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Abstract

We give some numerical results on Random Relaxed Newton’s Methods by Sumi.
This randomized algorithm was proposed in his paper [Sumi21] to compute an ap-
proximate root of a given polynomial in one variable. He proved that the randomized
algorithm almost surely works well if large noise is inserted in the original Newton
methods. In this article, we try to confirm by numerical experiments how large the
amplitude of the noise should be. The experiments demonstrate that even small
noise can make the randomized algorithm successful. Based on these numerical re-
sults, we discusses the mathematical conjecture that the optimal noise amplitude is
related to the bifurcation of the relaxed Newton’s map.
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1 Introduction

1.1 Background

In various fields of science, there is huge demand for finding the roots z* of a given
function P such that P(z*) = 0. Mathematically, a polynomial P(z) = agz? + --- +
a1x + ag of degree d has d complex roots, but for practical purposes the approximated
values are more valuable than the algebraic representation of the roots. Before 1600
B.C., the Babylonians had already calculated a very accurate approximation of v/2,
the positive root of #2 — 2. See [FR]. This shows that approximate calculation is an
important activity that we humans have been engaged in for a long time.

Newton’s method is the most important example of root-finding algorithms. This
iterative method, also known as the Newton-Raphson method, calculates the recurrence
formula x,+1 = x, — P(2,)/P’(xy,) starting from some initial guess x¢. It is known that
the sequence {z,}52, converges to a root z* under some conditions if z( is close to
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x*. However, we cannot expect global convergence in the sense that {x,}22, does not
converge to any root if the initial guess xg is apart from the roots. We further discuss
this in Section 2.

It is natural to extend the range of roots to complex numbers from real numbers since
we are working on polynomials as a class of target functions. Then the Newton method
can be considered as dynamical system under the Newton map Np(z) = z — P(z)/P'(2)
on the complex number plane C or the extended plane CU{oo}.

In [Sm85] Smale asked the question: when does there exist a purely iterative algo-
rithm which is globally convergent for generic choice of a target polynomial of degree d?
McMullen proved that there is NO generally convergent purely iterative algorithm if the
degree d is 4 or more [Mc87]. See [MNTU] for details of the Newton method from the
complex-analytic viewpoint.

Surprisingly, in his paper [Sumi21] Sumi showed that global convergence is typically
valid if we randomize the original Newton method. More precisely, for example, choose
A randomly following the uniform distribution on a disk {\ € C: |A — 1| < r}, and
consider the relaxed Newton map Npy(z) = z — AP(z)/P'(2). If 1/2 < r < 1, then
for all polynomial P, and for all initial point zy except finite points, almost every i.i.d.
choice of A1, Ag,... gives us the random orbit z, = Np ), o---0Npy, o Np,(20) which
converges to some root z* of P. That is, if large noise is inserted in the original Newton
method, then for every polynomial, we can find a numerical root of it with probability
one.

Note aside that Sumi’s random algorithm follows the same philosophy as the famous
algorithm known as stochastic gradient descent which is used to minimize an objective
function. The latter algorithm replaces the actual gradient of the objective function with
an estimate calculated from randomly sampled data. Randomness helps us to avoid local
minima and find the global minimum. See [Bishop] for example.

In this article, we try to confirm by numerical experiments how large the amplitude
of the noise should be. Sumi’s theorem suggests to us that we should take the noise
amplitude r larger than a magic number 1/2. However, this may not be optimal. Namely,
if we take a large r, then the speed of convergence gets slower. In order to find a better
choice of noise amplitude, the author conducts several numerical experiments.

These experiments suggests that small amplitude, say » = 0.01, is sometimes enough
to have global convergence. The author conjectures that this number is related to the
bifurcation of the relaxed Newton maps { Np x}rec. Mathematical verification is not yet
given, but we illustrate the reasons why the author think so.

2 Preliminaries

In this section we give the theory of deterministic iterations of rational maps. First,
we consider a general rational map N, and then we discuss specific (relaxed) Newton
maps Np . Second, we give a reason that it is suitable for us to take P(z) = 23 —
2z 4 2 as the target of the (randomized) Newton method. Third, we give a “bifurcation

diagram” regarding the family of the relaxed Newton maps {N p,,\}{‘ a—1|<1} and give



some numerical estimates about bifurcation.

Let N be a rational map which acts on the Riemann sphere C = CU{oo}. Then
N can be written as the quotient of two coprime polynomials: N(z) = a(z)/b(z). The
degree of N is defined as the maximum of the degrees of these two polynomials: deg N =
max{dega, degb}.

