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Abstract

The Rumin complex is the Bernstein-Gelfand-Gelfand complex (BGG complex)
of the twisted de Rham complex of a flat vector bundle with respect to contact
manifolds. As a typical theorem, the cohomology of the BGG complex coincides
with the cohomology of the de Rham complex of a flat vector bundle. Moreover,
the Rumin complex arises when we take the sub-Riemannian limit.

Let us consider what happens when we replace a concept defined using the de
Rham complex with the Rumin complex. In this talk, we adapt this idea to analytic
torsion. On flat vector bundles with a unitary holonomy over lens spaces, we express
explicitly the analytic torsion functions associated with the Rumin complex in terms
of the Hurwitz zeta function. In particular, we determine the analytic torsions, and
it is written using the Betti numbers and the Ray-Singer torsion.

1 What is the Rumin complex?

1.1 Bernstein-Gelfand-Gelfand complex

The Bernstein-Gelfand-Gelfand sequence (BGG sequence) (€°(M, E), D) is defined for
parabolic geometry on the twisted de Rham complex due to Cap-Slovak-Soucek [5] and
Calderbank-Dimer [4]. Rumin has also introduced a non G-invariant version in the context
of sub-Riemannian geometry [21], which coincides with the Rumin complex [20] on contact
manifolds (e.g. [23, §5.3], [7, §4]). Dave and Haller generalized the differential operator
on filtered vector bundle with codifferentials of Kostant type [7]. If the BGG sequence is
complex, we call it the BGG complex. As a typical theorem, on flat vector bundles, the
cohomology of the BGG complex coincides with the cohomology of the de Rham complex
of a flat vector bundle [5, Theorem 4.13], [4, Theorem 3.6], [7, Corollary 4.20]. This claim
is a generalization of the result of the Rumin complex [20].

A filtered manifold is a smooth manifold M whose tangent bundle comes equipped
with a filtration by smooth subbundles,

TM=T"M>---2>T?*M>T 'M>T°M = {0},

which is compatible with the Lie bracket in the following sense: if X € C*(M,T*M)
and Y € C>°(M,T9M), then [X,Y] € C>®(M,TP2M). We call a turple (M, g, {T*M}) a

filtered Riemannian manifold if (M, g) is a Riemannian manifold which has a filtrattion



{T* M}, and there exist subbundles {t"M} C T'M which satisfy

p

T7PM = @t_iM and g(t' M, ¥ M) = {0} for i # j.

i=1

Since for all X € C®(M,TPM) and Y € C>*°(M,T9M) and f € C*(M),
[fXY]=fIX. Y]+ (V)X = fIX,Y] mod C*(M,T""M),
the bracket on T'M induces the smooth bracket [ , ]o on T, M for x € M such that
(X, Y]o=[X,Y] mod C*(M,TP"M).

A filtered vector bundle over a filtered manifold M is a vector bundle F over M which
comes equipped with a filtration by smooth subbundles,

E=FE">E" >...0FE" ={0}.

We call V: C®(M, E) — QY(M, E) a filtration preserving connection on a filtered vector
bundle E over a filtered manifold M if Vx¢ € C*(M, EP*9) for all X € C*(M,TP?M)
and ¢ € C*(M, E?). Let gg be a metric of E. We set

g1, () = EP N (B)7,

er, (/\kTVMQoE) - an VM A APV M er

p1+-+Pk—Pr+1=—P

gr? (/\kTvM ® E) =Per, (/\kTvM 2 E) .

q=p

L,

Pk+1

Let gr,: NTYM@E — gr, (/\kTVM ® E) be the fiberwise orthogonal projection with
respect to the metrics g and gg. For all linear operator A: Q*(M, E) — Q°*(M, E), we
set gr,(A) :== > er,,,0Acgr, and A is called filtration preserving if Agr?Q*(M, E) C
griQ*(M, E). We set

dy = gry(dY).

