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Abstract
Birkhoff normalization is considered for a family of analytic symplectic maps near
a fixed point. It is proved that, if the family of those maps have an appropriate
number of analytic integrals, there exists an analytic system of symplectic (Birkhoff)
coordinates in which this family of maps can be solved explicitly. It is applied for
a real analytic superintegrable system to show the existence of special coordinates
near singular orbits in which the system can be solved explicitly.

1. Introduction

We consider a Hamiltonian system with d degrees of freedom

0H . OH
=5, = (k=1,...,d), (1)

a%k
where H is a smooth function of (z,y) € 2, Q being a domain of R** = R" x R".
The function H is called Hamiltonian and the vector field (1) is denoted by Xpy. The
Hamiltonian H is an integral of Xy, that is, invariant under the flow of Xy, and the
vector field Xy is said to be (Liouwville) integrable if it has d smooth and functionally
independent integrals Fy = H, I, ..., F; such that

Ty,

(F,FYy=0  (i,5=1,,...,d).

Here {-,-} denotes the Poisson bracket defined by {F,G} = Xg F and the functions
Fy, ..., F; are said to be functionally independent if the gradient vectors VF}, ..., VIFy
are linearly independent on an open dense subset of the phase space ).

For such an integrable system Xy, we define the map

F: Q> (x,y) — F(z,y) = (Fl(x,y),...,Fd(x,y)) e R%.

This is called the momentum map of the integrable system. Since F}, ..., F; are invariant
under the flow of Xy, each orbit (x(¢),y(t)) of Xy is confined on the level set

Fe)={(z,y) € Q| Fi(z,y)=¢ (i=1,...,d)}, ¢; = F;(x(0),y(0)).

The level set F'~1(c) is said to be regular (nonsingular) if c is the regular value of the map
F. The following theorem plays the fundamental role in the study of integrable systems
and their perturbation theory.



Theorem 1. (Liouville-Mineur-Arnold) ! If F~!(c) is reqular, compact and connected,
then it is a d-dimensional torus and there exists a neighbourhood D of the origin of R?
and a local diffeomorphism p: T¢x D > (0,1) — (x,y) € Q such that the following three
conditions hold:

d d

() @ (X dys Adxy) = 3 dIx Adby, (i) (T x {0}) = F~(0),
k=1 k=1

(iii) Fiop(0,1) does not depend on 6 (1=1,...,d).

A diffeomorphism (transformation) ¢ satisfying condition (i) is said to be symplectic and
the coordinates of § € T% and I € D are called angle coordinates and action coordinates
respectively. In these coordinates, each vector field Xy, is a Hamiltonian system with
Hamiltonian f; := Fjo ¢ and is written as

ofi  ; _ _0f
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=0 (k=1,...,d).

This can be solved explicitly as

0,(t) = 0,(0) + wy t (wk gi((()))), L,(t) = I(0).

Namely, the vector fields X, are linearized on each regular level set F~'(c) and give
periodic or quasi-periodic motions.

The above theorem gives rather perfect description of behaviour of solutions for inte-
grable systems near regular points of the map F: Q — R?. However in general, there
are singularities of the map F'. It is not clear whether an integrable system admits special
coordinates near its singularities so that the system can be solved explicitly. This article
is devoted to the study of this problem.

Birkhoff normal form theory plays a key role for this purpose. Let H(z,y) be a real
analytic function near the origin (x,y) = (0,0) € R*. We assume, for simplicity, that H
has the form

«

H(z,y) = Hy(x,y) + Oz + [yI*), Ha(z,y) 5

M&

k=1

The origin is an elliptic equilibrium point of the vector field Xz. We say that the function
H is in Birkhoff normal form (BNF) if the identity {H, Ho} = 0 holds, that is, H is
invariant under the flow of Xy,, or equivalently Hs is an integral of Xy. The equilibrium
point (the origin) is said to be non-resonant if the following condition holds.

d
> kjoay #£0 forany (ki ... kq) € Z4\ {0}. (2)

J=1

It is well known that there exists a formal symplectic transformation ¢ = id+- - - such that
Ho @ is in formal BNF. Here “formal” means that any object (transformation, function,

Tt is also called “Liouville-Arnold theorem.” We added the name of Mineur according to Zung [9,
19-20].



...) is considered as formal power series, and under the non-resonance condition (2)
the BNF is a formal power series in d variables wy, = (2 + y;) (k = 1,...,d). The
transformation ¢ is called Birkhoff transformation and the new coordinates induced by
@ are called Birkhoff coordinates. The Birkhoff normal form Ho ¢ is uniquely determined
although ¢ is not.

As Siegel [14] showed, it is exceptional that there exists a convergent Birkhoff trans-
formation. If, however, the Birkhoff transformation ¢ is convergent, the vector field X}
with h = Ho ¢ is written as

oh oh oh oh
Since h is a function of wy,...,w, alone and dwy/dt = z1&r + ypyr = 0, this system is

linear along solutions and can be solved explicitly. In this case, w; are Poisson commuting
integrals of X}, and hence the original system Xy has to be Liouville integrable. This gives
rise to a natural question: does there exist a convergent Birkhoff transformation ¢ for
analytically Liouville integrable system Xy near a non-resonant equilibrium point? This
question was answered affirmatively by the author [4] after preceding works by Riissman
[12] and Vey [17]. It was extended to general vector fields case by Stolovitch [15, 16].
On the other hand, Eliasson [2] proved the same result for smooth Liouville integrable
system under the restrictive condition that the quadratic part of the momentum map
F' at the equilibrium point is nondegenerate (see [9] for its generalization). This type
of nondegeneracy condition is needed in smooth case to guarantee the existence of a
smooth Birkhoff transformation (see the appendix of [9]), however, it is an open problem
to generalize the nondengeneracy condition.

