On a certain condition for the projectivization of a leg bundle to become a GKM graph

岡山理科大学理学部応用数学科 黒木 慎太郎 Shintarô Kuroki

Dep. of Applied Math. Faculty of Science, Okayama University of Science

1. Introduction

This article is the research announcement of the progress work on the leg bundles.

A GKM graph with legs has first appeared in $[\mathbf{K}\mathbf{U}]$ to define the GKM theoretical counterpart of the toric hyperKähler manifold. This involves the $T^n \times S^1$ -action on $T^*\mathbb{C}P^n$. Remark that the standard T^n -action on $T^*\mathbb{C}P^n$ does not satisfy the GKM condition. However, we define its GKM theoretical counterpart in $[\mathbf{K}\mathbf{U}]$ and apply it to prove the graph equivariant cohomology of some classes of GKM graphs with legs. Motivated by this, in $[\mathbf{K}\mathbf{S}]$, we introduce the leg bundles which are the combinatorial counterparts of the equivariant vector bundles over GKM manifolds. In general, the equivariant vector bundle over a GKM manifold does not satisfy the GKM condition; however, we can define the GKM graph like object for this and define the notion of the projectivization of a complex vector bundle as the purely combinatorial way. In general, a leg bundle may not be the GKM graph but its projectivization may be the GKM graph. So the following problem is the natural problem:

Problem 1.1. Find the necessary and sufficient conditions when the projectivization of a leg bundle is a GKM graph.

The purpose of this note is to give a partial answer to this question.

2. Leg bundle over a GKM graph and its projectivization

The aim of this section is the quick introduction of a leg bundle over the GKM graph, and the projectivization of a leg bundle (see [KS] for details). Throughout of this paper we will use the symbol |X| as the cardinality of the finite set X, and the symbol [r] as the set of $\{1, \ldots, r\}$ for $r \in \mathbb{N}$. In this paper, we often use the following identification:

$$\mathbb{Z}^n \simeq (\mathfrak{t}^n_{\mathbb{Z}})^* \simeq \operatorname{Hom}(T^n, S^1) \simeq H^2(BT^n) \subset H^*(BT^n) \simeq \mathbb{Z}[x_1, \dots, x_n],$$

where $(\mathfrak{t}^n_{\mathbb{Z}})^*$ is the dual of the weight lattice of the Lie algebra of T^n and deg $x_i=2$.

- **2.1.** Leg bundle over an abstract graph. Let \mathcal{V} be a set of vertices, and \mathcal{E} be a set of (oriented and possibly multiple) edges in G. We denote $G = (\mathcal{V}, \mathcal{E})$. Throughout this paper, we assume that every graph G is connected and finite. We use the following notations:
 - $i(e) \in \mathcal{V}$ (resp. $t(e) \in \mathcal{V}$) is the initial (resp. terminal) vertex for $e \in \mathcal{E}$;
 - $\overline{e} \in \mathcal{E}$ is the opposite directed graph of $e \in \mathcal{E}$;
 - $\operatorname{star}_G(p) := \{e \in \mathcal{E} \mid i(e) = p\}$ is the set of out-going edges from $p \in \mathcal{V}$.

The graph $G = (\mathcal{V}, \mathcal{E})$ is called a *(regular) m-valent graph* if $|\operatorname{star}_G(p)| = m$ for every $p \in \mathcal{V}$.

DEFINITION 2.1. Let $G = (\mathcal{V}, \mathcal{E})$ be a graph. The following pair of sets is called a rank r leg bundle over G:

$$[r]_G := (\mathcal{V}, \mathcal{E} \sqcup \mathcal{V} \times [r]).$$

An element $(p, j) \in \mathcal{V} \times [r]$ is called a *leg* of $[r]_G$ over $p \in \mathcal{V}$. The set of legs over p, i.e., $[r]_p := \{(p, 1), \ldots, (p, r)\}$ is called the *fiber* of $[r]_G$ over p.

The rank r leg bundle $[r]_G$ over G may be regarded as the non-compact graph consisting of the graph G with adding the r non-compact edges, called legs, over each vertex of G, see Figure 1.

FIGURE 1. The rank 2 leg bundle over the triangle (left) and the rank 3 leg bundle over the edge (right).