To study the dynamics of iterations of N, the critical points play a crucial role. Here,
a critical point is the point where the derivative N’ vanishes. The following lemma is
well known. See [Mi] for the proofs.

Lemma 2.1. The following hold.

(i) A periodic point 2T # oo of N with period p is attracting if and only if |(N°P)’(2T)| <
1. Here NP is the p-th iterates of V.

(ii) For every attracting periodic point z' of N with period p, the orbit of at least one
critical point converges to 21

(iii) The number of critical points of N is at most 2deg N — 2.

(iv) If the orbit of every critical point converges to some attracting cycle, then for every
2o in an open dense subset of C, the orbit N°"(zy) converges to some attracting
cycle as n — oo.

Using the lemma above, we analyze the iteration of the relaxed Newton map Np(z) =
2z — AP(z)/P'(z) for a polynomial P.

Definition 2.2. A rational map Np ) is convergent for P if for every zp in an open dense
subset of C, the orbit Np%(20) converges to a root of P.

As we pointed out in Section 1, there is a polynomial P for which the original Newton
map Np; is not convergent. For this target, the Newton method may fail if one choose
bad initial points.

In the following, we present an example of such a bad target P. We begin with the
following lemma.

Lemma 2.3. The following hold.
(i) If P(2*) =0, then z* is a fixed point of Np for every A € C.

(i) Moreover, the derivative satisfies N}, , (2*) = 1 — A/m, where m is the multiplicity
of the root z* of P.

(iii) If |]A — 1] < 1, then each of the roots z* of P is an attracting fixed point of Np ).

In particular, if A = 1 and m = 1, then the root is at the same time a critical point
and an attracting fixed point of Np;. In the following, we assume P has no multiple
roots. Then we can show deg Np) = deg P, and we have the “free” critical point if
deg P > 3, which sometimes interferes with the root-finding.



Corollary 2.4. Suppose P has exactly 3 roots, all of which are simple. Then deg Np =
3 and Np) has three common attracting fixed points if |A — 1| < 1. Moreover, these
three are critical points of the original Newton map Np;. In addition to these three
points, the map Np; can have at most one more critical point.

This motivates us to study the following example.

Example 2.5. The polynomial P(z) = 2% — 2z + 2 has exactly 3 simple roots. For this
P, the map Np;(z) = (223 — 2)/(32? — 2) has a critical point ¢ = 0, which satisfies
Np71(0) =1 and prl(l) =0.

We now visualize this in Figure 1 and Figure 2. Every initial points is colored!
according to where it converges to (or does not converge). Namely,

e the red region is an attracting basin of the real negative root ~ —1.77,
e the purple region is an attracting basin of the complex root ~ 0.88 + 0.591,
e the yellow region is an attracting basin of the complex root ~ 0.88 — 0.59¢, and

e the black part illustrates the set of all initial points where the orbit starting from
there will NOT converge to any of these three roots.

In other words, if we start the original Newton method from non-black initial points,
then we can find some root of P. The black part illustrates the initial points on which
the Newton algorithm fails. Actually, the black part is the union of the Julia set and
the attracting basin of the cycle ¢ = 0 — 1 — 0, where the Julia set means the common
boundary of the four attracting basins.

We can prove the converse of Example 2.5. Suppose that the target polynomial Q
has exactly 3 simple roots and Ng 1 has a periodic critical point of period 2. Then @
should be P(z) = 23 — 2z + 2 or its affine change of variable. For more comprehensive
study of the case where the target P is degree 3, see [CGS].

Thus, the polynomial P(z) = 2% — 2z + 2 is the most simplest example such that
Np1is NOT convergent for P. Hence, we will work on this polynomial as the target of
the randomized Newton method.

We end this section by showing a bifurcation diagram, Figure 3.

3 Sumi’s randomized algorithm

Sumi showed a theorem which states that if large noise is inserted in the original Newton
method, then we can find a numerical root of a given polynomial with probability one.
See [Sumi21, Theorem 4.4. (vii)].

First, we consider the following setting.