Also, it was proved by Zung [18] that, including any resonance cases, an analytically
Liouville integrable Hamiltonian system has a convergent Birkhoff transformation near
an equilibrium point. Zung’s approach is geometric and based on the study of “torus
action” associated with integrable systems. It has a wide range of applications (see e.g.
the survey articles [19, 20]). However, in resonance cases, it does not necessarily imply
the existence of special coordinates in which the corresponding system is solved explicitly.
Furthermore, the Birkhoff normal form is not determined uniquely. For this problem, we
considered in [6] “superintegrable” situation with more than d (= the degree of freedom)
integrals, and proved in analytic category that if the Hamiltonian system Xy has d + ¢
integrals near an equilibrium point of resonance degree ¢, there exists a convergent Birkhoff
transformation such that the BNF becomes a function of d variables wq, ..., wy alone and
can be solved explicitly. Furthermore, the BNF is uniquely determined and actually can be
written as function of d — ¢ variables which are linear combinations of wy, ..., wy. There
are many examples of superintegrable systems: the Kepler problem, Euler rigid-body
motion with symmetry, Toda lattice, ---. For general information about superintegrable
systems, we refer to [3].

In the above mentioned result, the equilibrium point corresponds to rank 0 singularity
of the map consisting of d + ¢ integrals. In this article, we generalize this result to
situations with more general singularities. For this purpose, we note that, if there exists
a nondegenerate periodic orbit for a Hamiltonian system (1), it forms a family of periodic
orbits depending on the energy parameter (the value of H). Here “nondegenerate” means
that the linear part of the reduced Poincaré map does not have the eigenvalue 1. In the



case of integrable systems, it corresponds to the rank 1 singularity of the map F' consisting
of integrals of Xp. To study the orbit structure near this family of periodic orbits, it is
natural to consider Birkhoff normalization in a neighbourhood of the fixed points of the
reduced Poincaré maps.

Motivated by this observation, we will formulate theorems on the existence of a con-
vergent Birkhoff normalization for a family of symplectic maps near a fixed point such
that the orbits of given maps are obtained explicitly. It is to be noted that the torus
action approach does not work for normalization of maps without additional assumptions
(see [11]). We will prove them by elementary analysis of Birkhoff normal forms and nor-
malization. It will turn out that the BNF of the parametrized map does not become so
complicated although the resonance structure of the fixed points varies with the parameter
changes. It shows the rigidity of (super)integrable systems. The Birkhoff transformation
will be extended to a tubular neighbourhood of the singular orbits and the desired special
coordinates will be obtained.

We conclude this introduction by referring to some recent progress on the study of
Birkhoff normal forms. First, we note that there exists a convergent Birkhoff normal-
ization near a non-resonant equilibrium point satisfying a Diophantine condition if the
Birkhoff normal form Hop becomes a special form, more precisely a power series of the
quadratic part of H. This was shown by Riissmann [13]. This type of phenomenon was
found recently in different settings [1]. These results suggest that the Birkhoff normal
form itself plays a role in the existence problem of a convergent Birkhoff normalization,
more generally in the behaviour of solutions of the original system. In this respect, it is a
problem whether the Birkhoff normal form in non-resonance case can be convergent even
though there is no convergent normalization.? This natural question was raised by Elias-
son and its study was initiated by Péres-Marco [10] and recently Krikorian [7] proved that
it is generally divergent. See [7] for the precise statement and for discussions on relevant
problems and results.

The article is organized as follows. In §2, we review the definition of Birkhoff normal
form of a symplectic map. In §3, we state main theorems (Theorem 3 and Theorem 4)
about existence of an analytic Birkhoff normalization for an analytic family of symplectic
maps near resonant fixed points. In §4, we give an application of these theorems to an
analytic superintegrable system near a family of elliptic lower-dimensional invariant tori.
In §5, we discuss the idea of their proofs.

Throughout this article, we use the following notation.

e exp Xpy: the time-1 map of the flow of the Hamiltonian vector field Xy

e Diff(R?",0) (Diff(C?",0)): the group of germs of real (complex) analytic symplec-
tic diffeomorphisms f: (R*",0) — (R*",0) ((C*",0) — (C*",0)).

e Diffy (R*,0) (Diffy,(C*",0)): the group of germs of real (complex) analytic sym-
plectic diffeomorphisms f(v,-): (R*",0) — (R*,0) ((C*",0) — (C®",0)) depend-
ing real (complex) analytically on a parameter v € V, where V is a domain of R*
(C*) for some integer k > 0

2 In this sense, the title of the paper [4] is misleading. It should have been “Convergence of Birkhoff
normalization for analytic integrable systems”



e Ay(R?,0) (Ay(C?™,0)): the ring of germs of real (complex) analytic functions
F(v,-) near the origin of R?" (C?") depending real (complex) analytically on a
parameter v € V, where V is a domain of R* (C¥) for some integer k > 0.

