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1. INTRODUCTION

This note is an announcement of results in [8]. Let I' ~ X be a left action of
a discrete group I' on a topological space X by homeomorphisms, F a family of
subgroups of I'; and N € Z~ (see Section 2 for undefined notations and terminol-
ogy). Sawicki [21] defined equivariant asymptotic dimension F-eq-asdim(I" ~ X))
of ' ~ X on a compact Hausdorff space X by means of N-F-amenability. The
notion of N-F-amenability was introduced by Bartels, Liick and Reich [5, Theo-
rem 1.2], [4, Assumption 1.4] to prove the Farrell-Jones conjecture for hyperbolic
groups (see [2], [15]). In [14, Definition 4.6], being N-F-amenable is said to be
N-BLR for F. For a free action I' ~ X, eq-asdim(I" ~ X)) is also called the
amenability dimension of I' ~ X (see [22, Definition 9.2]).

The purposes of this note are the following.

(A) We extend F-eg-asdim(I" ~ X') to F-ead(I' ~ X) of actions on (not neces-
sarily compact) topological spaces (viewed in the theory of the topological
dimension and geometric group theory), satisfying that
(A.1) F-eq-asdim(I’ ~ X)) = F-ead(I' ~ X) whenever X is compact (see
Proposition 3.5), and

can.

(A.2) ead(I' A’ T') = asdimI" (see Remark 5.11);

(B) We give a characterization theorem for F-ead(I' ~ X) in terms of maps into
¢,(V), which is a generalization of [14, Proposition 4.5] due to Guentner,
Willett and Yu;

In Section 2, we prepare notations and terminology. In Section 3, we recall
the definition of F-eq-asdim(I" ~ X'). With its definition in mind, we introduce
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the notion of F-ead(I' ~ X)) in (A), and give some properties of F-ead(I' ~ X)
including (A.1). In Section 4, we give an analogue of the well-known fact that
dim X = dim X for F-ead(I' ~ X). In Section 5, we recall the characterization
of F-eq-asdim(I' ~ X) in terms of conditions in [1, Theorem A, page 11] which
is due to Guentner, Willett and Yu [14, Proposition 4.5]. Its characterization
was applied to, for example, [22, Lemma 9.4] and [7, Lemma 4.2]. However,
the authors think that a part of the proof of (ii) = (i) of [14, Proposition 4.5
is unclear (see Remark 5.7). A characterization theorem for the purpose (B) is
given in Theorem 5.3 with a sketch of a proof.

2. PRELIMINARIES

Let Z denote the set of all integers. For n € Z, let Zs,, :={i € Z | i > m}.
The cardinal number of a set A is denoted by cardA.

Convention 2.1. Throughout this paper, let I" denote a nontrivial discrete group
and X a nonempty topological space, and we assume that [ acts on X, where
by an action I' ~ X we mean a nontrivial homomorphism from I" to the group
of self-homeomorphisms of X. Each v € I' is regarded as a homeomorphism
~v: X — X and the value of € X under v is denoted by ~z.

Let 1r denote the unit of I' and [[']<“ the collection of all finite subsets of T'.
The action I' /v T defined by ~ : I' — T; n — ~n for each v € T' is called the
canonical left action.

For A C X and a collection U of subsets of X, set

UA] ={UeU |UNA#D} and
ord(U) :==supcard{U e U | x € U}.

zeX

By a normal space, we mean a normal Hausdorfl space. The covering dimension
of a normal space X is denoted by dim X (see [11, Definition 1.6.7] or [10, p.385
and Theorem 7.1.7]).

The action I' ~ X x Y defined by ~(x,y) = (yz,vy) for v € T and (z,y) €
X x Y is called the diagonal action induced by I' v X and I' ~ Y.

Convention 2.2. We assume that [' x X is equipped with the diagonal action
I ~ T x X induced by the canonical left action I' /v I" and the action T’ ~ X.

ForvyeI', ACTI, AC X and a collection U of subsets of X, let

vA:={yalac A}, AA:=[JAA, and AU:={\U|X€A UecU}.
AEA

For A C X, let I'4 denote the stabilizer, i.e.,
For x € X, we write I'; instead of I',;.



