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Abstract

This paper is to investigate the complex algebro-geometric aspect of an elliptic fibration over CP?
arising from the Lagrange top. The discriminant locus of the elliptic fibration is described in detail.
After suitable modifications of the base and the total spaces, the singular locus is concretely described
and the singular fibres of the elliptic fibration are completely classified in view of R. Miranda’s elliptic
threefolds. Moreover a description of the monodromy of the elliptic fibration is obtained.

1 Introduction

This article is a summary of the paper [Ish| in preparation.

The heavy rigid body, i.e. the rotation of a rigid body around a fixed point under gravity, is one of the
most typical problems in analytical mechanics. Among such heavy rigid bodies, it is known as a result by
S. L. Ziglin [Zig82, Zig83] that the heavy rigid body dynamics is completely integrable only in the four
particular cases: the Euler top, the Lagrange top, the Kowalevski top, and the Goryachev-Chaplygin top.
See also [Aud99].

As for the Euler top, there are researches concerning the complex algebraic geometry of the fibrations
by integral curves and by spectral curves as in the series of studies [NT12, TF14, FT15]. They have
studied the complex algebraic geometry of the associated elliptic fibrations and applied their monodromy
to the Birkhoff normal forms or the action coordinate.

The present article deals with the complex algebraic geometry of an elliptic fibration induced by
the complexification of the energy-momentum map for the Lagrange top. The complexified energy-
momentum map induces an elliptic threefold over CP? in Weierstral normal form. The main results of
the present paper cover the detailed description of the discriminant locus of and the singular fibres the
elliptic fibration, after suitable modifications of the base and the total spaces based on R. Miranda’s
method [Mir83]. Moreover the monodromy of the original elliptic fibration is described.

2 The Lagrange top

The heavy top is formulated as a Hamiltonian system on the cotangent bundle T*SO(3) to the three
dimensional rotation group SO(3), which can be identified with SO (3) x so(3)* through the left-
trivialization

T*SO (3) > TFSO(3) 3 ag — (g, L¥ay) € SO (3) x 50 (3)*,

where Ly: SO (3) 2 a — ga € SO (3) is the left-translation. By Marsden-Weinstein Reduction Theorem
[MW74] with respect to rotations about the axis collinear to the gravity vector, this Hamiltonian system
can be reduced to the coadjoint orbits in (50 (3) x R3)*.

Through the natural identification (so (3) x R3)* >~ R3? x R3, the Hamilton equations for the heavy

top are written on R? x R3 concretely as follows:
The Poisson bracket on R? x R3 is defined through

{F.G}(I',M) = =T, (Vi F) x (VrG)) =<', (VrF) x (VuG)) = (M, (Vi F) x (VuG)),



where (I', M) € R® x R3, F,G € C* (R® x R?). Here (-, -) denotes the standard inner product on R* and
(VrF,V F) the gradient of the function F at (I'; M) defined through

(dF) ) (§:m) = (Vo F (0, M), &) + (VuF (T, M) ,n), (§,n) € R® x R® =T 1y (R? x R?).
We consider the total energy H as the Hamiltonian function for the heavy top defined through

H (T, M) = 50,0+ (T, 0= 7'M,

where J = diag (J1, Jo, J3) is the inertia matrix and x € R? stands for the center of mass. The Hamilton
equations for the Hamiltonian H with respect to the Poisson bracket {-,-} are written as

I=TxQ,
M=MxQ+TI x X,
which are usually called the Euler-Poisson equations. As is well known, this system has the two Casimir
functions C7, Cy given as
Cy (T, M) =<(T,T), Cy (T, M) =<T", M),
and the common level sets defined through
O, ={(I,M)eR®> xR® | (I,I') =1,dT,M)y =a}, acR,

are the highest dimensional symplectic leaves of the Poisson space (R3 x R3 {, }) Moreover these level

sets coincide with the generic coadjoint orbits in (50 (3) x R3)*. Restricting the Euler-Poisson equations
to O, we obtain a Hamiltonian system of two degrees of freedom.

The Lagrange top is a spacial case of the heavy top with inertia J = diag (Jy, Jo, J3) and the center
of mass x = (x1, X2, x3) satisfying the following conditions:

Ji=J2. x1 = x2 =0.