Since any element of Diff(R?",0) is analytic, we have natural inclusions
Diff(R?",0) c Diff(C*",0), Diff (R*",0) C Diff;(C*",0),

where V is a complex domain containing the real domain V. For any f € Diffy (C?,0),
we denote it by f = f(v,z), where v € V is a parameter. We use the notation D f(v,0)
to denote the linear part (the Jacobian matrix) of f € Diffy(C**,0) with respect to the
variable z € C?". Also, we denote by G(v, z) a power series of z with coefficients being
holomorphic functions of v € V.

2. Birkhoff normal forms for symplectic maps

In the previous section, we introduced Birkhoff normal form (BNF) in real category
near an elliptic equilibrium point. The BNF is available also for any type of equilibrium
point as well as for symplectic maps near a fixed point. However, we need to divide cases
to state real BNF in details. Instead, in what follows, we work with complex BNF which
can be stated in a unified manner. The BNF in real category will be considered in §4 by
imposing appropriate reality condition.

Let us consider the BNF for symplectic maps without parameters. Let f € Diff(C?",0)
and let A denote the semi-simple part of Df(0). We assume that

A =diag( Ay, ..., A, AT A,

’n

We call this matrix A a symplectic diagonal matriz. The map f is said to be in Birkhoff
normal form (BNF) (up to order N) if it commutes with A (up to order N), i.e.,

foA=Aof  (foA(z) = Ao f(z) = O(]2|")).

Theorem 2. (Birkhoff normal form of a symplectic map) Let f € Diff (C?",0).
Then, for any positive integer N, there exists a transformation ¢ € Diff(C?*" 0) such
that =1 fo is in BNF up to order N, that is,

p o fop(z) = fno (2 + O(]21"™)),  fyveA=Aofy, fx €Diff(C™,0).

In particular, if N > 2 and the eigenvalues of D f(0) satisfy the condition

[[M#1 for O<IKI<N (Kl =lka|+-+[kal, ki€ ), 3)
i—1
then the map ¢~ 'o fop is written as
0 o fop(2) = Ao exp Xpo (z + O(]z|N+1)), h=h(w,...,w,), wi=2Z¥Yi,

where (Dgp(O))_lDf(O)D@(O) = A and h is a polynomial of wy,...,w, of degree [N/2],
the mazimum integer that does not exceed N/2.
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In the above, the transformation ¢ is not unique, however, the polynomial A is uniquely
determined independently of the higher order (i.e., order > 2) terms of ¢. The map
fn = Ao exp X}, is called Birkhoff normal form of f in non-resonance of degree N. The
dynamical system defined by the map fy is completely understood. In fact, the vector
field X, is written as

PO S
z_awi i Yi = 8%% — L0

The products w; are invariant under the flow of X}, and hence the map fy is written as
In: (g y) — ()\Z-eah/a“’ixi, )xi_le_ah/awiyi) (t=1,...,n).
Hence m-th iteration of fy is given explicitly as
v (i y) — (A;"em@h/a%)xi, )\;me’m(ah/a“”)yi) (t=1,...,n).

In this case, we say that the dynamical system of fy is solved explicitly. However, in

general case without assuming the condition (3) the map fy may not be solved in this

manner, namely the Birkhoff normal form of f cannot be solved explicitly even formally.
Theorem 2 can be proved by using the following fact.

Proposition 1. (a) A map f € Diff(C*",0) can be written as

f:Df(O)o.]?, .]/C\: (eprHlo eXpXHQO-“o eXpXHU>olp (4)

with
Hy=HM 4. 4 HF*Y (d=2"1 k=1,...,v),
U(z) = 2+ O]+,

where HL are homogeneous polynomials of degree I in z.

(b) Let A be a symplectic diagonal matriz (which is not necessarily equal to the semi-
simple part of Df(0)). A map f € Diff(C*",0) commutes with A up to order N = 2¥
if and only if the following two conditions hold for expression (4).

(i) Df(0) commutes with A, (i) HrpoA=H, (1<k<v).

3. Convergent Birkhoff normalization theorems for a family of
superintegrable symplectic maps

In this section, we state main theorems about the existence of a convergent Birkhoff
transformation for superintegrable symplectic maps.
First we consider a map f € Diff(C?",0) without parameters. For the matrix

A =diag Ar, ..o A ATL LAY,

the set
R = {k::(kl,...,k;n) ez

ﬁ)\fi -1}
i=1



is called the resonance lattice of A. This is a discrete subgroup of Z". If R is generated
by ¢ (0 < g < n) elements, we write rank R = ¢ and say that the fixed point z = 0 of f
(or the matrix A) is of resonance degree q. Here ¢ = 0 means that R = {0}, and in this
case the fixed point (or the matrix A) is also said to be non-resonant.