By Leibniz’ rule, for f € C*(M), u € gr,(Q(M, E)),
dy f& = gr,(df Ao+ fd¥ ) = fdg &

It means that d is a smooth bundle map. Henceforth, we assume that dy is locally

constant rank.
We set
Oo = dydy* +dy*dy. O:=ddy* +dy*d",

where * is adjoint with respect to the metric g and gg. Since dy is locally constant rank,
we define a subbundle of A*TVM & E by for = € M,

H*(tM & E), := Ker (DO: NTYM @ B, — NTYM & E) ,

and the fiberwise smooth projection Hg: A"TVM © E — H*(tM © E) is defined. We set
EF(M,E) :=C>®(M, H*(tM ® E)).
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Proposition 1.1. ([7, Lemma 4.4, Proposition 4.5])

Let ¥V be a flat filtration preserving connection on a filtrated vector bundle E with a
metric gg over a filtered Riemannian manifold (M, g,{T*M?}). Assume that dy is locally
constant rank.

Then, there exists a unique filtration preserving differential operator P: Q*(M, E) —
Q*(M, E) such that P* = P, PO = 0P, gry(P) = Il¢.

In [11, page 29|, Haller pointed out P coincides with IIg in [21, Theorem 1, Lemma
1]. We set
g ds05',  on Imd,
0 0, otherwise,
and the nilpotent operator N := alov T(dv — dy). The operator P is given by
P =1d—(Id+N)"'dy"dv —d¥1d+N)"'d}. (1.1)
We define the operator L by
L:=Pllg+ (1 — P)(1—1I).
We define the Bernstein-Gelfand-Gelfand operator (BGG operator) D by
D =Tl L 'd" L1lg.

Proposition 1.2. ([7, Proposition 4.5, Corollary 4.20])

Let ¥V be a flat filtration preserving connection on a filtrated vector bundle E with a
metric gg over a filtered Riemannian manifold (M, g,{T*M?}). Assume that dy is locally
constant rank.

Then D* = 0 and L: E*(M,E) — Q*(M, E) provides a chain map, d¥L = LD,
inducing an isomorphism between the cohomologies of (Q*(M, E),d) and (£*(M, E), D).

The complex (£°(M, E), D) is called the Bernstein-Gelfand-Gelfand complex (BGG
complex) of (2°(M, E),d").

Remark 1.3. In [21], Rumin constructed the BGG complex on Carnot-Caratheodry man-
ifolds. However, to adapt this construction in [21] to filtered manifolds, we can extend the
BGG complex on filtered manifolds.

Proposition 1.4. Let V be a flat filtration preserving connection on a filtrated vector
bundle E with a metric gg over a filtered Riemannian manifold (M, g,{T*M}). Assume
that dy is locally constant rank.

Then, the BGG sequence (E°(M, E), D) of the sequence (Q*(M, E),dY) is given by for
l<p<r,

Dy:=gr,(D) =T > (=1)"gr, (d%)dy" gr,,(d%)---dy " gr,, (d")Ie.

p1+t-+pe=p

Proof. We set
L' = Lllg.

The operator L’ has
d*L =0, dy*dl' =0, andIgL' =1d on £(M,E), (1.2)
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where Il 49+ is the projection to Ker dy*, see [7, Proposition 4.10]. The third equation
of (1.2) follows that
ML =1d on £(M, E),

that is,
g =L on LE* (M, E). (1.3)

From (1.1), (1.3), and Proposition 1.2, the operator D is given by
D = TgdY (Id +dy ' (dY — dY ).

Since dy '(d¥ — dY) is nilpotent,
D= Ted" (—1)"(dy '(d¥ — dy )" Il.
p=0

Let gr, act on both sides, we obtain Proposition 1.4.

1.2 Rumin complex

Let (M, H) be a compact contact manifold of dimension 2n + 1 and E be the flat vector
bundle with a unitary holonomy on M. Rumin [20] introduced a complex (€*(M, E), D*),
which is a subquotient of the de Rham complex of E. This complex is the BGG complex
with respect to contact manifolds. The operator dy, gr,(d), gry(d) are given by

do = Intp dOA,  gry(d) =0 A Lo,
and gry(d)8 = 0 and for ¢ € C> (M, \* HY)

gr, ()¢ = dg — 0 A (Intr dg).