Suppose that I' also acts on a space Y. A continuous map f : X — Y is said
to be I'-equivariant if f(yz) = ~vf(z) for each (v,z) € I' x X, i.e., for every v € T’
the following diagram commutes:

Y

X —X
fl O f
Y — Y
For a subgroup I of I, a subset A of X is said to be I"'-invariant if ['A = A.

Definition 2.3 ([3, p.640], [21, Definition 1.1]). Let
Jr :={A | A is a subgroup of I'} and
Fian := {A | A is a finite subgroup of T'}.
A nonempty subcollection F of Fr is called a family of subgroups of I if F is

e closed under conjugation, i.e., y"'Ay € F for any A € F and v € T'; and
e closed under taking subgroups, i.e., for any A € F, if € is a subgroup of
A, then Q € F.

A family F of subgroups of I' is said to be wvirtually closed if F is closed under
taking finite index supergroups, i.e., for any A € F and Q € Fr, if Q@ D A and
Q/A is finite, then Q € F.

The collections Fr and Fy, are virtually closed families of subgroups of I', while
{{1r}} is a family of subgroups of I" such that it is virtually closed if and only if
I' is torsion free.

Convention 2.4. Throughout this paper, let F denote a family of subgroups of
I.

Definition 2.5 ([5, Definition 2.2]). A collection U of subsets of X is said to be
[-equivariant (or I'-invariant) if YU € U for any v € ' and U € U, i.e., U is
closed under I' ~ X

A subset A of X is called an F-subset if 'y € F and for every 7 € I, if yA # A,
then YAN A = (). A collection U of subsets of X is called an F-cover of X if U
is ['-equivariant, every U € U is F-subset, and X = JU.

3. EQUIVARIANT ASYMPTOTIC DIMENSION
Recall the definition of equivariant asymptotic dimension.

Definition 3.1 ([21]). Let I' ~ X be an action of a discrete group I" on a compact
space X and F a family of subgroups of I'. Then the equivariant asymptotic
dimension of I' ~ X with respect to F, denoted by F-eq-asdim(I’ ~ X)), is the
smallest N € Z>q such that for every F € [I']<“ there exists an open JF-cover U
of I' x X satisfying the following conditions:

(E1) ord(Ud) < N + 1;



(E2) U/T is finite, i.e., there exists a finite subcollection U’ of U such that
U =TU', in other words, U generates Y by ' ~ T' x X
(E3) for every (,z) € I' x X there exists U € U such that vE x {z} C U.

If such an N € Zs does not exist, we write F-eq-asdim(I" ~ X) = co. We
also write eq-asdim(I" ~ X) instead of {{1r}}-eq-asdim(I" ~ X).

Note that condition (E2) in Definition 3.1 can be skipped by the compactness
of X ([21, Remark 1.5]). In contrast to (E2), the compactness of X in Defini-
tion 3.1 is crucial in the following sense: If X is compact and F C Fj,, then
F-eq-asdim(T" ~ X) is related to the asymptotic dimension of T by [14, Theorem
6.5] (see Remark 5.11 below). On the other hand, if we apply Definition 3.1 to

can.

I AT, then F-eq-asdim(I" /N’ T') = 0. Indeed, for every F € [[']<“ the open
F-cover U :=T{I'x {1r}} of I x I" satisfies (E1), (E2) and (E3) above for N =0
([21, Remark 1.7]). In general, we see that for any free action I' ~ X on a discrete
space X, F-eq-asdim(I" ~ X) = 0. Recall that the covering dimension dim X
of a normal space X is defined by finite open covers of X. For an open JF-cover
U of T x X, we see that for every v € T, U = T(U[{7} x X]), ie., U[{7y} x X]
generates U by I' ~ I' x X. From the above point of view, by replacing U’ in
(E2) with U[{y} x X], we define the following:

Definition 3.2. Let I' ~ X be an action of a discrete group I' on a topological
space X and F a family of subgroups of I'. By F-ead(I'’ ~ X) we mean the
smallest N € Z~( such that for every E € [['|<¥ there exists an open F-cover U
of I' x X satisfying the following conditions:

(E1) ord(U) < N +1;

(E2') for every v € T', U[{~} x X] is finite, i.e., U is a finite open cover as seen

from any ~-level {7} x X of ' x X;

(E3) for every (,z) € I' x X there exists U € U such that vE x {z} C U.
If such an N € Z>q does not exist, we write F-ead(I' ~ X') = co. We also write
ead(I' ~ X)) instead of {{1r}}-ead(I" ~ X).