Furthermore it is easily checked that the two functions
1
H(FaM) = §<M7Q> + <FX>7 L(FaM) = _M37

are functionally independent constants of motion for the Lagrange top and thus, the Lagrange top is
completely integrable in the sense of Liouville.
Now we replace the four constants of motion C1,Cy, H, L by
H, = C; =F%—|—F%+F§,
Hs = CQ/Jl =010 + 1509 + (m + 1) FgQg,
1
Hy:=H/J\ = 5 (QF + Q3 + (m+1)Q3) — I,
H4 = —L/J3 = Q3,

for the later use, following [GZ98]. Here we assume x3/J; = —1 by suitable reparametrizations and we
put m = (Jg - JQ)/Jl

3 Elliptic fibrations

3.1 Weiertrafl normal form

In this subsection, we consider elliptic fibrations defined in Weierstra$ normal form. See [Mir83], [Kas77],
[Nak88], [Nak02] for the details.

Let S be a (compact) complex manifold and £ a holomorphic line bundle over it. Take holomorphic
sections a and b of £&* and L£®C respectively, such that A = a® — 27b? is not identically zero on
S. Moreover let Og be the structure sheaf of S, which can be identified with the trivial line bundle
over S. We consider the direct sum of line bundles £&* ® L% ® Og and denote its projectification by
P (L@ L® @ Og).



Definition 3.1. The Weierstra§ normal form W is the divisor on the CP%-bundle P (£L®* @ L®¢ @ Og)
over S defined through

Y2Z —4X3 +aXZ%+ 073 =0,
where (X :Y : Z) are the homogeneous fibre coordinates of P (L®*@® L®® @ Og). The section A =
a® —27b% € H° (S, £®'?) is called the discriminant, whereas the meromorphic function

ad ad

T=R = 7 o

on S is called the functional invariant of the Weierstrafl normal form.

Restricting the canonical projection 7: P (£®4 PL PO 5) — S to W, we obtain an elliptic fibration
mw: W — S. In this paper, this elliptic fibration is also called the Weierstral normal form over S.

Proposition 3.2. ([Mir83, Proposition 2.1]) Let A, B, and D be the divisors on S defined by a = 0,
b =0, and A = 0, respectively. Moreover let (X :Y : Z);p) denote a point of P (L' @® LZ® D Og)
where p € S. Then the following statements hold.

1. W is smooth at Z = 0 and the set given by (X :Y : Z) = (0:1:0) defines a holomorphic section of
the elliptic fibration myy.

2. If W is singular at (X :Y : Z);p), then we obtain Y =0 and Z # 0.
3. W is singular at ((0:0: Z);p) if and only if both A and B contain p, and B is singular at p.

4. W is singular at (X : 0: Z);p) with X # 0 if and only if neither A nor B contains p, but D contains
p and is singular at p. In this case, we obtain (X :0:Z) = (-3b:0: 2a).

3.2 Miranda’s elliptic threefolds

In this subsection, we explain the classification of singular fibres on the basis of R. Miranda’s method for
elliptic threefolds discussed in [Mir83].

Let Ag, Bg, and Dg be the reduced divisors of A, B, and D, respectively. Blowing up the base space
S if necessary, we may suppose that the following two conditions hold:

(A) The reduced discriminant locus Dy permits only nodes as singularities.
(B) Ap and By also have only nodes as singularities.

If there exists a locally defined holomorphic function u on S satisfying u*|a and u%|b, we may replace
X and Y by v?X and u?Y, respectively. Repeating this procedure if necessary, we also assume the
following additional condition:

(C) If u*|a and ub|b, then u is a unit.

On these assumptions, we may choose a local coordinate system (s1,$2) on S centered at p € supp (D)
such that a, b, and A are written as

a = 5515525, = s{ﬁséﬁl_), A= sivlsévQZ, (3.1)
where @, b, and A are local units at p.
Singular fibres over smooth points of Dy Let p € supp(D) be a smooth point of Dy and assume

that Ny = 0 at p. In this case, the singular fibres appear over the line s; = 0. Restricting a, b, and A
onto the line s; = 0, we have

a= lela, b= S{QF, A= S{WZ.
Thus the types of singular fibres appearing over the point of supp(D) in a neighbourhood of p are of

Kodaira type determined by the triple (L1, K7, N1) in Table 1. See e.g. [Kod60, Kod63a, Kod63b],
[Mir89, § 7.] for more details.