Here Inty is the interior product and Ly is the Reeb vector field with respect to T'. From
definition of the BGG complex

¢ € C® (M, A HV) ] (dON)* = o} , k<n,

EE (M) = QSGQ/\COO(M’/\k—lH\/)‘d@/\qb:()}’ k>n+1,

and Proposition 1.4, the Rumin complex is given by
Dl = Hg grl(d)Hg,
Dy =T (gr,(d) - g, (d)df gr, (d) ) The = Teb A (Lr — gr, (d)(d6A) " gr, (d) Tle.

A specific feature of the complex is that the operator D" = Dy: (M, E) — E"(M, E)
in ‘middle degree’ is a second-order, while D* = Dy: E¥(M, E) — EFY(M, E) for k # n
are first order which are induced by the exterior derivatives.

Let a, = 1/+/|n — k| for k # n and a,, = 1. Then, (£*(M, E), d?), where d¥ = aD*,
is also a complex. We call (£*(M, E), ds) the Rumin complez. In virtue of the rescaling,
d satisfies Kéhler-type identities on Sasakian manifolds [22, (34)], which include the case
of lens spaces.



2 Harmonic forms and the Rumin complex on Sasakian
manifolds

Let 6 be a contact form of H and J be an almost complex structure on H. Then we may
define a Riemannian metric gy ; on T'M by

9o.s(X,Y) := dO(X, JY) + 0(X)0(Y) for X,Y € TM

Following [20], we define the Rumin Laplacians Ag associated with (£°(M, E),ds) and
the metric gy by

(dede*)? + (de*de)?, k#n,n+1,
Ag = (dgdg*)Q + D;DQ, k= n,
DsDj + (dg*dg)?,  k=n+1.

Rumin showed that Ag¢ has discrete eigenvalues with finite multiplicities.

Rumin [20] showed that Ker(Ag) is isomorphic to H*(M). As a natural question,
what is the difference between Ker(Agr) and Ker(Ag) in set? The following theorem
answers this question.

Theorem 2.1. ([16, Theorem 1.1]) Let (M, H,0,J) be a compact Sasakian manifold
of dimension 2n + 1. Then, the kernel of the Rumin Laplacian agrees with that of the
Hodge-de Rham Laplacian, that is,

Ker(Agr: QF(M) — QF(M)) = Ker(Ag: E¥(M) — EX(M)).

Recently, Case showed that by [6, Proposition 12.10], for a compact Sasakian manifold
M,

Ker(Ag: EX(M) — EF(M))
= @ Ker(Ae: £F(M) — EF(M)) N C™ (M,}J\HV) , (2.1)

where

/\HV ::/\{gbeHV\ng:\/—_lgb}@/\{gbeHV\ng:—\/—_lgb}.

Using (2.1), he [6] recovered a topological obstruction [3,10] to the existence of Sasakian
structure on a given manifold in terms of its Betti numbers.
From Theorem 2.1 and (2.1), we give another proof of the following corollary:

Corollary 2.2. ([26, Theorems 7.1, 8.1], [10, Corollary 4.2]) In the setting of Theorem
2.1, for ¢ € Ker(Aar: QF(M) — QF(M)),

(1) if k <n, we have Intr ¢ = 0, (dON)*¢ = 0,
(2) if k >n+1, we have 9N p=0,dO N¢p =0,

(8) we have J¢ € Ker(Aqgr), that is, J¢ is also a harmonic form,

>



where Inty is the interior product with respect to T.

We recall Proposition 1.2. The cohomology of the BGG complex coincides with that
of the de Rham complex. To the author’s knowledge, the Sasakian manifolds are the only
cases when the kernel of D + D* agrees with the harmonic space. It is an interesting
question: whether on the filtered manifolds the kernel of D + D* coincides with the
harmonic space or not.