Remark 3.3. Let U be a I'-equivariant collection of subsets of 'x X and F € [[']<¥.

(1) Condition (E2’) in Definition 3.2 is equivalent to the following:
(E2") U[{1r} x X] is finite.

(2) Condition (E3) in Definitions 3.1 and 3.2 is equivalent to the following:
(E3') for every x € X there exists U € U such that £ x {z} C U.

Moreover, if E # (), then U satisfying (E3') is a cover of I' x X. Thus F-ead(I" ~
X) < N if and only if for every £ € [I']<* there exists a I'-equivariant collection
U of open F-subsets of I' x X satisfying (E1), (E2”) and (E3').

Remark 3.4. For families F and F’ of subgroups of I', if 7/ C F, then
F-ead(l' ~ X) < Fl-ead(T' ~ X).
In particular,
0= Fr-ead(I' ~ X) < Fep-ead(I' » X)) < ead(I' ~ X).



Proposition 3.5. If X is compact, then
(A.1) F-ecqrasdim(I' ~ X) = F-cad(I' ~ X).

Sketch of proof. Assume that X is compact. We show that N =
F-eq-asdim(I' ~ X) > F-ead(I' ~ X). Let E € [[]<¥. Since F-eq-asdim(I" ~
X) = N, there exists an open F-cover U of I' x X satisfying (E1) and (E3). For
Uel, let

Oy ={xeX|Ex{z}CU}.

Then there exist Uy, Us,...,U, € U such that X = U?:l Oy, and each Oy, is
non-empty. Then I'{T'y,(E x Op,) | i =1,2,...,n} is an open F-cover of I' x X
satisfying (E1), (E2”) and (E3'). O

The following proposition is easy to verify from the definition:

Proposition 3.6. Suppose that T' acts on topological spaces Z and X. If there
exists a continuous I'-equivariant map f : Z — X, then

F-ead(I' ~ Z) < F-ead(I' ~ X).

In particular, if f is an inclusion map, i.e., Z s a I'-invariant subspace of X,
then the inequality holds.

Remark 3.7. For a subgroup I of T, let F[, ={QNT"|Q € F}. Then Fl is
a family of subgroups of I'"". It is easy to see that

Flp-ead(I" ~ X) < F-ead(I' ~ X).
We also have the following analogue of [9, Theorem 2.1]:
Proposition 3.8.
F-ead(I' » X) = sup Flp-ead((E) ~ X),

Ee[r]<

where (F) is the subgroup of T generated by E.

Sketch of proof. By Remark 3.7, it suffices to show that
F-ead(I' » X) < sup FJ p-ead((E) ~ X).

Ee[l<w
Suppose that N := suppe<w Flip-ead((E) ~ X) < oo. To show that
F-ead(l' ~ X) < N, let £ € [[|=*. Since F[p-ead((E) ~ X) < N, there
exists an open F-cover U of (E) x X such that each U € U is non-empty and
U satisfies (E1), (E2”) and (E3'). Let A C I' such that I' = J, ., A(E) and

{ME)}ren is pairwise disjoint. Then, AU is an open F-cover of I' x X satisfying
(E1), (E2") and (E3'). Thus F-ead(I' ~ X) < N. O



4. AcTIONS ON STONE-CECH COMPACTIFICATIONS

Suppose that X is a normal space, and let 5X denote the Stone-Cech com-
pactification of X. For each v € I', the homeomorphism v : X — X;z — vz
can be extended to a unique homeomorphism v : X — X, and this defines an
action of I' on fX. Let I' ~ X denote the extended action of I' ~ X, and the
extension 7 : X — (X is simply denoted by . Note that X and fX ~\ X are
[-invariant subspaces of SX.

