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1 Introduction

For an index k = (ky,...,kq) € Z%l with k; > 2 (such an index is called admissible), the
multiple zeta values (MZVs) and multiple zeta-star values (MZSVs) are defined by

o 5 1
0<my <---<myg my'-omy O<mi ey myt - mbe

It is known that there are various relations among MZVs and MZSVs. Among them, we in this
note focus on the following relations called the sum formulas which was proved in [3] and [4];
For integers d > 1 and w > d + 1

(L) > =, X = (7w

k : admissible k : admissible
wt(k)=w wt(k)=w
dep(k)=d dep(k)=d

Here, ¢(w) is the Riemann zeta values and, for an index k = (ki, ..., kq), wt(k) = 3., k; and
dep(k) = d are the weight and the depth of k, respectively. These relations are fundamental
in the sense that many other relations include them as special cases.

The aim of this note is to generalize the above sum formulas for Schur multiple zeta values
(Schur MZVs) introduced in [7], which are combinatoric and simultaneous generalizations of
MZVs and MZSVs. In particular, we will establish what we call bounded-type sum formulas
for Schur MZVs when their shapes are given by the following two specific cases: ribbons and
those having only one corner.

2 Notations and definitions

A partition of n € Z>; is a tuple A = (\y,..., \y) of positive integers satisfying A\; > --- >
Ap > landn = |A = A+ -+ A, A skew partition A/p is a pair of partitions A = (Aq,..., A\p)

*This note is based on the author’s talk at RIMS conference “Zeta functions and their representations” and
joint paper [2] with Henrik Bachmann (Nagoya University), Shin-ya Kadota (Niihama College), Yuta Suzuki
(Rikkyo University) and Shuji Yamamoto (Keio University). For precise proofs of the results appeared in this
note and detailed discussions, see [2].



and = (u1,...,p) satisfying g C A, that is, » < h and g; < \; for ¢ = 1,..., h where we
understand p; = 0 for ¢ > r. In the case where u = @ is the empty partition, we just write
A= A. The weight of A\/p is defined by [N/ u| := |\ — |u|. With A/u, we associate the skew
Young diagram D(A/u) defined by

D\/p) ={G,j)eZ’ |1 <i<h,pu<j<N}.

An entry (i,7) € D(A/p) is called an (outer) corner of A/p if (4,7 + 1) & D(\/p) and (i +
1,7) € D(A/p). We denote the set of all corners of A\/p by C(A/p). A Young tableau k =
(Kij)i.5)ep(/u of shape A/pu is a filling of D(A/p) obtained by putting k; ; € Z>; into the (i, j)-
entry of D(A/p). For shorter notation, we will also just write (k; ;) in the following if the shape
A/ is clear from the context. A Young tableau (m; ;) is called semi-standard if m; ; < m;i1
and m; ; < m, ;1 for all possible 7 and j. The set of all Young tableaux and all semi-standard
Young tableaux of shape A/u are denoted by YT(A/u) and SSYT(A/u), respectively. For
k = (kij) € YT(A/p), we define its weight by wt(k) = > ijcp( /. ki and call it admissible
if k;; > 2 for all (4,5) € C(A\/p).
For an admissible k = (k; ;) € YT(A\/p), the Schur multiple zeta value is defined by

(2.1) (k= Y I —

(me ) ESSYT(M 1) (.)eDN ) Mij.

Note that the admissibility of k ensures the convergence of (2.1) (see |7, Lemma 2.1]). For the
empty tableau k = &, we have ((@) = 1.

Example 2.1. For integers a,b,c,e, f > 1 and d,g > 2,

¢ 1
¢ blc|d = E .
a by Coryad et 9
|e flg my UL Ty - Mg Ty
mo <m3z <my
A A

ms <me<mry

The Schur MZVs are zeta-function analogues of the Schur functions and, moreover, gener-
alizations of both MZVs and MZSVs in the sense that we recover them as special cases:

Our main research object is the sum

SuMm = 3 ).

keYT(\/p)
k : admissible
wt(k)=w

Notice that when A = (19) or A = (d), this coincides with the left-hand side of the classical
sum formulas (1.1). In this note, we say that we get a sum formula for Schur MZVs if we
can establish a “good” expression of S,,(A/p). Among various expressions of S, (A/u), we are
interested in a “bounded-type” expression in the sense that it can be written as a Q-linear
combination of MZVs where the number of terms does not depend on w, but just on \/pu.
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3 Ribbons

A skew Young diagram is called a ribbon if it is connected and contains no 2 x 2 block of boxes.