Next, one can view the Rumin complex as arising naturally the sub-Riemannian limit
of Aqr induced by the filtration H C TM [22]. An analytic approach to sub-Riemannian
limit, for fiber bundles, was developed by Mazzeo and Melrose [17], and, for Riemann
foliations, was by Forman [8]. On contact manifolds, Albin-Quan solved the asymptotical
equation of Agr, which was introduced by Forman [8], and its asymptotic behavior can
be explicitly written by the Rumin complex [1].

Let t € [0,00). We set

dy := dy + tgr,(d) + t* gry(d).

Let X := M x [0,00) and A, := dyd; + dfd;: Q*(M) — Q*(M) for t € [0,00), where d is
the formal adjoint of d; for the L?-inner product on Q*(M). We define the space of the
sub-Riemannian limit differential forms by

ROK(X)

i= {ug + tuy + - + t9u, € Q°(X) |uj € Q"(M), q € Zzo, t >0},
and set

ff]f(At) = {u e Q" (M)|Fu e O (X) s.t. ﬂ|t:0 =u, Au=O(t")},

for p > 0. In [1, p. 18], Albin-Quan showed that

Fr(N) = Ker(Ag: EX(M) — E¥(M)) for K #n,n+1,

FE(A) = Ker(Ag: EF(M) — EF(M)) for k =n,n+ 1.
By Corollary 2.2, we obtain the following:
Corollary 2.3. ([16, Corollary 1.3]) In the setting of Theorem 2.1,

Ker(Agr) = ﬂ Ker(Ay).

t>0

By Theorem 2.1 and [1, p. 18], we have
Corollary 2.4. ([16, Corollary 1.4]) In the setting of Theorem 2.1,

FF (D) = [ Ker(A,: QM) — QF(M)) fork#n,n+1,
FE(A) = [ Ker(A,: QF(M) — QF(M)) fork=mn,n+1.
t>0

It means that for “k #n,n+ 1 and u € FF¥(A;)” or “k=n,n+1 and u € FF(A,)”,
taking u = u, we see
Ayqu =0 for t > 0.
In [1], on compact contact manifolds, for u € Ker(Ag) Albin-Quan constructed u such
that “for k # n,n+ 1, Ayu = O(s*)” and “for k = n,n+ 1, Ayu = O(s®)” by using
dy, dy, dr. On compact Sasakian manifolds, we give a simple construction of .
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3 The eigenvalue of the Rumin Laplacian on the stan-

dard CR sphere

In this section, we see the result [14] of the eigenvalues of Ag on the trivial bundle C
over the standard CR spheres S?"*1 C C"*1. Here the standard CR sphere is the triple
(S27+19.J), where 6 is given the contact form by 6 = /—1(0 — 9)|z|> and J is an almost
complex structure J induced from the complex structure of C**!. To state our result
we need to introduce notation for highest weight representations of the unitary group
U(n + 1) which acts on S*"*1. The irreducible representations of U(n + 1) are classified
by the highest weights A = (A1, Ao,..., Aya1); the corresponding representation will be
denoted by V(). Julg and Kasparov [12] showed that the complexification of £¥(S?" 1),
as a U(n + 1)-module, is decomposed into the irreducible of the form

Uigip = Vi(g1,...,1,0,...,0,=1,..., =1, —p).

j times i times
Since Ag commutes with the U(n + 1)-action, it acts as a scalar on each W (g )-

Theorem 3.1. ([14, Theorem 0.1]) Let S**** be the standard CR sphere with the contact
from 0 = \/=1(0 — 9)|z|>. Then, on the subspaces of the complexification of £°(S* 1)
corresponding to the representations W, ;; ., the eigenvalue of Ag is

(p+i)g+n—9)+(q+i)p+n—7)°
fn—i— ) |

This theorem claims that the eigenvalues of Ag¢ are determined by the highest weight.
This phenomenon also appears in the case of the Hodge-de Rham Laplacian Agr on
symmetric spaces G/K. Ikeda and Taniguchi [13] showed that on the subspaces of k-
forms of G/K corresponding to V(X), the eigenvalue of Agg is determined by A. It is a
natural question to ask whether the eigenvalues of Ag on a contact homogeneous space
G /K are determined by the highest weight of G.