It is well-known that dim X = dim X (see [11, Theorem 3.1.25] or [10, The-
orem 7.1.17]). By [10, p.388] we can show the following analogue of this fact for
F-ead(I' ~ X):

Proposition 4.1. Suppose that X is normal. Then
F-eqrasdim(I' ~ fX) = F-ead(I' ~ X)) = F-ead(I' ~ X).

Sketch of proof. Suppose that N := F-ead(I' ~ X)) < oco. It suffices to show that
F-ead(' ~ BX) < N. Let E € [[']<¥ with 1r € E = E~'. Since F-ead(I' ~
X) = N, there exists a ['-equivariant collection U of open F-subsets of ' x X
satisfying (E1), (E2”) and (E3’).

For U e U, let ExU := (I' x X))~ (I' x X) N\ U, where (I' x X)\ U is the
closure of (I'x X)\ U in ' x 8X. Set U := {ExU | U € U}. Then U is a
[-equivariant collection of open F-subsets of I' x X satisfying (E1), (E2”) and
(E3). Thus F-ead(I' ~ 5X) < N. O

According to [23, Theorem 1.1}, if X is a paracompact Hausdorff space with
dimX < oo and I' ~ X is free, then I' ~ X is also free. We also have the
following analogue:

Corollary 4.2. Let I' ~ X be a free action on a non-compact normal space X
such that ead(I' ~ X)) < 0o0. Then I' ~ X is also free.

For an example of a free action I' ~ X such that I' ~ 5X is not free, see [23,
Section 3.

5. A CHARACTERIZATION THEOREM

We first prepare terminology on ¢;-metric polyhedron. For undefined terminol-
ogy on simplicial complexes, we refer to [20].

Let K be a simplicial complex, |K| = JK = [J,cx0, and dim K :=
sup{dimo | ¢ € K}. For n € Zsg, let K™ denote the n-skeleton of K. For
cach 0 € K, let 09, rint o and & denote the set of all vertices of o, the interior
of ¢ and the barycenter of o, respectively.

Let ¢1(K ) denote the ¢1-space {x : KO — R | > ;o |z(v)] < oo} with the
norm || - ||, defined by [|zle, = 3, cx [2(v)] for x € £,(K@). Then |K| can be
regarded as a subset of £;(K®) by identifying v € K(® with the unit vector e, €
(1(K©®) defined by e,(w) = 1 if v = w; and e, (w) = 0 if v # w for w € K©. Let
dg, be the metric on | K| defined by dy, (z,y) == |z —ylle, = D cxo |2(v) —y(v)]



for z,y € |K|, and let |K|s, denote the metric space (|K|,d,, ). We call |K|,, the
(1-metric polyhedron (or metric polyhedron [20, §4.5]) of K.

An action I' ~ | K| is said to be simplicial if for each v € I" the map v : | K| —
|K| is simplicial, i.e., yo € K and 7|, is affine for every o0 € K. A simplicial
complex K equipped with a simplicial action I' ~ |K]| is called a simplicial T'-
complex. Note that every simplicial action I' ~ | K|, on the ¢;-metric polyhedron
is isometric.

Definition 5.1 ([14, Definition 4.3]). Let (Y, d) be a metric space equipped with
I'~Y. For ECT and e >0,amap f: X — Y is said to be (E, €)-equivariant
if sup(, epxx Ad(f(72),7f(x)) < €, ie., for every v € E the following diagram
e-comimutes:

XxX1.x

| e

Y —Y
vy
In [14] the following result was shown:

Theorem 5.2 ([14, Proposition 4.5]). Let ' ~ X be an action of a discrete group

[' on a compact Hausdorff space X, F a virtually closed family of subgroups of

I' and N € Z>y. Then the following conditions are equivalent:

(1) F-egasdim(I' ~ X) < N.

(2) For every E € [I']< and every € > 0 there exist a simplicial I'-complex K
and a continuous (F, €)-equivariant map f : X — | K|y, such that dim K < N
and {T, |ve KO} c F.

A characterization theorem for (B) in Section 1 is as follows:

Theorem 5.3. Let ' ~ X be an action of a discrete group I' on a normal space,
F a family of subgroups of I' and N € Zsy. Then the following conditions are
equivalent:

(I) F-eq-asdim(I' ~ X)) < N.

(IT) F-ead(I' ~ X) < N.