Using integers s; > 0 and ss,...,8,,71,...,7, > 0, such a ribbon can be explicitly drawn as
Sn T
L |
. S1,...,S
r1b< A ") = ,
Ty .y Th S9 o
——"—
S1 1
é

where n is the number of corners in the ribbon. This includes as special cases

anti-hooks : rib (i) = 2 :|}7’ =D((s+1)")/(s") (s=0,r>1),
1

s—
—

hooks : rib (0’5 | 1) — —D((s,17) (s=2r>1).

I

In this section, we study the sum S, (\/u) when the shape \/u is given by a ribbon.

For integers w, s1,...,8, > 0 and r1,...,7, > 0, define
g S1,-+, 80\ Ly, ..., 1,
w L C k k? )
1, .., n 1y---,Kn
llv'-vln
dep(l;)=s;
ki,...,ky :admissible
dep(ki)=r;

> wt(ks)+>0, wi(l)=w
where, for indices l; = (l;1,...,lis,) of depth s; and k; = (k;1,. .., k;,,) of depth 7,

n
I () LD S | B
’ ki,....k, /)~ J ki1 Kir; blm )
0<bi1 < <bis, 41 i=1 i1
O<ai,1<-~-<ai”
bi,si+1:ai77‘i (i:l,...,n)
bit1,1<a;1 (i=1,...,n—1)

. bli,si ’

i, 1,1 1,84

This is nonzero only when w > sy +--- + s, +r1 + --- + r, +n. Note that Sw<i1""’i”) =
1y--Tn

Sw (rib <51’ o ’i”)) only when ss,...,s, > 0. For example,

T1y.-.,
2 | ]
w(o)- % <(|a|b0)=sw(|| )
a,b,d>1,c>2

a+b+c+d=w




but

Sw@(f): > <<|a|bi>7é5w<|| )
a,b>1,c,d>2

a+b+ct+d=w

3.1 A strategy

S1y..-,5n

Our basic idea to compute the sum 5, ( ) is to reduce the number of corners n by using

1y-+-5Tn

the following recursion formula, which can be shown by switching the inequality b;11; < @;; in
(3.1) (for the given i) to the opposite a;; < b;y11 and adding the corresponding Schur MZVs.

Proposition 3.1. Let sy,...,8, > 0 and ry,...,r, > 0 be integers. For 1 < i <n —1 with
r; > 2, we have
S S1y+ -3 805 Sitly- -+ Sn S S1y-++, Siy Sitit 1.8,
1y 5T Tigr1,- -5 Ty, — 1, Tit1, B )
S1y,.-.55; Sitl1y,---5,5n
= E Swl 'Sw2 .
T1yeoa5 T Titls---5Tn

w1 Fwe=w
wyZs1tbsitribee it
w22>8;t1++sntrip1++ratn—i

Using this repeatedly, one can express S, <i1’ o ’i") in terms of the values of the type
1y« 'ln
0,...,0 . . . .
Sw (;’ , ’ ’T ) . Moreover, using the Ohno relation for MZVs together with some combina-
1,725+ -57n

toric arguments, one can get the following expression for the latter sum.

Theorem 3.2. Forw >0, s >0 and ry,...,r, >0, we have

n

s, 0,...,0 w; — 1

Swl 77 ’ = ! C(wyy .. wy).

1,72 T t; Y

e Hytn >0 w;>ri+t+1 i=1 ?
ti+-Ftn=s wi+twp=w

Combining above two results, we have

Corollary 3.3. Forn > 1, s1,...,8, > 0 and ry,...,r, > 0, the sum S, (il""’8"> can be

1y--+5Tn

written as a Q-linear combination of MZVs of weight w and depth < n.

For example, when n = 2, we have

(32) sw(jijjj):@f<—1>52—i—l > (wlsl‘ 1) (W;l)«woc(wz)

=0 w1 >81+S24+1r1—i+1
wa >ro+i+1
w1 twe=w

DY > (wl - 1) <w2t; 1>C(w17w2)~

t
t1,t22>20 wi>sa+r1+t1+1 1
ti+to=s1 wa>ro+ta+1
w1 +wa=w

Notice that this is not a bounded-type expression in general.
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3.2 Results

Ty .y Th
explicitly in some special cases. First, we consider the cases of n = 1, that is, the case of

. : . : S1y--+58n
Using results in the previous subsection, we can actually evaluate the sum S, ‘"""’ )

anti-hook shapes. The following theorem is an immediate consequence of Theorem 3.2.