Next, we consider symplectic maps f € Diffy,(C?*,0) depending on a parameter v € V,
where V' is a domain of C*. Let A(v) be the semi-simple part of the linear part D f(v,0)
and assume that

A(v) = diag (M(v), ..., \u(v), M), ... )\_1(”0))

’'n

with eigenvalues \;(v) being holomorphic functions of v € V. We set

ﬁ)\fi(v) -1}

and call it the resonance lattice of A(v), which depends on the parameter v € V. Since
each R(v) contains the zero vector 0 € Z", the intersection

Ro = ﬂ R(v)

veV

R(v) == {k: (kv,... k) € Z"

is nonempty and is a discrete subgroup of Z". We introduce the following definition.

Definition 1. We say that the fixed point z = 0 of the parametrized map f € Diffy (C?*,0)
(or the parametrized matrix A(v)) is of resonance degree q if rank Ry = gq.

In this case, the following holds:

Proposition 2. Assume that the fived point of the parametrized map f € Diffy(C?",0)
18 of resonance degree q. Then, there exists a dense subset Vi of V' satisfying the following
three conditions

(i) R(v) D Ry for everyv € V, (ii) rank Ry = ¢, (iil) R(v) = Ry for everyv € V.

In fact, claims (i) and (ii) are trivial. To see (iii), let

Vo= ) {fveV | ][N @ #1} (5)

k€eZ™\Ro =

Here A;(v) are holomorphic functions in the complex domain V', and hence for each k €
Z" \ Ry fixed, the set {v € V | [[o, \F(v) # 1} is dense in V. Otherwise, we have
contradiction by the identity theorem. Therefore, Vj is the intersection of countable
numbers of open dense subsets of V. This implies that Vj is dense in V' by the Baire
property. For v € V4, it holds that R(v) = R, and claim (iii) follows. [ |

In the case f € Diffy(R?",0), we need to extend V' C R* to a complex domain V c Ck
in order to apply the identity theorem when k > 2. In other words, the set 1} defined by

(5) is not necessarily dense in V' C R*. By this fact, we introduce the following
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Definition 2. We say that a real parametrized map f € Diffy,(R**,0) with V C R* is of
resonance degree q if there exists a dense subset 1 of V satisfying the conditions (i)-(iii)
of Proposition 2.

Remark 1. In the case k = 1, Proposition 2 holds true for f € Diffy,(R?",0) without
any modification. Therefore, in the case k = 1 it is possible to define f € Diffy (R?",0)
to be of resonance degree g by Definition 1.

Example. Let f € Diff;,(R?,0) and assume that the eigenvalues of Df(0) are e*2me(v)
(i = v/~1, a € R). If a(v) varies with v, then the fixed point is resonant or non-resonant
according to a(v) € Q or a(v) € R\ Q. In this case, the origin is a non-resonant fixed
point of the family of maps f(v,-) with v € V.

We now consider the Birkhoff normalization of f € Diffy, (C**,0) near a fixed point of
resonance degree ¢ and want to find a special coordinate system in which the dynamical
system of f is solved explicitly. In order to state the results, let Ro be the minimal
resonance lattice defined above of the parametrized matrix A(v) and introduce

pM, ... p 9D € Z" . generators of Ry
platt . p™ € R™ : linearly independent vectors which are orthogonal to
pM, ..., p9 with respect to the Euclidean inner product.

Furthermore, we set

PO = D), p D= o) = p () p) e zn)

and define n + ¢ variables w; (i = 1,...,n + ¢q) as well as n variables 7; (i = 1,...,n) as
follows: .

Wi = TiYi, Ty = Zpgi)wj (1=1,...,n),

N =1

Whti :'Tpgf)yp(:) (Z = 177Q)
Let Vj be the dense subset of V' described in Proposition 2 and A := A(v) for any v € 1}
fixed. Then, the variables wy, ..., w1, are monomials of z which are invariant under A.

Since the fixed point of f is resonant, one cannot expect in general that the Birkhoff
normal form of f is solved explicitly, nor can expect that there exists a convergent Birkhoff
normalization. Moreover, since we consider a parametrized map, one may wonder that
resonance terms of its Birkhoff normal form appear or disappear as the parameter v varies.
This phenomenon happens in general cases, however, our first result below shows that it
does not occur in integrable systems, more precisely provided that f has n+ ¢ functionally
independent integrals. It turns out that the Birkhoff normal form of f becomes a map
which commutes with A(vg) for any vy € V4 fixed (see Lemma 2 in §5). In this case, the
Birkhoff normal form will be called A-normal form. The result is stated as follows.

Theorem 3. Let f(v,-) € Diffy(C?",0) and assume that the following conditions hold:
[A1] all eigenvalues of D f(v,0) are holomorphic functions of v € V.

[A2] the fized point z = 0 of the parametrized map f(v,-) is of resonance degree q.

8



[A3] f has n + q analytic integrals G;(v,z) € Ay (C*",0) (i = 1,...,n + q) which are
functionally independent functions of z for each v € V' fixed.

Then there exists an open dense subset 1% of V_with the following property: For any
vo € V, there exists its neighbourhood V(vy) C V' and a symplectic transformation ¢ €
Diff,,,(C*",0) such that

- A(v)o exp Xppwy (0<g<n-—1)
1O o — h(v,) >q4> ; 6
¢t re={ A (¢ =n). R

Here A(v) is the symplectic diagonal matriz and h(v,-) is a convergent power series of
Wi, -« ., Wy with coefficients being holomorphic functions of v € V(vy) such that it depends
actually on n — q variables 1441, ..., T, only.
Remark 2. (i) The function h is uniquely determined as power series in wy,...,w,.
More precisely, it is independent of the higher order (i.e., order > 2) terms of ¢.