(IIT) For every E € [I'|<¥ there exists an open F-cover U of I' x X satisfying
(E2) and (E3) in Definition 3.2 and the following condition:

(EY") there exist Uy,Uy, ... Uy C U such that Ui]io U; = U and each U; is
I'-equivariant and pairwise disjoint.

(IV) For every E € [['|<¥ and every € > 0 there exist a simplicial T'-complex
K and a continuous (E,¢)-equivariant map f : X — |K|y such that
dimK < N, {T, | z € |K|} C F and the closure f(X) of f(X) in |K|,,
18 compact.

(V) For every E € [I']<* and every ¢ > 0 there exist a simplicial I'-complex
K and a continuous (E,€)-equivariant map f : X — |K|, such that
dmK < N, {I'y | z € |K|} C F and f(X) C |L|s, for some finite
subcomplex L of K.



Remark 5.4. In (IV) and (V) of Theorem 5.3, K need not be a full simplicial
complex, see [14, Remark 4.8].

Remark 5.5. The following fact was used in the proof of [14, Proposition 4.5]
implicitly and mentioned in the proof of [7, Lemma 4.2]:

Fact 5.6. Let K be a simplicial T-complex such that {T, |v € KO} c F. If F
is virtually closed, then {T', | x € |K|} C F.

It follows from Fact 5.6 that Theorem 5.3 implies Theorem 5.2.

Remark 5.7. As for a proof of Theorem 5.3, the equivalence (I) < (II) follows
from Proposition 4.1, and the implication (V) = (IV) and (III) = (II) are clear.
The implication (IV) = (III) can be shown by the same argument as in the proof
of [14, (i)=(ii) of Proposition 4.5] ((2)=-(1) of Theorem 5.2).

Our proof of (II) = (V) in [8] is based on the proof of [14, (ii)=-(i) of
Proposition 4.5] ((1)=>(2) of Theorem 5.2). However, in the proof of [14,
(ii)=(i) of Proposition 4.5], it is unclear to the authors whether the equation
“A(f(gz), gf(x)) = D yey lou(gr.e) — du(ge, g)|” in [14, page 799, line 4] holds,
because the authors do not see why the equation ¢,-1y(z,e) = ¢y (gz, g) holds
for every U € U from the construction of ¢y on [14, p.798]. In order to obtain
the equation, we prove the following lemma in [8].

Lemma 5.8. Suppose that X is normal. Let E € [I'|<¥ with 1 € E andn € Z>o.
Let U be an open F-cover of I' x X satisfying the following conditions:

(E2") U[{1r} x X] is finite;
(E3")™ for every x € X there exists U € U such that E™ x {z} C U.
Then there exist a subcollection U' of U, families {V[y)}Ueu/, 1=0,1,...,n, of
subsets of I' x X and families {w[(]m)}Ueuz, m=1,2,...,n, of continuous functions
i T x X — [0,1] such that
o U' is an open F-cover of I' x X satisfying (E2"),

e cach {Vél) | U eU'} is an open F-cover of I' x X and
e for anym =1,2,....nand U €U,
(i ( ) C Vlﬁm_l) CU and T, =Ty,
U

)
(i) ~ VW((T for any v € T;
(iii) :/;( ) is 'y -invariant;

(iv) ) (v.2) = o ("7, 2)) for any ¥/ €T and (y.2) €T x X;
(v) Vi < () ({1 < ™) (0. 1)) < v

Sketch of proof of (1) = (V) in Theorem 5.3. Let E € [['|<¥ with 1p € E and
€ > 0. Choose n € Zq such that 2(2N + 2)(4N + 6) < ne. By (II) for the finite
subset E™ of I, there exists an open F-cover U of I x X satisfying ord(U) < N+1
and (E2”) and (E3')" in Lemma 5.8. Then there exist a subcollection Z/l’ of U,

families {Vél)}Ueu/, 1=0,1,...,n, of subsets of I x X and families {1/) }Ueul




m = 1,2,...,n, of continuous functions w[(]m) :I'x X — [0,1] as in Lemma
5.8. Let N(U’') be the nerve of U’. Then N(U') have the natural simplicial
action I' ~ N(U') and is a simplicial ['-complex such that {T, | z € |[N(U")|} C
F and dim N(U') < N. Since U’ satisfies (E2”), U'[{1r} x X] is finite. Let
NU'[{1r} x X]) be the nerve of U'[{1r} x X], which is regarded as a finite
subcomplex of N(U').