Theorem 3.4. For any integersr > 1, s > 0 and w > s+ 1r + 1, we have

-1
()= ) = (7 e
r 1 o
Notice that this is a simultaneous generalization of the classical sum formulas (1.1) for

MZVs (the case of s = 0) and MZSVs (the case of r = 1).
Example 3.5. For the anti-hook shape \/u = (3%)/(2%), we have for w > 6

-+ ()

The next sum formula is for the “stair of tread one” shape. One can prove this by induction

on n with Proposition 3.1 and Theorem 3.2.

Theorem 3.6. For any integersr > 1, n>1 and w > (r + 2)n + 1, we have

iw+1

s i) =5 n = Cur () (),

-1 — 1)n—2
where ¢, (n) == o (w (r+ 1)n ) € Zo.
n n—

Example 3.7 (The case of r = 1).

)5 (E) =2 o w2

1,1\ | ~w—1 w—=6
(w8
Sw(}:}jé)zsw =wT<w2 )<<w) (w > 10),
| —
1 fw—10
sw(}:}:}:;)zsw —wT<w3 )(w) (w > 13)




Let us say that the sum S,,(\/u) has a single-type expression if it can be written as a rational
multiple of ((w). In general, it seems to be difficult to find a shape A\/u (or, more strongly,
a family of shapes {\,/pn}n) for which S, (A/p) (or Sy,(A./pn) for all n) has a single-type
expression.

We finally give a sum formula for general ribbons with two corners.

Theorem 3.8. For s1,s5 > 0, r1,79 > 0 and w > s1 + s9 + 11 + 19 + 2, we have

81,82\ w — 2
Su <7"177"2> B <51 +52>C(w)

3.3

33 D AUEPTCw)C(w) + Y B (wr we),
w1 ,Wwo>2 w1 >1,w2>2
w1 twe=w w1 +we=w

where the integers A3 521 and Byl are explicitly given by

AS1S2,T1T2 . (_1)w1 51,52
w1, w2 : Cﬂ)hwz

wy — 1 Wo — 2
- 1w1§51+r1 or wa<sgo+ra—1 51 59 — 1

wy — 1 wo — 2
1w o -1 s1+ritwi
+ > 1+1< ) ( S1 ><31+32+r1—w1>

+ 17“2<w2§52+r2*1(_1)82+T2+w2 (wls ) (UJ2 )7
1

To — 1
w1 — 1 Wy — 1
$1,52,71,72 . 51,52 52
Bwth Cwl,wg - <_1) E
(31 23
t1,t2>0
t12>2w1—(s2+r1) or te>wa—r2
t1+to=s1
with
031,82 . (_1>32 § : (wl - 1) (U)g - 1) . (_1)31 ('IU1 — 1) ( Wo — 2 )
wi,w2 T . . .
1 S1—1 S S So — W
0<i<s1 1 1 1+ S2 1
1<j<s2
i+j=w1

Here, 1p is the indicator function for the condition P.

We remark that, though the expression is complicated, this is actually of bounded-type

because A3l5270m2 = Bils2mr2 = 0 unless wy < 81+ sp + 71 or wy < max{sy + 1y — 1,51 + 73}

As a spe01al case of Theorem 3.8, we obtain the following sum formula for hook shapes.
Corollary 3.9. For s,r > 1 and w > s +1r + 2, we have
s—1
0,s—1
Sw(’ 1 ) =Sy when s > 2

T,

s p—
k=1 k=s



r

:<—1>k (g USRS i GO RS

s—k—1
k=2

s

VD SIC I (N,

k=r+1
Example 3.10. For the hook shape A = (3,1%), we have for w > 7

N

= (w 2_ )C(w) — (w —3)¢(2)¢(w — 2) — (w —5)C(3)¢(w — 3) + C(4)C(w — 4)

—(w=3)(Lw—1)= 2w —2) — (3, w—3) — C(4,w—4).

ECEE

We here give an outline of the proof of Theorem 3.8. To get (3.3), we start from (3.2),
which we again notice that is not a bounded-type expression. Applying the harmonic product
formula ¢(wq)((ws) = ((wy,w2) 4+ ((we, wy) + ¢ (wy +w2) to the first sum in the right-hand side
of (3.2), one sees that it can be written as weighted sums of MZVs with the weight given by a
product of binomial coefficients, that is,

(3.4) Blkik) = 3 (Zj:f)(ﬁj:f)-q%wz).

w1 2>1,we>2
w1 +wa=k1+ka+l

More generally, for indices n = (nq,...,nq), k = (ki,...,kq) and an integer [ > 0, define
d
w; — N,
(35) Piln: k) = S (Y s,
w = (wi,..., wy) : admissible =1

w; >N (1:1 7777 d)
wt(w)=wt(k)+l

Put P(k) = BP((1,...,1);k), which coincides with (3.4) when d = 2. We see that if k is
admissible, then P,(k) has the so-called Yamamoto integral representation defined in [8] as