(i) The monomials wy, ..., w,, are invariant under ¢ ~'o fo . Moreover, if G(v, z) is
an analytic function which is invariant under f, then Go ¢ is a function (Laurent series)
of n + ¢ variables wy, ..., wWpiq-

(iii) By the implicit function theorem, the condition [A1] holds if all eigenvalues of
Df(v,0) are simple. Also, when the parameter space V' is one-dimensional, a multiple
eigenvalue can be expressed as Puiseux series of v € V. Therefore, condition [Al] holds
for this case under slight modification so that the same conclusion of the theorem holds.

(iv) The theorem holds also when the parameter is fixed. It is obvious how to modify
assumptions and consequences. The condition [A1] is deleted and there is no need to take
the subset V of V.

(v) Since wy,...,w, are Poisson commuting integrals of ¢ ~'o fo, it turns out that
the original map f is Liouville integrable near the origin although it is not assumed.

The normal form (6) will be obtained through normalization of f into A-normal form
and will turn out to have the same form as in non-resonance case, i.e., h is a function of
wi, ..., w, (actually of smaller number of variables stated above). This implies that the
normal form (6) can be solved explicitly.

As mentioned in §1, the symplectic map in Theorem 3 typically appears as the reduced
Poincaré map associated to a family of periodic orbits. In the case where several Poisson
commuting functions are given, the corresponding flows give rise to commuting Poincaré
maps. For such situations, we have the following

Theorem 4. Let f;(v,-) € Diff,(C*,0) (i = 1,...,k) satisfy the following conditions:
[Bl] fiofj:fjofi (Z7J:177k:)7
[B2] the fized point z =0 of f; (i =1,...,k) is of resonance degree g; and ¢; > q1(= q),

B3] fi,..., fr have common n+q analytic integrals G;(v, z) (i = 1,...,n+q) which are
functionally independent functions of z for each v € V' fixed,

[B4] all eigenvalues of Df;(v,0) (i =1,...,k) are holomorphic functions of v € V' and all
D f;(v,0) are diagonalized by a symplectic matriz whose elements are holomorphic
functions of v € V.



Then the same conclusion of Theorem 3 holds with f(v,-), A(v), h(v,-) replaced by
Fi(0,), M), hiv, ) respectively.

Remark 3. The condition [B4] holds if there is some map f € Diffy (C?",0) such that
it commutes with all of fi,..., fx and all eigenvalues of D f(v,0) are simple.

In fact, all eigenvalues of D f(v,0) are holomorphic functions of v € V' under this as-
sumption. If P = P(v) is a symplectic matrix whose elements are holomorphic functions of
v € V such that P~'D f(v,0)P is diagonal, then the commuting relation D f(v,0)D f;(v,0)
= Df;(v,0)Df(v,0), together with simplicity of the eigenvalues of D f(v,0), implies that
D f;(v,0) is also diagonalized by P and its eigenvalues are holomorphic functions of v € V.

Remark 4. If f € Diffy,(R*",0) or f; € Diffy,(R*",0), it is important to consider Birkhoff
normalization in real category. The real Birkhoff normalization is obtained by imposing
reality condition on the diagonalization matrix. The real BNF' is obtained by w; = x;y;

1
— (25 + y7) mentioned in §1.

replaced with the real variables such as &; = 5

4. Action-angle with Birkhoff coordinates near singular orbits
for superintegrable systems

Let (M, o) be a real analytic symplectic manifold of dimension 2d. For a real analytic
function H on M, the Hamiltonian vector field Xy is deﬁned and is written in the form (1)

by introducing the standard symplectic structure o = z dyp N\ dzy.

Let Fi,..., Fy, Fyq1,..., Fipq be d + g real analytlc functions on M satisfying the
condition

and dFy, ..., dFyy, are linearly independent on an open dense subset of M (i.e., function-
ally independent). Namely, F},. .., F} are Poisson commuting functions which have d 4 ¢
common integrals Fy, ..., Fyi,. We note that £ < d and set

F=(F,.. . F).

Then, near any regular point of the map F', there exists a system of local symplectic
coordinates (u,v,z,y) € R¥ x R¥ x R¥™* x R?* such that

d—k
o= ZdvZ A du; +Zdy] A dz;
=1 7=1
F, and hence X 0 (i1=1 k)
;i =v; an n = r=1,...,
f 8uz
Then condition (7) implies that Fiiy,..., F4, are functions of 2d — k variables v, x,y
alone. Since F7,..., Fy;, are functionally independent, we have d+ ¢ < 2d — k and hence
g<d-—k(=n)
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Let pp € M and assume that
rank(dFy, ..., dF,)(po) = rank(dFy, ..., dFy)(po) = k, F(po) = 0. (8)

We consider orbits of commuting vector fields Xp,, ..., Xp,. Let ¢% be the flow of Xp,,
and for a point p in a neighbourhood of py we define

Qﬁ%(p) = ¢§‘11O s ogbgfk(p) for t= (tl, ce ,tk) S Rk

We assume that the level set of Fi, ..., Fyi, through py is compact. Then ¢4 (po) is defined
for all t € R*. We call the set

Dr(po) == {d(po) € M | t € R"}

the orbit of Xp,,..., Xpg, through po € M. The set

Perp(p) == {t € R* | ¢%(po) = po }

is called the period lattice of ¢%. It is a discrete subgroup of R* and the action ¢ +— ¢'(po)
gives rise to a diffeomorphism R*/Perz(py) = ®p(pg). Since ®r(py) is compact, Perp(po)
is a k-dimensional lattice and hence ®g(pg) is diffeomorphic to a k-dimensional torus
Tk = R*/2nZF and is called invariant torus of Xr,,..., Xp,.