Table 1: Kodaira’s list

Kodaira’s | Dynkin .
notation diagram (L,K,N) types types of singular fibres
(L >0,0,0)
Iy — or Smooth elliptic curve
(0, K = 0,0)
Il AO (07 07 1)
Nodal rational curve
In ANy (0,0, N > 2)
cycle of N smooth rational curve
-
I Dy (L>2,K > 3,6)
1111
1
I, Dyo | (23, N=7) N2 o+ N
N -5 multiplic;gy 2 components
1 - (L>1,1,2)
cuspidal rational curve
7 A (1,K >2,3) 1X1
1




Iv* Es (L= 3,4,8) ) 3 |2

I11* B (3,K > 5,9) 9 _li _l_ 9
1 1

II* By (L >4,5,10) 413 )

) |

Singular fibres over singular points of Dy Let p € supp (D) be a singular point of Dy and (s1, $2)
a local coordinate system centred at p. As Dy is singular at (s1, s2) = (0,0), we have N7 > 0, N2 > 0. In
this case, the reduced discriminant locus Dy is defined through s;so = 0 around p.

The total space W of the elliptic fibration is now described as

V27 = 4X3 — shskrax 72 — s sK2p 73, (3.2)
whose discriminant is written as
A = sVshPAL (3.3)

From the above argument, the types of singular fibres over the lines s; = 0 and sy = 0 except for the
node s; = s3 = 0 are determined by the triples (L1, K1, N1) and (Lg, Ko, N2), respectively.

We take a blowing-up S; — S of S at p and the pull-back 7;: W; — S; of the elliptic fibration
m: W — S via the projection of the blowing-up. The following proposition describe the types of singular
fibres of 7 over the exceptional divisor £ on Sj.

Proposition 3.3. [Mir83, Proposition 9.1] Assume that the defining equation of W and the discriminant
around p are written as in the forms (3.2) and (3.3). Then, after a change of coordinates for m if
necessary, we can assume that the condition (C) is satisfied and then the types of the singular fibres of
71 over the exceptional divisor E in Sy are determined by the triple (L1 + Lo, K1 + Ko, N1 + N2) modulo
(4,6,12).

After suitable blowing-ups of S and a resolution of singularities W — W, R. Miranda [Mir83] classifies
the possible collisions between the irreducible components s; = 0 and s3 = 0 of Dy in a neighbourhood of
p, and the explicit description of the singular fibres of the elliptic fibration 75 : W — S over the collision
point for each colliding type as in Table 2.



Table 2: List of Miranda’s singular fibres

- corresponding contracted
11 > = .
colliding types fibre of w5 over p Kodaira’s types components
Ing, + Ing, Ingy 40, none
cycle of (M + M) smooth rational curves
Dy + I, M M I* A components
(My: even) M+ My with multiplicity 2
M2 + M components with multiplicity 2
. M 12_1 components
Ing, + Iy, /\ I* with multiplicity 2
(M;y: odd) Mo +M, and 2 components
M2 + Ml 1 Componenta with multiplicity 2 with mlﬂtlphClty 1
2 3 com i
" ponents with
1V i multiplicity 1
1
two of the three
1 —— 2
* 2 %
I+ 1; 5 1V | 1
components
3
3 4 |
* 2 * 1 6
II+1V 2 17 5
1 4=
components




IV + If 1 1, Ir* pprli
|3

components

-l—- 2
3
IIT + I s II1* 4

components

4 An elliptic threefold arising from the Lagrange top
4.1 The complexified energy-momentum map and a family of affine cubic
curves
Let O, be the common level set of H; and Ho:
O, ={(T,M)eR® xR® | H; (I', M) = 1,H, (L', M) = a} .

The other two constants of motion Hs, H; can naturally be restricted to O,. To study the energy-
momentum map EM = (Hs, Hy) : O, — R? as a fibration from the viewpoint of complex algebraic
geometry, we complexify all the above settings. The complexified energy-momentum map, which is also
denoted by &M, is defined as the C2-valued function on

Of ={(I,M)eC*xC*| H (I',M) =1,Hy (', M) = a}. (4.1)

Let C* >~ C/2miZ denote the complexified group of transformations defined by the Hamiltonian flow
associated to Hy. It is known that C* acts freely on the generic fibre

EM ™Y (hg, ha) = {(T,M) € OF | H3 (T, M) = hg, Hy (T, M) = hy}

of EM: OY — C2. Moreover the quotient manifold EM~! (hs, hy) /C* is isomorphic to the affine part of
the elliptic curve defined through the cubic equation in Weierstral normal form

y2 =423 — g2 — g3, (4.2)
where
a2 a3 a? « 1 a?
1.8 @ _% 4 o 1 o 43
Y L R T T T T S e R T T (4.3)

Here a4, a3, and « are given as
ar =2(1+m)hyg, ag = 2h3+(1+m)mhi, a = —2a.