This article will be printed in black and white, but the online version will be available in color.
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Figure 1: Attracting basins of Np; for P(z) = 23 — 2z + 2 of Example 2.5. The black
part is the set of all initial points on which the Newton algorithm fails. Actually, the
black part is the union of an attracting basin of the cycle ¢ = 0 — 1 — 0 and the Julia
set. We can see a black-colored open set near the origin which is too big to ignore.
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Figure 2: Decomposition of Figure 1 into four basins. The four have the same boundary,
the Julia set. We can see that the upper right picture (purple) is complex conjugate of
the lower left picture (yellow) since these are basins associated to the complex conjugate
roots of the real polynomial.
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Figure 3: The bifurcation diagram of {Npy: [A — 1| < 1} with P(z) = 23 — 2z + 2.
We divide the A-plane into small pieces and pick a representative A from each of them.
For a fixed A, we calculate the “critical” orbit N2% (0) and we color the piece according
to where it converges (or does not converge). The color corresponds to the color of
attracting basins given in Example 2.5. The figure on the right is a zoomed-in view of
the center A = 1 of the left figure, on which we can see a small Mandelbrot set. The
cusp of the main cardioid locates at A ~ 1.007.

Setting 3.1. Let u be a Borel probability measure on C. We choose parameters A1, Ao, . . .
independently following the measure p and consider the random iterations Npy, o--- 0o
NP,/\Q © NP,)\l .

Theorem 3.2. Suppose that a probability measure p is absolutely continuous with
respect to 2-dimensional Lebesgue measure and

1
{AeC: |A-1< 5} C int(supp pt) and supppu C {A € C: |A —1] < 1},

where int(S) denotes the interior of S with respect to the usual topology of C.

Then for every target polynomial P of degree two or more, we have the following.
Fix an initial point zg € C with P’(zp) = 0 and P(zg) # 0. For almost every choice of a
random sequence (A1, Az, ... ), there exists a root z* of P such that the orbit converges
toit: Npy, 0---0Npy, 0 Npy, (20) = 2* as n — oo.

Note that the limit z* can depend on the choice of (A1, Ag,...) even if the random
orbit starts from the same initial point z.
The theorem gives us a random algorithm to find roots of a given polynomial.

Algorithm 3.3. Let P be a polynomial of degree two or more. Let u, be the normalized
Lebesgue measure on the disk {\A € C: |[A—1| < r}. Generate an i.i.d. sequence A1, Ag, . ..
following p,.. Then for a generic choice of initial point zg, the orbit Npy, o---0 Npy, o
Np ., (20) approximates some root of P.



Theorem 3.2 states that the algorithm succeeds with probability one if 1/2 < r < 1.

Example 3.4. Set P(z) = 23 — 22 + 2 and r = 0.6. Then almost surely, the random
orbit Npy, o---0 Npy, o Npy, (0) converges to some root of P as n — oo.

The above example illustrates the significant difference from the deterministic case
of Example 2.5. Numerical experiments show that 8 (resp. 492, 499) of the 1000 random
orbits converge to the red (resp. purple, yellow) root, where the color refers to Example
2.5. See also Figure 4.

Remark 3.5. By Lemma 2.3(ii), we can deduce that the speed of convergence gets
slower as r increases. Thus, it is important to find the smallest r such that Algorithm
3.3 succeeds with probability one. Theorem 3.2 implies that the smallest value is less
that 1/2 in general.

4 Results of Numerical Experiments

In this section, we verify Algorithm 3.3 for small noise amplitude r by numerical exper-
iments. We are interested in whether or not there is an attractor near the origin. We
draw pictures like Figure 4 for various r for the fixed target P(z) = 2% — 2z + 2. By
seeing the black part, we can determine whether the algorithm typically successes or
fails.

The result is shown in Figure 5, which suggests that very small r, say 0.01, is enough
to have the typical success. If r = 0.01, then we can expect very fast convergence since
the derivative of Np ) is at most 0.01 near the roots of P. Besides, if = 0.005, then the
algorithm fails when the initial point zg is chosen near the origin.

It seems that there exists a threshold value 7, which satisfies that the bad attractor
near the origin persists until » < r, and it vanishes if r > r,. The numerical experiments
suggests that 0.005 < r, < 0.01.

The disappearance of the attractor by noise has already been observed in the author’s
paper [W22]. In the paper, he gives some tools to estimate the threshold (bifurcation)
parameter values. The most fundamental tool is the observation that “the stochastic
bifurcation occurs before the deterministic bifurcation.” See [W22, Lemma 4.9].

For our situation of the random relaxed Newton method, this observation seems to
be still valid. Namely, the stochastic bifurcation occurs at r, € [0.005,0.01], while the
deterministic bifurcation occurs at r ~ 0.007 as one can see in Figure 3. Here, the
latter value is coming from the small Mandelbrot set, in particular the cusp of the main
cardioid.