Let us consider orbits of Xp,,..., Xp, in a neighbourhood of this torus. Let U be a
neighbourhood of py € M and V a neighbourhood of v = 0 € R¥. For any v € V, we
consider the level set of F' = (F},. .., Fy), denoted by F~!(v) := {p € M | F(p) = v}. The
flows of Xp,,..., Xg, give rise to a local action of R¥ on F~!(v) N U, and the quotient
space

¥, = F'(v)nU/RF

is obtained by identifying the orbit of this action. It is a symplectic manifold of dimension
2n( =2(d — k:)) and is called the reduced phase space. Using the coordinates (u,v,z,y),
the point pg corresponds to (0,0,0,0) and ¥, is identified as the set {(u,v,z,y) € U|u =
0, v = const.}.
Let
T F7Ho)NnU — 3,

be the projection map. Let T' = (11,...,Tx) € Perp(py) and consider the parametrized
map
L (v,") = Tpoplom, 1 By — X,

We call this map the reduced period-T'" map of the vector fields Xp,,..., Xp,. Here v is
the value of F' and (z,y) = (0,0) is the fixed point of the map ¢~ (0, -)
Definition 3. An invariant torus ®r(pg) of Xp,, ..., Xp, is said to be nondegenerate if

there exists a period T' € Perp(pg) such that m(pg) is a nondegenerate fixed point of the
reduced period-7" map ngF( -), i.e., the linear map ngp (0,0) does not have eigenvalue 1.

Then we have
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Proposition 3. If ®r(py) is a nondegenerate invariant k-torus of Xp, ..., Xp,, then
there exists a unique k-parameter family of k-dimensional invariant tori ®x(p,) C F~1(v)
of Xpys...,Xp,, where p, is a (vector-valued) real analytic function of v € V, V being a
neighbourhood of F(pg) = 0 in RF.

We call this family of invariant k-tori simply an analytic family of invariant k-tori and
denote it by {®r(p,)}v. By this proposition, the reduced period-T map ¢/ (v,-) can be
considered as ¢7 (v, -) € Diffy (R2",0) after parallel translation of taking p, to the origin.

We now state a result establishing the existence of action-angle with Birkhoff coordi-
nates for superintegrable systems with singularities. For simplicity, we restrict ourselves
to the case where those invariant k-tori are elliptic. We introduce the following

Definition 4. An analytic family of invariant k-tori {®r(p,)}v is said to be (i) elliptic,
(ii) simple, (iii) of resonance degree q if there exists a period T = T(v) € Perp(p,)
such that the associated reduced period-T" map &5}?(0, -) satisfies the following conditions
respectively:

(i) p, is an elliptic fixed point of % (v, "),

(i) all eigenvalues of Dg/b\%(v, 0) are simple,
(iii) p, is a fixed point of the parametrized map (EE(U, -) of resonance degree q.

Then, by applying Theorem 4 we can prove the following

Theorem 5. Let Fy,..., Fy, Fiy1, ..., Farq (0 < g < d— k) be real analytic functions
satisfying (7) and (8) on a real analytic symplectic manifold (M, o) of dimension 2d. Let
{®r(py)}v be a real analytic family of invariant k-tori of the vector fields Xp,, ..., Xp,
and assume that it is elliptic, simple and of resonance degree q. Then, there exists an
open dense subset 1% of V. with the following property: For any v € V there exists a
neighbourhood of ®(p,) in which one can introduce a system of real analytic symplectic

coordinates

d—k
(0,1,2,y) € TF x R x R** x R4F; U_de Ndb; + Y dy; A da;
7=1 7=1

such that Fy, ..., Fy are functions of d — q variables

Il?"'ylk)?q+17"'7?d—k‘ (Ongd—]{?—l), Il,...,fk (q:d—k),

~ ()~ ~ 1 :

where T, = Y p§-)wj and W; = E(xf +y?). The vector fields Xr, (i =1,...,k) have d+q
i=1

integrals Iy, ..., Iy and Oy, ..., Wheq (n=d — k).

5. Sketch of proofs

We give a sketch of proofs of Theorems 3-5. The details will be published elsewhere.

(i) Preliminary facts

First we note the the following fact.
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Lemma 1. Let A € sp(2n,C) be a symplectic diagonal matriz of resonance degree q. If
a function G(v,z) € Ay (C*,0) is A-invariant, then G(v,z) can be written as Laurent
series of n + q variables wy,...,wn1q whose coefficients are holomorphic functions in

veV.

In fact, if we write G in the form G =" pezn Cap(v)x%y? | We can easily see that the term
z%y”? in A-normal form can be expressed as a quotient of two monomials in wy, ..., Wiy

(see the proof of [6, Prop 1]).
Next we note the following fact due to Proposition 2.