As will be seen in the next subsection, we construct the (singular) elliptic fibration W induced by the
family of the cubic curves Clq, 4,) defined as in (4.2) parametrized by (a1, az) € C?.



4.2 Formulation of W as the elliptic fibration over CP? and its singular locus

Let C(a,,q,) be the affine cubic curve defined through (4.2) and (4.3). We can construct the elliptic

fibration W over CP? induced by the family of cubic curves {O(al)az)} ( cc2 88 follows:

ai,a2)

Consider the affine coordinates (a;,az) € C? as inhomogeneous coordinates of CP2. Namely setting
a; = A1 /Ay, ay = Ay/Ag, (Ag: Ay : As) denotes the homogeneous coordinates of CP2. Then go and g3
in (4.3) induce the holomorphic sections

g5 € H° (CP?,0 (£®Y)), g5 € H° (CP?,0 (£%9)),

where £ denotes the hyperplane bundle Ogp> (1) over CP2. Let (X : Y : Z) be the homogeneous fibre
coordinates of the projective bundle P (£®2 e LY P (9@»2) over CP2. We consider the hypersurface W
of P (£®2 P LD P (’)@pz) defined through

YZ? =4X3 — g5 X 7? — g¥ 73,
Then, restricting the canonical projection 7: P (£®2 LY P (’)@pz) — CP? to W, we obtain an elliptic
fibration my : W — CP2.

From Proposition 3.2, the singular locus of the elliptic fibration 7y is given by the divisor D on CP?
defined through

3 2
(93)" —27(g3)" =0,
which is called the discriminat locus. The details on the divisor D is described as in the following theorem.

Theorem 4.1. ([Ish]) The discriminant locus D consists of a line defined by Ay = 0 with multiplicity
7 and a singular quintic curve which has four cusps and two nodes as its singularities. Moreover this
quintic curve is tangent to the line Ag =0 at (0:1:0) and (0:0:1).

Notation 4.2. We denote the two components of D which are the line Ag = 0 and the singular quintic

curve respectively by L and Q.

4.3 Singular fibres of a smooth model of W as a Miranda elliptic threefold

In the previous subsection, we see that the elliptic fibration 7y : W — CP? does not satisfy the conditions
(A) and (B) discussed in Subsection 3.2.

We take a suitable modification o: CP2 — CP? of the base space and modify the total space W
along the corresponding locus. Moreover, we change the homogeneous fibre coordinates as discussed in

Subsection 3.2 if necessary. Then we obtain the new elliptic fibration my: W — CP? in WeierstraB
normal form satisfying the following conditions:

e The Weierstral normal form my: W — CP2 is birationally isomorphic to my : W — CP2,
e The elliptic fibration my: W — CP? satisfies the condition (A)—(C) in Subsection 3.2.
e All the colliding types appearing in W are on Miranda’s list.

In what follows, we describe the types of singular fibres of the elliptic fibration my: W — CP2 according
to the three different types of singular points of Dy.

(a) By blowing-up three times at each cusp p of D, we have a picture of the reduced total transform of
D as in Figure 1.
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Figure 1: Blowing up at the cusp

The singular fibres over generic points of Ey, Fy, E3, and @ are of type II, I11, I}, and I, respec-
tively, in Kodaira’s notation. However, the singular fibres over the collision points 71, ro, and r3 do
not belong to Kodaira’s list. On Miranda’s list, the dual graphs of each singular fibre are written as
in Figures 2, 3, 4.

Figure 2: The singular fibre over r; Figure 3: The singular fibre over 7o
Figure 4: The singular fibre over r3

(b) By suitable blowing-ups at (0 : 1 : 0), we have a picture of the reduced total transform of D as in
Figure 5.

/ ’ B |

blowing-ups |
< L -— : N
/ 0

Figure 5: Blowing up at (0:1:0)
The singular fibres over Ey, Fs, E, and @ are of type IV*, IV, I, and I, respectively. Note that

the fibres over F5 and E, are smooth elliptic curves.