Theorem 3.1 unifies the following results on the eigenvalues of Rumin Laplacians on
the spheres. Julg and Kasparov [12] determined the eigenvalues of DjDs. Folland [9)
calculated the eigenvalue of the sub-Laplacian A,, which agrees with Ag on £°(S?"*1).
Seshadri [25] determined the eigenvalues of dedf on E'(S**1) in the case S*. (rsted
and Zhang [18] determined eigenvalues of the Laplacian of the holomorphic and anti-
holomorphic part of D except for the ones containing Ds.

Note that Orsted and Zhang used D in place of dg. As a result, the eigenvalues of the
Laplacian in their paper are not determined by the highest weights. This also explains
the importance the scaling factor ay.

4 Ray-Singer torsion and the Rumin Laplacian on
lens spaces

We introduce the analytic torsion and metric of the Rumin complex (£°(M, E),ds) by
following [2, 14, 24]. We define the contact analytic torsion function associated with



(€°(M, E), dg) by

n

re(M, B, go.0)(s) = Y (=1 (n+1—k)C(AE)(s), (4.1)

k=0

where ((AE)(s) is the spectral zeta function of A% and the contact analytic torsion Tg
by
QIOng(Ma EagQ,J) = K‘S(Ma EaQ@,J),(O)‘

Let H*(E°*,d2) be the cohomology of the Rumin complex. We define the contact metric
on det H*(£°,de) by

I (M, E, go.0) = Tg (M, E, go.s)| |2,

where the metric | |72(ge) is induced by L? metric on £°(M, E) via identification of the
cohomology classes by the harmonic forms on £°(M, E).

Rumin and Seshadri [24] defined another analytic torsion function g from
(E*(M, E), D*), which is different from k¢ except in dimension 3.

Proposition 4.1. ([24])

(1) In dimension 3, kg(M, E, go.5)(0) is a contact invariant, that is, independent of the
metric gg. .

(2) For flat bundles E with a unitary holonomy on 3-dimensional Sasakian manifolds
with S' action,

kr(M,E,g9.7)(0) =0, Te(M,E, gg;) =Tar(M, E, gg.1).

To extend Proposition 4.1 (2) on the standard CR sphere S*"*! with dg¢ instead of
D, the author [14] showed the following:

Proposition 4.2. ([14, Theorem 0.2, Corollary 0.1]) On trivial line bundle C over the
standard CR spheres S?"1(C C"™), we have

kr(S*",C,00.0)(0) =0, Te(S* C,gp.5) = n!Tyr(S***,C, go.s).

Moreover, Albin and Quan [1] showed the difference between the Ray-Singer torsion
and the contact analytic torsion is given by some integrals of universal polynomials in the
local invariants of the metric on contact manifolds:

Proposition 4.3. ([1, Corollary 3 and (4)]) Let M be the compact contact manifold with
dimension 2n + 1. for all unitary holonomy o m (M) — U(r), we have

log Te (K, Eq, go.5) —log Tar (K, Eq, go,7)

= / Juniversal polynomials in the local invariants of gg. ;.
M

In this section, we extend this coincidence on lens spaces and determine explicitly the
analytic torsion functions associated with the Rumin complex in terms of the Hurwitz
zeta function. Let gyq be the standard metric on S?**! and we note that 0.7 = 4gsa-
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Let p, 11, ..., vpq1 be integers such that the v; are coprime to p. Let I' be the subgroup
of (Sh)"*1 generated by

Y= (Y15 Vnr1) = (exp(QW\/—lul/u), e ,exp(27rx/—1un+1/u)) )
We denote the lens space by
K = ST,

Let C be the trivial line bundle on K. Fix u € Z and consider the unitary represen-
tation ay,: m(K) =T — U(1), defined by

Q (’yz) := exp (2mv/—1ul/p) for £ € Z.