?kd—l

ithko—1

A1

Based on this observation, we can obtain the following bounded-type expression of P,(k) (in
the sense that the number of terms appearing in the expression does not depend on [ but only
on k) for not only admissible k but also those are not admissible. This is a recursive formulas
with respect to [, which can be described by using the Schur MZVs of anti-hook shape

ky
I Kl 1
( ) C<k17,krr> C |ll|.|l . Z kl ..aﬁrbil...blss

ky 0<ar <-<ar by > >b;>0 U1




Proposition 3.11. Letd > 2 and [ > 0.

(i) For an admissible index k = (ki, ..., kq), we have
d k-1
B(k) = Z Z<_1)k1+m+ki_1+aiP/€i—1—ai(ki—lv ey klvl + 1) Pai (ki+17 s 7kd) .
i=1 a;=0
(ii) For a non-admissible index k = (ki,...,kq), we have
d ki1
H(k) = Z Z(_1)kl+m+ki71+aipki—1—ai(ki—lv cee ]fl,l + 1)Pai(ki+17 cee 7kd—17 1)
i=1 a;=0
d—1 d—1
bo— 1 b —1
—1)rdtki —1)botbrttbig 0 J
w2 2. ) LG
i=1 (bo,--rsba—1)€ZL | J=1
bi=2 7
bo++ba—1=wt(k)+1+1
d—1bj—1 b b
¢jtitbjs1tetba_ Cj5 05415 -+, 0d—1 _ A o
S N i) LTRSS
J=1 C]':

We note that to obtain the expression of the latter case, we have used the Yamamoto integral
representation of Schur MZVs (3.6) of anti-hook shape obtained by Kaneko and Yamamoto [6].
When d = 2, the above expressions can be unified as follow, which we have actually used to
obtain (3.3).

Corollary 3.12. For ki, ks > 1 and [ > 0, we have

Atk = (-0 Y o () () etwnctun

w1,w2>2
w1 +wo=k1+ka+l

=1 -1 l+k —1 1
DY <Z1—1><w21 )“wl’w”““ﬂ( k=1 )C<l+k1)‘

w1 >1,we>2
w1 +wa=k1+ka+l1

4 Shapes having only one corner

In this section, we study the sum S,,(A/p) when the shape \/u has only one corner. To do that,
we first introduce the notion of the semi-standard decompositions of a Young diagram; For a

skew shape A/, we call a tuple (Dy,. .., D,) of non-empty subsets of D(A/q) a semi-standard
decomposition if it satisfies the following two conditions.

(i) DN/ pu) =D U---UD,.

(i) The Young tableau (t;;) € YT(A/p) defined by ¢, ; = a for (i,j) € D, witha =1,...,r
is semi-standard.



We denote by SSD(A/p) the set of all semi-standard decompositions of D(A/p). Notice that
we always identify (Dy,...,D,) € SSD(A\/u) with (¢;;) € SSYT(A/p) defined in the condition

(ii) above. For example, (D, Ds) = ({(1,1),(1,2)},{(2,1)}) € SSD <H:|> is identified with

e ssyT (B:\) When A/p has only one corner, we see that for any admissible Young
tableau k = (k; ;) € YT(\/p)

N|—

(4.1) (k) = > Do Ko Dy

(D1,.--,Dr)€SSD(A/ 1) (i.)€D1 (i.5)€Dr

For an index k = (ki,. .., kq), let

Qi(k) : = P((1,...,1,2); k)

w1—1 wd_l—l wd—2
- 2 1) ey = 1) g 1))
w = (wi,..., wy) : admissible
wt(w)=wt(k)+I

where Pj(n;k) is defined in (3.5). Then, using (4.1), one has the following expression for
Sw(A/p@), which is crucial for our evaluation of S,,(\/u).

Lemma 4.1. When \/u has only one corner, we have for w > |\/p|

(4.2) SV = S Quop(IDil,. . D).