- **2.2.** Leg bundle over a GKM graph. Let $G = (\mathcal{V}, \mathcal{E})$ be an m-valent graph. For $n \leq m$, a function $\alpha : \mathcal{E} \to (\mathfrak{t}_{\mathbb{Z}}^n)^*$ satisfying the following conditions (1)–(3) is called an *axial function*:
 - (1) $\alpha(e) = \pm \alpha(\overline{e})$ for every edge $e \in \mathcal{E}$;
 - (2) every two distinct elements in $\alpha(\operatorname{star}_G(p)) = \{\alpha(e) \in (\mathfrak{t}_{\mathbb{Z}}^n)^* \mid e \in \operatorname{star}_G(p)\}$ are linearly independent, i.e., pairwise linearly independent (or 2-independent for short), for every $p \in \mathcal{V}$;
 - (3) there is a bijection $\nabla_e : \operatorname{star}_G(i(e)) \to \operatorname{star}_G(t(e))$ for every $e \in \mathcal{E}$ such that
 - (a) $\nabla_{\overline{e}} = \nabla_e^{-1}$;
 - (b) $\nabla_e(e) = \overline{e};$
 - (c) $\alpha(\nabla_e(e')) \alpha(e') \equiv 0 \mod \alpha(e)$ for every $e, e' \in \text{star}_G(p)$.

The condition (3)-(c) is called a *congruence relation* on $e \in \mathcal{E}$. The collection $\nabla = \{\nabla_e \mid e \in \mathcal{E}\}$ is called a *connection* on (G, α) , and the bijection ∇_e is also called a *connection* on the edge $e \in \mathcal{E}$. The above triple (G, α, ∇) is called a *GKM graph*, or an (m, n)-type *GKM graph* if we emphasize the valency of G and the dimension of the target space of G (see e.g. [GZ01, MMP07, DKS22]).

DEFINITION 2.2 (Leg bundle over a GKM graph). Let $\Gamma = (G, \alpha, \nabla)$ be an (m, n)-type GKM graph. We call ξ a $(rank \ r)$ leg bundle over Γ if the following data is given for $[r]_G$:

- (1) we assign the element $\xi_p^j \in (\mathfrak{t}_{\mathbb{Z}}^n)^*$ to every leg (p,j), called a weight on (p,j);
- (2) there is the permutation $\sigma_e^{\xi}: [r]_{i(e)} \to [r]_{t(e)}$ for every edge $e \in \mathcal{E}$ that satisfies the following congruence relation:

$$\xi_{t(e)}^{\sigma_e(j)} - \xi_{i(e)}^j \equiv 0 \mod \alpha(e).$$

We also call the collection $\sigma^{\xi} := \{ \sigma_e^{\xi} \mid e \in \mathcal{E} \}$ a connection on ξ . A rank 1 leg bundle over Γ is called a *line bundle* over Γ . For a line bundle ξ over Γ , the connection σ_{ξ} is uniquely determined. By forgetting legs and their weights, we can define the projection $\pi : \xi \to \Gamma$, see Figure 2.

FIGURE 2. The right graph $\Gamma = (G, \alpha, \nabla)$ is the GKM graph satisfying $\alpha(\overline{e}) =$ $-\alpha(e)$. The left labeled graph ξ is the rank 2 leg bundle over Γ . Note that the connection σ_{ξ} is uniquely determined.

2.3. Projectivization of a leg bundle. Let $\Gamma = (G, \alpha, \nabla)$ be an (m, n)-type GKM graph and ξ be its rank (r+1) leg bundle, where $G = (\mathcal{V}, \mathcal{E})$. We next introduce the projectivization $\Pi(\xi) = (P(\xi), \alpha^{P(\xi)}, \nabla^{P(\xi)})$ of ξ .

The underlying graph $P(\xi) := (\mathcal{V}^{P(\xi)}, \mathcal{E}^{P(\xi)})$ is defined as follows:

- The set of vertices is defined by $\mathcal{V}^{P(\xi)} := [r+1]_G$;
- The set of edges $\mathcal{E}^{P(\xi)}$ consists of the following two types of edges:

vertical: a vertical edge (p, jk) connecting two vertices $(p, j), (p, k) \in [r+1]_p$ if $j \neq k$, where p runs over \mathcal{V} and j,k run over $[r+1]_p$ with $j \neq k$;

horizontal: a horizontal edge (e, l) for $e \in \mathcal{E}$ and $l \in [r+1]_{i(e)}$ connecting (i(e), l) and $(t(e), \sigma_e^{\xi}(l)).$

Note that the reversed orientation edge of the vertical edge (p, jk) is $\overline{(p, jk)} = (p, kj)$ and that of the horizontal edge (e, l) is $\overline{(e, l)} = (\overline{e}, \sigma_e^{\xi}(l))$.