(¢) By blowing-up two times at (0 : 0 : 1), we have a picture of the reduced total transform of D as in
Figure 6.
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L Q £y C~2 L
Figure 6: Blowing up at (0:0:1)
The singular fibres over generic points of E1, Es, E, and @ are of type I¥, I, I}, and Iy, respectively.

Moreover, on Miranda’s list, the singular fibres over ¢i, g2, and g3 are of type I, I5, IF, respectively.

(d) By Theorem 4.1, the singular quintic curve ) has two nodes as its singularities. The singular fibres
over generic points of @) are of type I;. Hence the singular fibres over these two points are of type I
on Miranda’s list.

To sum up, we have the following theorem.

Theorem 4.3. ([Ish]) The singular elliptic fibration my : W — CP? is birationally equivalent to a Mi-
randa elliptic threefold

ros IV G2,
with the discriminant locus D whose support is given by

~

4
supp (D) = U (Brp; U Eap, U E3p,) U (El,(O:I:O) U Ez,(o;1:0)> U (B, 0:0:1) Y Ea 0:0:1)) v L U Q,
i=1

where Ey p,, Ea,,, and Es . are exceptional divisors over the four cusps of the original discriminant
locus p;, (i = 1,2,3,4) as in Figure 1. The singular fibres of my; are described as follows:

e The singular fibres over generic points of@ are of type I.

e The singular fibres over L are of type I .

o The singular fibres over generic points of Eq ,, are of type I1.
e The singular fibres over generic points of Eq ,, are of type 111.
o The singular fibres over generic points of Esp,, are of type IF.

o The singular fibres over the intersection point of F1 p, with Esp,, the one of Fap, with E3 ., and
the one of Q with E3 p, are displayed as in Figure 2, 3, and 4, respectively.

o The singular fibres over EL(M:O) are of type IV*.

o The singular fibres over Eg,(oﬂ:o) are of type IV .
e The singular fibres over generic points of E1 (o.0:1) are of type I5.
e The singular fibres over generic points of Ea (o.0.1) are of type I4.

o The singular fibres over the intersection point of Ey (o.0.1) with Ey (o.0.1), the one of@ with Ey (0.0:1)s
and the one on with Ey (0.0:1) are of type I, Is, and I3, respectively.

o The singular fibres over the two nodes of @ are of type Is.
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4.4 Monodromy of my,

In this subsection, we describe the monodromy of the original elliptic fibration 7y : W — CP? discussed
in Subsection 4.2.

Since the regular locus CP?\ supp (D) can be identified with C?\ Q.g, where Q.g denotes the affine
part of the singular quintic curve @, we have the following isomorphism:

m™ ((C]P’2 \ supp (D), *) >~y ((C2 \ Qaff, *) )

Let Reg (Qagr) be the set of smooth points of Q.. To each connected component of Reg (Q.g), we can
associate a generator of mp ((C2 \ Qaﬂ‘). We denote the generators corresponding to the two components
around a node of Q,g by a1, b as in Figure 7 and around a cusp by as, bs as in Figure 8.

a1 az b2

by

Figure 7: Node Figure 8: Cusp

By Zariski-van Kampen theorem [Zar29, Kam33|, the generators a1, b; around a node and the gener-
ators as, by around a cusp satisfy

albl = blal, (44)
azbaaz = baasba, (4.5)
respectively.

The monodromy matrices of all the types of singular fibres in elliptic surfaces were found by K.
Kodaira [Kod60, Kod63a, Kod63b]. Since singular fibres over the smooth points of Qg are of type I; in

. . . . . 11 . .
Kodaira’s notation, the corresponding monodromy matrices are given by (O 1) up to conjugation by
SL(2,Z). Then we have the following theorem.

Theorem 4.4. ([Ish]) With respect to a suitable choice of basis for Hy (W;I} (p) ,Z) where p is the ref-

erence point of (C2\Qaff7p), the monodromy representation of the original elliptic fibration my is
characterized as follows:

e For each connected component of Reg (Qag), the corresponding monodromy matriz is either

11 or 1 0
0 1 -1 1)
e When two connected components share the same node in their closure, the above monodromy ma-
trices are the same.

e When two connected components share the same cusp in their closure, the above matrices are dis-
tinct.
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