Lemma 2. Let A(v) be a parametrized symplectic diagonal matriz of resonance degree q.
Let A = A(vg) for any fized vy € Vi, where Vi is the dense subset of V' described in
Proposition 2. Then, for any f € Diffy (C*,0) and for any function G € Ay (C*",0)
the following hold:

(1) Gv,A(w)z) =G(v,z) (M eV) <<= G Az)=Gv,z) MeV)
(2) flv,A(v)z) =Aw)f(v,2) (MveV)<= f(v,Az)=Af(v,2) (YveV)

This lemma implies that a parametrized map (or function) is in A(v)-normal form for
each v € V if and only if it is in A-normal form for all v € V.

(ii) Proof of Theorem 3

Our proof of the existence of a convergent Birkhoff normalizing transformation relies
on the existence of n + ¢ integrals of f. We first give a sketch of the proof of Theorem 3
under the condition that D f(v,0) is a diagonal matrix. The following fact is crucial.

Proposition 4. Let f € Diffy (C*",0) and assume that D f(v,0) is a parametrized sym-
plectic diagonal matriz of resonance degree q. Let A = Df(v,0) for any v € Vy fized.
Assume that f has an integral G € Ay (C*",0) and that f is in A-normal form up to
order d for allv € V. Then G is in A-normal form up to order s+d —1 for all v €'V,
where s is the degree of the lowest order part of G as power series expansion of z with
holomorphic coefficients inv € V.

Let us write the Taylor expansions of the integrals G;(v, z) of f in the form
Gi(v,2) = GYv,2) + G{ (v,2) + -+ Gl(v,2) + -+, degGl=s;+d

where G¢(v, z) denotes the homogeneous polynomial of degree s;+d in z whose coefficients
are holomorphic functions of v € V. The functional independence of Gy, ..., Gpyq does
not necessarily imply that of their lowest order parts GY, ..., G° +q However, we have the
following lemma which will play a crucial role in our proof.

Lemma 3. ([5, Lemma 5.8]) Let Gy,...,G,, € Ay (C*,0) be functionally indepen-
dent functions of z for any v € V fized. Then there exists an open dense subset 1% of V
with the following property: For any vy € V there exists its nezghbour’hood V(U()) cV

such that the following holds: there exist m functions Gl, .. G € A ) ( I 0) such

that (1) they are polynomials of G, . .., G, whose coeﬁicz’ents are holomorphz’c functions of
v € V(v), and (i) their lowest order parts GY (i = 1,...,m) are functionally independent

functions of z for each v € V (vy).
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In view of Proposition 1, we will construct the Birkhoff normalizing transformation
z = (v, 2z) in the form

gO(’U,Z) = hm (eXprlo eXpXWQO cer0 eXpXWV>, Wk = WngQ —+ -4 ”k?dJrl,
V—00
(d=2F1 k=1,...,v).

Each iteration step is described as follows:

Proposition 5. Let f € Diffy (C?**,0) and assume that D f(v,0) is a parametrized sym-
plectic diagonal matriz of resonance degree q. Assume that f has n+q integrals G;(v, z) €
Ay (C?,0) (i =1,...,n+ q) whose lowest order parts GY(v,-) are functionally indepen-
dent functions of z for each v € V fizred. Let A = D f(uvo,0) for any vy € Vi fized and
suppose that f is in A-normal form up to orderd =2 (v =0,1,...) for anyv € V.. Then
there exists a unique polynomial W (v, z) with coefficients being holomorphic in v € V' of
the form

W =W 4+ W3 4 W with PyW =0, (9)

Wt = W(v,-) being homogeneous polynomials of degree |, such that p = exp Xy takes
f into A-normal form up to order 2d = 2"** for any v € V. Here Py is the projection
operator from the space Ay (C*",0) to its subspace consisting of power series in A-normal
form.

It is standard to prove that, for each v € Vj fixed, there exists a polynomial W such
that ¢ = exp Xy takes f into A(v)-normal form up to order 2d. It is done without
using the existence of integrals. We can use the existence of n + ¢ integrals of f to
show that the polynomial W (v, z) defined only for v € 1 can be extended to a function
W (v,2) € Ay (C?",0) defined for all v € V. The argument goes as follows:

Let A = A(vg) for some fixed vy € Vj and suppose that f = f(v,z) is in A-normal
form up to order d for all v € V. Then its integrals G; are written as

Gi(U, 2) = gi(U, Z) + az’(va Z) ;o gioN = g, az = O(|Z 8i+d)- (10)

Let v € Vj be taken arbitrarilly and and let W = W92 4 ... 4+ 1¥/24+1 he the polynomial
such that ¢(v,z) = exp Xy takes f into A(v)-normal form up to order 2d. Then G;op
can be written as

Giop = gi(v,2) + {g:(v,2), W (v, 2)} + Gi(v, 2) + O(|21") (v € V).