Another numerical experiment suggests that the stochastic bifurcation parameter r,
satisfies 7, < 0.006. Namely, let the noise amplitude » = 0.006 and the target P(z) =
23 — 22 + 2. For the initial point zy = 0, we calculate 1000 random orbits Npy,0---0
Np., © Npy, (0) with the maximum iterations n < 105. The result is that 2 out of 1000
orbits converge to the root ~ 0.88 + 0.59¢, the purple one. This shows that the bad
attractor near the origin vanishes when r = 0.006. The author think that if the number
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Figure 4: Each of these four figures illustrates the probability of random orbits tending
to the corresponding attracting fixed point. Compare these with Figure 2. In detail, we
set P(z) = 23 — 22+ 2 and set 7 = 0.6 as in Example 3.4 . We divide the z-plane into
small pieces and pick a representative zg from each of them. For each zy, we calculate
100 random orbits Npx, o---0Np,0Np,(20) with n < 103, and we count the number
of orbits which converge to each of the three roots (or do not converge to any of them).
The color corresponds to the color of roots given in Example 2.5. In the lower right
figure, the bad attractor where the root-finding algorithm fails vanishes due to noise!
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Figure 5: Three horizontal rows correspond to the cases where » = 0.1, 0.01 and 0.005,
respectively. Here we omit the yellow basins because they are the complex conjugate of
the purple ones. This experiment shows that successes and failures vary in the range of
r € [0.005,0.01]; the bad attractor near the origin vanishes when r = 0.01, but it does
not vanish when r = 0.005. The number of (random) iterations is at most 103.
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of iterations were increased, then nearly half of the random orbits would be expected to
converge to the purple root.

5 Another variation of the algorithm

In this section, we verify a variant of Algorithm 3.3, which is known as simulated an-
nealing. In the following algorithm, we consider non-i.i.d. sequences A1, As, . ...

Algorithm 5.1. Let P be a polynomial of degree two or more. Let pu, be the normalized
Lebesgue measure on the disk {\ € C: |\ — 1] < r} and take r, > 0 suitably for every
n € N. Generate a random number A, following .., for every n € N. Then for a generic
choice of initial point 2o, the orbit Np, 0---0Npy,0Npy, (29) may approximates some
root of P.

Generally, we take the noise amplitudes r, to converge to 0. This may allow us to
have both the typical global convergence and the local fast convergence at the same
time. We verify this in Figure 6, in which we take r, = r™ for some r. Until now, there
is no rigorous proof that Algorithm 5.1 works well. We cannot give it here, so we just
test the algorithm numerically.

6 Conclusion and Discussions

We tested whether Algorithm 3.3 works well for small noise amplitude r. The results
show that Algorithm 3.3 successfully works for almost every initial point when r > 0.01.
Also, there exists a non-empty open set B such that Algorithm 3.3 does not work if
the initial point is chosen from B when r < 0.005. Another experiment suggests that
the threshold value 7, is between 0.005 and 0.006 if we allow a very large number of
iterations.

The value 7, is much smaller than the theoretical value given in Theorem 3.2. This
is meaningful because the speed of (local) convergence is very fast if the noise amplitude
r is very small. The author numerically verified that r, is small than the distance from
A = 1 to the boundary of the small Mandelbrot set shown in Figure 3. This is closely
related to the results of [W22], in which the author gives quantitative estimates of the
stochastic bifurcation parameters.

These study gives us the following way to find the optimal noise amplitude. For every
polynomial P, consider Cp = {\ € C: Np) is convergent for P} and define rq(P) as the
distance from A = 1 to Cp, which may be 0. Then 7y := supp rq(P) gives a universal
noise amplitude with which the random relaxed Newton method work successfully for
a generic choice of initial point. That is, if r > 7y, then Algorithm 3.3 works well with
probability one.

Calculating 7q remains a future challenge.
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Figure 6: We test Algorithm 5.1 for P(z) = 2% —22+2. Here we take the noise amplitude
7y, such that there exists r such that r, = r™ for every n € N. Three horizontal rows
correspond to the cases where r = 0.56, 0.31 and 0.1, respectively. This experiment
shows that the algorithm successfully works when r = 0.56. Also, the algorithm works
well with a high probability when r = 0.31. An interesting point is that when r = 0.1,
the computation starting from the initial point 0 works well with high probability, but
the computation starting from other points does not work so well. This suggests that the
noise decreases too quickly and hence global convergence does not hold when r = 0.1.
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