full subcategory of Modjfg (Z) spanned
by almost torsion Z-graded A-modules.

We give a characterization of M in MOdZfg (Z) satisfying M =~ 0 in terms of the Z-graded
7o(A)-modules 7, (M) for n € Z. By Lemma 3.1, we have M ~ 0 if and only if M is
almost torsion.

If we restrict the symmetric monoidal functor (/:/) : Mod4(Z) — QCoh(X) to the
full co-subcategory Mod®%®(Z), it factors through QCoh(Proj(A))®<f. By the above

argument, it also induces a symmetric monoidal exact functor
E:S : MOdzfg(Z)/ModZtor(Z) N QCoh(}()aperf_

The Serre theorem describes the oo-category QCoh(X )2 of almost perfect quasi-
coherent sheaves on X in terms of Z-graded A-modules. It requires that the above sym-
metric monoidal exact functor gives an equivalence of symmetric monoidal co-categories.
To see this, especially, we need the essentially surjectivity of this functor.

The key proposition is the following, which is proved by calculating the spectral se-
quence.

Proposition 3.5 ([8]). If # € QCoh(X) is almost perfect, then we have
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e the Z-graded mo(A)-module 7,(T.(X, F)) is strongly quasi-finitely generated for
each n € Z, and
o 1,(I'(X,.%#)) =0 forn <O0.

O
The oo-category QCoh(X)*<f of almost perfect quasi-coherent sheaves on X can be
related with the oo-category Modfg(Z) of almost finitely generated Z-graded A-modules.
Let f € m(A) be homogeneous of positive degree and let U = Spec (A[f!]y) be an
affine open subscheme of X. The restriction M |y corresponds to the A[f~']p-module
M([f~'o. We see that M[f '] is almost perfect since M is almost finitely generated.
Conversly, by Proposition 3.5, we obtain

o If # € QCoh(X) is almost perfect, then 7,.# is a coherent sheaf of Ox-modules

on X for any n € Z.
e 7 € QCoh(X) is almost perfect, then 7,5 = 0 for n < 0.

By proceeding local argument, we have the following.

Theorem 3.6 ([8]). The functor (/:/) : Mod4(Z) — QCoh(X) induces an equivalence
Mod’y¥(Z) /Mod** (Z) —+ QCoh(X )™
of small stable symmetric monoidal co-categories.
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