Let E, be the flat vector bundle associated with the unitary representation a: m;(K)

=I' —» U(r), and E,, = F,, which can be considered as «,-equivariant functions on
G2n+1

Our main result is

Theorem 4.4. ([15, Theorem 1.1]) Let K be the lens space with the contact form and

the almost complex structure which are induced by the action I' on the standard CR sphere
g2nt1

(1) The contact analytic torsion function of (K, C) is given by
ke(K,C,g0.7)(s) = —(n+ 1)(1+ 2T u7>°((2s)), (4.2)
where € is the Riemann zeta function. In particular, we have

re(K,C, g0,7)(0) =0, (4.3)

471' n+1
TS(K,QQW):(?) | (4.4)

(2) The contact analytic torsion function of (K, E,) foru € {1,...,u— 1} is given by

n+1

/ig(K, Eu> gG,J)(S) = _2%”_28 Z (C(2Sa AM(UTJ)/lL) + C(2Sa AM(_UT]')//L>>> (45)

J=1

where ((s,a) == Y 2 (q +a)~* is the Hurwitz zeta function for 0 < a <1, A,(w) is the
integer between 1 and p such that A, (w) = w mod p and jv; =1 mod p. In particular,
we have

/ig(K, Eu7 g@,])(o) = 07 (46>
n+1

Te(K, By, go.1) = H ‘e”fﬁ”j/“ —1]. (4.7)
Jj=1

The equations (4.2) and (4.5) extend the following results of kg the spheres to on lens
spaces. Rumin and Seshadri [24, Theorem 5.4] showed (4.2) in the case of 3-dimensional
lens spaces. The author [14] showed (4.2) in the case of (S*"*1, C) for arbitrary n.

From (4.3) and (4.6), we see that the metric || ||¢ on (K, E,, gg.s) is invariant under
the constant rescaling 6 — C. The argument is exactly the same as the one in [24].
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In the same way as [14], the fact that the representations determine the eigenvalues
of Ag cause several cancellations in the linear combination (4.1), which significantly sim-
plifies the computation of kg(s). We cannot get such a simple formula for the contact
analytic torsion function kg of (£°(M, E), D*) for dimensions higher than 3.

Let us compare the contact analytic torsion with the Ray-Singer torsion on lens spaces.
Ray [19] showed the following:

Proposition 4.5. ([19]) Foru(=1,...,u—1),

n+1
Tan (K, By, Agaa) = [ ] e 10— 1]

j=1
Weng and You [27] calculate the Ray-Singer torsion on spheres:

Proposition 4.6. ([27])
2ﬂ-n+1

TdR(Sa Qa gstd) - n'

The author extended their results for the trivial bundle on lens spaces:
Proposition 4.7. ([15, Proposition 1.2]) In the setting of Theorem 4.4, we have

(4m)nHl

n!lun-H :

TdR<K7 Q7 4gstd> ==

The metric 4gq agrees with the metric gy s defined from the contact form 6 = /—1 (0—
9)|z|?. Since the cohomology of (£*(M, E), d) coincides with that of (Q*(M, E),d) (e.g.
[20, p 286]), there is a natural isomorphism
det H*(E*(M, E),ds) = det H*(Q*(M, E), d), which turns out to be isometric for the L?
metrics. Therefore (4.4) and (4.7) give

Corollary 4.8. ([15, Corollary 1.3]) In the setting of Theorem 4.4, for all unitary holon-
omy a: m(K) — U(r), we have

Te(K, B, go.y) = ntm LT 0 (K B, go.0),
| |e(K, Eq, go.s) = nt~ S HEED | 11 (K, Ea, go.y),

via the isomorphism det H*(E*(M, E,),dg) = det H*(2*(M, E,), d).
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