The label $\alpha^{P(\xi)}: \mathcal{E}^{P(\xi)} \to (\mathfrak{t}^n_{\mathbb{Z}})^*$ of the projectivization $\Pi(\xi)$ is defined as follows:

- $\alpha^{P(\xi)}(p,jk) := \xi_p^j \xi_p^k$, for any vertical edge $(p,jk) \in \mathcal{E}^{P(\xi)}$; $\alpha^{P(\xi)}(e,l) := \alpha(e)$, for any horizontal edge $(e,l) \in \mathcal{E}^{P(\xi)}$.

FIGURE 3. The projectivization $P(\xi)$ of the leg bundle ξ in Figure 2. Here, (u, 12) is the vertical edge connecting (u, 1) and (u, 2) and $(e_2, 1)$ is the horizontal edge connecting (u,1) and (w,1). For these edges, the labels are defined by $\alpha^{P(\xi)}(u,12) = \xi_u^1 - \xi_u^2 = x_1 - x_2$ and $\alpha^{P(\xi)}(e_2,1) = \alpha(e_2) = x_2$.

The canonical connection $\nabla^{P(\xi)}$ is defined by the set of the bijective maps

$$\nabla_{\epsilon}^{P(\xi)} : \operatorname{star}_{P(\xi)}(i(\epsilon)) \longrightarrow \operatorname{star}_{P(\xi)}(t(\epsilon)).$$

such that

• $\nabla_{(u,jk)}^{P(\xi)}(u,jl) = (u,kl)$ for every distinct elements $j,k,l \in [r+1]$;

- $\nabla_{(u,jk)}^{P(\xi)}(e,j) = (e,k)$, where $i(e) = u \in \mathcal{V}$; $\nabla_{(e,l)}^{P(\xi)}(u,lk) = (v,\sigma_e(l)\sigma_e(k))$, where $i(e) = u,t(e) = v \in \mathcal{V}$ for every distinct elements
- $l, k \in [r+1];$ $\nabla_{(e,l)}^{P(\xi)}(e',l) = (\nabla_e(e'), \sigma_e(l)), \text{ where } i(e) = i(e') \in \mathcal{V},$

where we omit $\nabla_{\epsilon}^{P(\xi)}(\epsilon) = \overline{\epsilon}$. The following theorem is straightforward by definition (see [KS, Theorem 3.2).

THEOREM 2.3. The canonical collection $\nabla^{P(\xi)} := \{ \nabla^{P(\xi)}_{\epsilon} \mid \epsilon \in \mathcal{E}^{P(\xi)} \}$ satisfies the congruence relations, i.e., it satisfies the conditions to be the connection on $(P(\xi), \alpha^{P(\xi)})$.

3. Whitney sum and Tensor product

Let $\Gamma = (G, \alpha, \nabla)$ be an (m, n)-type GKM graph, where $G = (\mathcal{V}, \mathcal{E})$. Let \mathcal{E} be a rank r and η be a rank r' leg bundles over Γ . In this section, we define the Whitney sum $\xi \oplus \eta$ and the tensor product $\xi \otimes \eta$.

In order to correspond to the geometrical objects, in this section, we also use the following symbols:

- the symbols $\tau_{\mathbb{C}P^2}$ and $\tau_{\mathbb{C}P^2}^*$ represent the tangent bundle and the cotangent bundle over $\mathbb{C}P^2$ with the standard lifting of the T^2 -action on $\mathbb{C}P^2$, respectively;
- the symbol $\epsilon_{(k,l)}$ represents the trivial line bundle over $\mathbb{C}P^2$ whose T^2 -action on the fiber is defined by $(t_1, t_2) \mapsto t_1^k t_2^l$;
- the symbol $\gamma^{\otimes k}$ is the k-times tensor product of the tautological line bundle over $\mathbb{C}P^2$ with the standard lifting of the T^2 -action on $\mathbb{C}P^2$.

All of such equivariant bundles can be described by using the leg bundles. For example, the leg bundle induced from the standard T^2 -action on the tangent bundle $\tau_{\mathbb{C}P^2}$ is as follows:

FIGURE 4. Rank 2 leg bundle corresponding to $\tau_{\mathbb{C}P^2}$, where $x_1, x_2 \in (\mathfrak{t}_{\mathbb{Z}})^*$ are the standard basis defined by the coordinate projections. Note that we omit the axial functions on edges.