For U e U, define ¢y : I' x X — [0,n] by

Yoy o)=Y ¢ (v, )
m=1

for each (v,z) € T' x X. Then |[Yy(y,z) — Yuy(ys,z)| < 2 for each U € U/,
(v,z) eI'x X and s € E. For U e ', define ¢y : I' x X — [0, 1] by

L ¢U(%5E)
gbU(f}/?x) T ZU/EZ/{/ 1/1(]/(’7,.”[7)

for each (v,z) € I' x X. Then ¢y is continuous and {¢y }yey is a partition of
unity on I' x X. Finally, define f: X — |N(U")|,, by

f@):=>" ¢v(lr.x)U
vel’

for each z € X. Then K := N(U'), L := NU'[{1r} x X]) and f are the desired
simplicial complexes and map in (V). O

If F C Fgn, then a simplicial complex K in Theorem 5.3 can be taken to be
locally finite by the following proposition:

Proposition 5.9. Let K be a simplicial I'-complex having a finite subcomplex K
such that {T, | v € KO} C Fan and |K| = T|Ky|. Then K is locally finite.

By Proposition 4.1 and Theorem 5.3 with F = {{1r}}, we have the following
corollary which extends [22, (1) < (2) of Lemma 9.4] to free actions of discrete
groups on normal spaces:

Corollary 5.10. Let I' ~ X be a free action of a discrete group I' on a normal

space X and N € Zsy. Then the following conditions are equivalent:

(1) egrasdim(I’ ~ fX) < N.

(2) ead(I' ~» X)) < N.

(3) For every E € [['|<¥ and every € > 0 there exist a locally finite simplicial
complex K equipped with a free simplicial action T' ~ |K| and a continuous
(E, €)-equivariant map f : X — |K|, such that dim K < N and f(X) C |L|e,
for some finite subcomplex L of K.

The notion of asymptotic dimension was introduced by Gromov [13, 1.E] for
metric spaces (see also [18, Definition 2.2.1]), and extended to coarse spaces by
Roe [19, Definition 9.4] (see also [12, Definition]). Following [14, Definition 6.3



and Theorem 6.5 (iv)], let asdim I" denote the asymptotic dimension with respect
to the coarse structure

Einmy ={D CT xT |{s 't el | (s,t) € D} € [[|**}

(see also [16, Example 2.13] for the coarse structure Egyry). Note that, if T' is
countable, then asdim I' coincides with the asymptotic dimension with respect to
a uniformly discrete left-invariant proper metric on I' (see [18, Definitions 1.2.5
and 2.2.1] and [6, Theorem 2.1.2]).

Remark 5.11. Let I' ~ X be an action on a normal space X and I' ~ X the
extended action of I' ~ X. If X is normal, then

asdimT' = eq-asdim (I’ "~ AI') < Fap-eq-asdim(I' ~ GX) [14, Theorem 6.5).

By this fact and Proposition 4.1, it is easy to see that if X is normal and F C Fgy,
then

(A.2) asdimT' = F-ead(I' A I') < F-ead(I' ~ X).
Since asdimZ = 1 > 0 = Fz-ead(Z ~ X), the assumption that F C Fg, cannot
be skipped.

See [17, Theorem 4.4] for another inequality regarding asdimI’ and
F-eq-asdim(I" ~ X).

By Theorem 5.3 and [14, Theorem 6.5] (see also Remark 5.11), we obtain a
characterization of asymptotic dimension of groups (see [6, Theorem 2.1.2]).

Corollary 5.12. Let I' be a discrete group and N € Z>q. Then the following
conditions are equivalent:

(1) asdimI’ < N.

(2) For every E € [T']<% and every e > 0, there exist a locally finite simplicial com-
plex K equipped with a free simplicial action T' ~ |K|, an (E,€)-equivariant
map f: T — |K|, and a finite subcomplex L of K such that dim K < N and
f(K) C |L|g1 .
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