(D1,...,D;)ESSD(A/ )

Now we rewrite (4.2) in terms of Hoffman algebra [5]. Denote by ' = Q(zx | k > 1) the
non-commutative polynomial ring in the variables zj, for ¥ > 1. A monic monomial in $! is
called a word and the empty word will be denoted by 1. We define the stuffle product * and
the index shuffle product @ on $H' as the Q-bilinear products, which satisfy 1 xw =w*1 =w
and 1w = wm1 = w for any word w € $H', and for any 7, > 1 and words w;, w, € $H'

2wy * Zjwe = z;(wy * Zjwe) + 2 (z;wy * wa) + Ziy; (w1 * wy) ,

z;wy W zjwy = 2z;(wy W zjws) + 2j(zwq Wws) .
By [5, Theorem 2.1], we obtain a commutative Q-algebra $!. For k > 1 and n € Z, define

Zg 2, ifn >0,
—_——

n

%k = 1 if n =20,
0 if n < 0.
Moreover, for each index k = (ki, ..., ky), we put 2 := 2, - - - 21, S0 that we define @; : H' — R

by setting Q;(zx) := Q;(k) and extending it linearly. Define the element o(\/u) of $H! by

e\ ) == > ZDy| """ 4D, | -

(D1,...,D,)€SSD (M /1)
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Then, (4.2) can be written as

(4.3) Sw(M 1) = Qu—payul (PN 1)) -

Moreover, using the Jacobi-Trudi type formula for Schur MZVs (cf. [7, Theorem 1.1] and [1,
Theorem 4.7]), we show that ¢(\/u) has the following determinant expression.

Proposition 4.2. For any skew shape N/, let N = (N),..., L) and (' = (..., 1) be the
conjugates of A and p, respectively. Then we have the identity

N —pl—i+g

(4.4) (M) = det. )

]1gi,jgs ’
where det, denotes the determinant performed in the stuffle algebra 1.

Therefore, if we have a good evaluation formula for @);, combining (4.3) and (4.4), we get a
nice expression of Sy,(A/p). Actually, since

kg—1

Ql(klv R kd) = Z(_1>]Pl+](k17 R kd—hkd - .]) )

J=0

employing Proposition 3.11, one can obtain a bounded-type expression of S, (A/u) when \/u
has only one corner.

Example 4.3. (i) When \/u = (22), we have for w > 5

2 .3
Sw ( > = Qu-4 (det*[ 2 i% })
= 2Qu-1(2]) + Qu_a(z2 W 2}) + Qu_4(z3)

=—(w—-2)¢(1,w—1)+ (w—4){(2,w —2) +2¢(3,w — 3)
= 203)¢(w = 3) + (w = 2)¢(2)¢(w — 2).

(i) When \/p = (3%)/(1), we have for w > 6
2 2 2

Sw<| )zQw_5 det, | 1 2} 2z}

0 =z 2}
= 5Qw75(2§) + SQw75(2’2 III Z%) + 2@1075(2’% |II 2’1) + Qw75(2’3 |II Z%) + Qw75 (23 a:l 22)

- ("5 ")t -2 - Jowew-a+ (*; Peew-2- (] w1

+¢(2)C(2,w —4) — ((2)¢(1,w —3) + (w —3)¢(3,w —3) + (w—3)C(1,1,w — 2)
)C(1,2,w — 3) — 2C(1,3,w — 4) + C(2, 1w — 3) — ((2,2,w — 4).

— (w—

(iii) When A\/pu = (2%)/(1), we have for w > 6

] 2 4
“(EH) e f2 4)




= 5Qu-5(27) + 2Qu—5(22 W 27) + Qu—5(25 W 21)

= (w—=2)¢(2)¢(w = 2) 4+ (w = 5)((3)¢(w = 3) — 24(4)4(10 —4)
—C(2)¢(Lw —3) +¢(2)¢(2,w —4) + (2 —w)¢(Lw — 1) + (w — 4)¢(2,w — 2)
+2¢(3,w—3)+ (w—=3)¢(1,1L,w—2) — (w—5)C(1,2,w — 3)
—2¢(1, 3w —4) + C(2,1,w — 3) — (2,2, w — 4).

Comparing these results, one find that

(o) = () -eos ()

1

More generally, we can show the following relation' among S,,(\/p) for different shapes A\/pu.

We remark that this can be proved without any relation among MZVs.

Theorem 4.4. For a partition X, let X' be the rotation of X by =. Then, we have for w > 1

(4.5) Y O —i0)Su (A1) = (w = Al = D)Su(AT),

M=),
where the sum runs over all partitions N = (\}); obtained by adding one box to ig-th row of .

The following is the weighted directed graph whose weight of each arrow gives the coefficient
of Su((AT)1), ie., \fL — o, in the left-hand side of (4.5) for small A.

AN
m\mﬂ

(NN

1

!This relation is another description of the one proved in [2, Theorem 4.8]; They are the same.
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Example 4.5. (i) When \ = (3,2), we have

< (arf) = (B = () - o (D)

(i) When A = (22,1), we have

25, — 8, — 38, = (w—6)S,
|

Here, for each A\, the gray box of \™ represents the box added to .
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