3.1. Whitney sum.

DEFINITION 3.1 (Whitney sum of leg bundles). The Whitney sum $\xi \oplus \eta$ is the following rank r + r' leg bundle over Γ :

- (1) the underlying non-compact graph of $\xi \oplus \eta$ is $[r + r']_G$;
- (2) the set of legs over the vertex $u \in \mathcal{V}$ is denoted by $[r+r']_u := [r]_u \sqcup [r']_u = \{(u,j) \mid j \in \mathcal{V}\}$ $[r]_u\} \sqcup \{(u,j') \mid j \in [r']_u\};$
- (3) for every leg $(u,j) \in [r]_u$ (resp. $(u,j') \in [r']_u$), the label ξ_u^j (resp. $\eta_u^{j'}$) in $(\mathfrak{t}_{\mathbb{Z}}^n)^*$ is assigned; (4) for every edge $e \in \mathcal{E}$, the connection $\sigma_e^{\xi \oplus \eta}$ is defined by $\sigma_e^{\xi \oplus \eta}(i(e),j) := (t(e),\sigma_e^{\xi}(j))$ for $(i(e),j) \in [r]_{i(e)}$ and $\sigma_e^{\xi \oplus \eta}(i(e),j') := (t(e),\sigma_e^{\eta}(j'))$ for $(i(e),j) \in [r']_{i(e)}$.

EXAMPLE 3.2. See Figure 6 from right to left.

3.2. Tensor product.

DEFINITION 3.3 (Tensor product of leg bundles). We define the tensor product $\xi \eta (= \xi \otimes \eta)$ as follows:

- (1) the underlying non-compact graph of $\xi \eta$ is $[rr']_G$;
- (2) the set of legs over the vertex $u \in \mathcal{V}$ is denoted by $[rr']_u := \{(u,j,k) \mid j \in [r]_u, k \in \mathcal{V}\}$ $[r']_u$ $\simeq [r]_u \times [r']_u$;
- (3) for every leg (u, j, k), the label ξ_u^j + η_u^k ∈ (t_Zⁿ)* is assigned;
 (4) for every edge e ∈ ε, the connection σ_e^{εη} is defined by σ_e^{εη}(i(e), j, k) := (t(e), σ_e^ε(j), σ_e^η(k)), where σ_e^{ξ} and σ_e^{η} are connetions on the edge e of ξ and η respectively.

Note that if we regard $[rr']_u = [r]_u \times [r']_u$, (4) is nothing but $\sigma_e^{\xi\eta} = \sigma_e^{\xi} \times \sigma_e^{\eta}$. Note that for two line bundles ζ and ζ' over Π , the label of the tensor product $\zeta\zeta'$ can be denoted by $\zeta\zeta'_p := \zeta_p + \zeta'_p$. For example, the following figure shows the tensor product of two leg bundles.

FIGURE 5. Geometrically, this shows the relation $\tau_{\mathbb{C}P^2}^* \otimes (\gamma^{\otimes 3} \otimes \epsilon_{1,1}) \simeq \tau_{\mathbb{C}P^2}$.

3.3. Splitting into the line bundle from GKM theoretical viewpoint. The following notion is important to state our main result.

DEFINITION 3.4 (Splitting). For a rank r leg bundle ξ over a GKM graph $\Gamma = (G, \alpha, \nabla)$, if there is a connection $\hat{\sigma}^{\xi}$ (might be different from the original connection σ^{ξ}) on ξ such that ξ with the connection $\hat{\sigma}^{\xi}$ is the Whitney sum of line bundles $\gamma_1 \oplus \cdots \oplus \gamma_r$, then we call ξ a splitting bundle.

For example, the decomposition

$$\tau_{\mathbb{C}P^2} \oplus \epsilon_{(0,0)} = \gamma \oplus (\gamma \otimes \epsilon_{1,0}) \oplus (\gamma \otimes \epsilon_{0,1}).$$

can be computed by the following decomposition of the leg bundles:

FIGURE 6. Splitting of the rank 3 leg bundle into the ling bundles.

4. Main theorem

In this section, we state the main theorem of this paper.