Since Gjop are A-invariant up to order s; + 2d — 1, the homogeneous parts W2 of W
satisfy the following equations for | =d,d+1,...,2d — 1:

I—d
{gz()uwl+2} - _(Zd_PN)@{L_Z{g;/JWZ+2—V} (Z: 177n+q) (]'1>
v=1
Suppose that W2 .. W™ are extended to polynomials of z whose coefficients are

holomorphic functions of v € V. Since the left-hand side of (11) can be written as

n+
0 T/l+21 : dg; R A
{ng }_Z {WJ,W }7
=1 8Wj
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the system (11) can be considered as a system of linear equations for {w;, W'} (j =

1,...,n+q). Then, by Cramer’s formula we have the expression
{w;, W2} (v, 2) (k=1 Vg l=d,...,2d—1) (12)
Wy, = N =L...,n q; t=4a,..., - )
! p(v, 2)

where ¢! (v, ), p(v, 2) are some polynomials of z with holomorphic coefficients in v € V
and ¢}, is divisible by p for each v € V; fixed. Then one can see that g (v, z) is divisible
by p for all v € V (see [5, p.392]). Therefore {w;, W2} and hence W'*? are extended to
polynomials with holomorphic coefficients in v € V. By induction argument, we see that
W is a polynomial of z with holomorphic coefficients in v € V. Therefore ¢ is defined for
all v € V and ¢~ o fo is in A-normal form up to order 2d for all v € V.

By repeating this iteration procedure, we can find a formal symplectic transformation
© which takes f into A-normal form up to infinite order. Convergence of the transforma-
tion ¢ can be proved by the technique of KAM theory. The small divisor difficulty can
be also avoided by using the division formula (12).

The existence of n + ¢ integrals of f as above implies also that the A-normal form
in Proposition 5 has the special form. Suppose that f is in A-normal form up to order
d = 2. Since Proposition 1 holds also for parametrized map case, f(v,) can be written
in the form

f(’U, ) = A(U)o exXp XH1° exXp XH20 HEICN) eXpXHVo ’QD(’U, '),
Hy=H{P + -+ HY™ (d=2"" k=1,...v),  ¢(v,2)=2z+0(]*"),

where H! = Hl (v, 2) are homogeneous polynomials of degree [ in z with coefficients being
holomorphic in v € V and satisfy H (v, Az) = H. (v, z). We note that any integral G;(v, -)
of f is in A-normal form (hence also A(v)-invariant) up to oder s; +d — 1. Suppose that
Hy,..., Hy_1 are polynomials of 7,41, ..., 7, with holomorphic coefficients in v € V. Then
we have

GXpXHlo eXpXH20 ctco E}XI))([_11671 = eXpAthk717 hk,1 = H1 + -+ kal-

Moreover we have g;o exp Xp, , = g;, where g; is the normal form part of G; given in (10).
Then we can derive from the identity G;o f = G; that

{GY, H?} =0 (t=1,....,n+q).
Since GY are functions of wy, . .., wp,, we have

n+
GO Hd+2 _ an’? ‘HCH_Q _0
{Gi, Hy, }—E 8w-{%’ k=0
j=1 =7

Here GY,...,GY,, are functionally independent and hence det (0G?/0w;) # 0 for any

v € V fixed. Therefore the above identities are equivalent to
{w;, H*?} =0 (j=1,...,n+q).

This implies that H{™? is a polynomial of n — ¢ variables 7,1, ..., 7, only (see [6]). We
can continue this argument to show that this holds also for H{*?, ... H?**! and conclude
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that Hj, is a polynomial of n — ¢ variables 7,41,...,7, only. By induction, this leads to
the proof that ¢~'c fo has the special form (6).

It remains to show that the linear part Df(v,0) is semi-simple. For this purpose,
we use the fact that the square of a linear symplectic map can be written as the time-1
map of a linear autonomous Hamiltonian system (see cf. [8]). We have its parametrized
version as follows.

Lemma 4. Let f € Diffy,(C?",0). Then the following holds:

(i) If Df(v,0) does not have a negative eigenvalue, then there exists a symmetric matriz
A(v) whose elements are holomorphic functions of v € V' such that

Df(v,0) = /4™,

(ii) There exists a symmetric matriz A(v) whose elements are holomorphic functions of
v €V such that

(Df(v, O))2 = exp XH2< = eJA(”)>, Hy, = %tzA(v)z.

Suppose that f has n+ g integrals G;(v,2) (i = 1,...,n+¢q). Their lowest order parts
GY(v, 2) are invariant under the linear map D f(v,0) and hence invariant also under its

square (D f(v, 0))2. Therefore, the functions
@?(U,z,t) = Gy (v, exp(—tXp,)z) (t=1,....,n+q)

are time-dependent integrals of the vector field Xp,. Using this fact, one can prove that
Hs(v, z) is a function of wy, ..., w, only. This implies particularly that the map exp Xp,
and hence D f(v,0) are semi-simple.

(iii) Proofs of Theorem 4 and Theorem 5

If fi is in A-normal form, the commuting relation fio f; = fjo fi implies that f; is
also in A-normal form. However, it is not trivial at all that f; has the special form
fi = Df;(v,0)o exp X, v,y To prove it, we carry out further normalization of fa,..., fi
so that f; are also taken into Aj-normal form, where A; = Df;(v,0) for some v € Vj,
Vo being the dense subset of V' described in Proposition 2. It concludes the proof of
Theorem 4. Finally, we can prove Theorem 5 by the arguments similar to those of [5].
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