4.1. Main theorem. Let $\Gamma = (G, \alpha, \nabla)$ be a (2, 2)-type GKM graph for $G = (\mathcal{V}, \mathcal{E})$ and ξ be a rank 2 leg bundle over Γ . Then, we may write

- $\mathcal{V} = \{p_1, \dots, p_r\}$ and $\mathcal{E} = \{e_1, \dots, e_r\}$, where e_i is the edge connecting p_i and p_{i+1} for $i=1,\ldots,r-1$ and e_r is the edge connecting p_r and p_1 , i.e., G is the boundary of the r-gon for some $r \geq 2$;
- the fiber over $p \in \mathcal{V}$ is $[2]_p := \{\ell_{p,1}, \ell_{p,2}\},$

where in the above notations $\ell_{p,1} = (p,1)$ and $\ell_{p,2} = (p,2)$. Then the following lemma is straightforward:

LEMMA 4.1. For any label on ξ , the connection on ξ is one of the following or both of them:

- (1) σ_{e_r}^ξ ···· · σ_{e₁}^ξ (ℓ_{p₁,i}) = ℓ_{p₁,i} for i = 1, 2, i.e., ξ is the splitting bundle (in fact, it splits into two line bundles);
 (2) σ_{e_r}^ξ ···· · σ_{e₁}^ξ (ℓ_{p₁,1}) = ℓ_{p₁,2}, i.e., ξ is not the splitting bundle.

By changing the order of legs, for the 1st case in Lemma 4.1, we may assume that $\sigma_{\epsilon_i}^{\xi}$ for all $i=1,\ldots,r$ is identity. In this case, we say that ξ admits a splitting type connection. Similarly, for the 2nd case in Lemma 4.1, we may assume that only one connection on an edge is twisting and the others are identity; we say that ξ admits a non-splitting type connection.

The following figure shows that the rank 2 leg bundle ξ over the GKM graph induced from $\mathbb{C}P^2$ which admit both of the splitting type and the non-splitting type connections.

FIGURE 7. Rank 2 leg bundle with two connections.

Now we may state the main theorem:

Theorem 4.2. Let ξ be a rank 2 vector bundle over a (2,2)-type GKM graph Γ . Then the following two conditions are equivalent:

- (1) ξ admits both of the splitting type and the non-splitting type connections;
- (2) The projectivization $\Pi(\xi)$ is not a GKM graph.

The following figure shows that the projectivization (for the non-splitting connection) of the leg bundle in Figure 7. This does not satisfy the 2-independency aroung the vertex $\ell_{p_1,1}$; therefore, this is not the GKM graph.

FIGURE 8. The projectivization $\Pi(\xi)$ of the leg bundle ξ with the non-splitting connection in Figure 7.

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number 21K03262. The author would like to thank Grigory Solomadin for his valuable comments.

References

[DKS22] A. Darby, S. Kuroki and J. Song, Equivariant cohomology of torus orbifolds, Canadian J. of Math., 74, Issue 2 (2022), 299–328.

[GKM98] M. Goresky, R. Kottwitz and R. MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), 25–83.

[GSZ12'] V. Guillemin, S. Sabatini and C. Zara, Balanced Fiber Bundles and GKM Theory, Int. Math. Res. Notes, 2013(17) (2012), 3886–3910.

[GZ01] V. Guillemin and C. Zara, One-skeleta, Betti numbers, and equivariant cohomology, Duke Math. J. 107 2 (2001), 283–349.

[Ku09] S. Kuroki, Introduction to GKM theory, Trends in Mathematics - New Series 11 2 (2009), 113–129.

[Ku16] S. Kuroki, GKM manifold, available on the website (version April 2016): https://www.xmath.ous.ac.jp/ kuroki/gkm_for_atlas.pdf

[Ku21] S. Kuroki, Vector bundle over a GKM graph and combinatorial Borel-Hirzebruch formula and Leray-Hirsh theorem, RIMS Kokyuroku 2199, 42–52 (2021).

[KS] S. Kuroki and G. Solomadin, Borel-Hirzebruch type formula for the graph equivariant cohomology of a projective bundle over a GKM-graph, arXiv:2207.11380.

[KU] S. Kuroki and V. Uma, GKM graph locally modeled by $T^n \times S^1$ -action on $T^*\mathbb{C}^n$ and its graph equivariant cohomology, to appear in The Fields Institute Communication Volume: Toric Topology and Polyhedral Products, arXiv:2106.11598.

[MMP07] H. Maeda, M. Masuda and T. Panov, Torus graphs and simplicial posets, Adv. Math. 212 (2007), 458–483.

Department of Applied Mathematics Faculty of Science, Okayama University of Science, 1-1 Ridaicho Kita-ku Okayama-shi Okayama 700-0005, Okayama, Japan

Email address: kuroki@ous.ac.jp