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We introduce several results on the geometry of sets definable in definably
complete locally o-minimal expansions of ordered fields such as definable C"
approximation theorem and the existence of definable quotient in some special
case. They are the extensions of the counterparts in o-minimal expansions of
ordered fields. In the appendix, we also give a complete proof for the assertion
on definable topology announced in the previous RIMS report.

1 Introduction

In the main body of this paper, we consider a definably complete locally o-minimal
expansion of an ordered field F = (F,<,+,-,0,1,...) in this paper. The definitions
of model-theoretic structures and expansions for non-model theorists are found in
[11]. We do not repeat them in this paper. Standard textbooks for model theory are
(2, 19, 22, 26, 27].

We recall the basic definitions.

Definition 1.1. A densely linearly ordered structure M = (M, <,...) is o-minimal

if every definable subset of M is a finite union of points and open intervals [4].
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The structure M is definably complete if every definable subset of M has both a
supremum and an infimum in M U {£oo} [23].

The structure M is locally o-minimal if, for every definable subset X of M and for
every point a € M, there exists an open interval I containing the point a such that

X N1 is a finite union of points and open intervals [28].

Semialgebraic algebraic geometry [1, 3| are developed by real algebraic geometers.
O-minimal structure is a natural generalization of the family of semialgebraic sets. It is
extensively studied both model-theoretically and geometrically [4]. Several structures
relaxing the requirements of o-minimality have been introduced. One of them is local
o-minimality [28, 21]. However, it is already known that local o-minimality alone does
not have tame topology. In fact, the local o-minimal structure given in [21, Example
12] has a definable function which is discontinuous at every point. Therefore, definably
complete locally o-minimal structures have been studied in [8, 12, 13, 18]. We have
checked whether famous assertions which hold true in semialgebraic geometry or o-
minimal structures still hold true in a definably complete locally o-minimal expansion
of an ordered field. In this paper, we introduce some of the result given in [17].
Another result is also found in [15, 16]. In them, we study sufficient conditions for

the existence of definable quotient. We consider the following problems in this paper.

(1) Is a definable closed set the zero set of a definable C" function?

(2) Ts a definable C"~! map between definable C" submanifolds approximated by a
definable C" map in the definable C"~! topology?

(3) Is a regular definable C™ manifold definably C" diffeomorphic to a definable C”

submanifold?

We treat definable C" manifolds and definable C" maps etc. in this paper. They are
called D" manifolds and D" maps etc. for short.

The answers to these questions are ‘yes’ if we consider o-minimal structures. In
fact, they are demonstrated in [5, 7, 20]. We have shown that the answers are still
‘yes’ even in definably complete locally o-minimal expansion of an ordered field in
[17]. A locally o-minimal structure whose universe is the set of reals R is o-minimal.
Therefore, our results are nothing new in this case.

In the o-minimal setting, definable cell decomposition theorem and definable tri-



angulation theorem are used for the proof of the above three questions, but they are
unavailable in our setting. The first author proposed the notion of special submani-
folds with tubular neighborhoods and proved that each definable set is decomposed
into finitely many special submanifolds with tubular neighborhoods in [13]. We used
this fact in place of definable cell decomposition theorem and definable triangulation
theorem. We also need to modify the definition of a “D™ manifold’ because a D" sub-
manifold is not necessarily a D" manifold in our setting if we accept the traditional
definition of D" manifolds used in the studies on o-minimal structures such as [20].
These results are explained in Section 2 without proofs. See [17] for more details. We
have to point out a drawback in our study. A locally o-minimal expansion of the field
of reals R is always o-minimal. Many results introduced in this paper are already
known when the structure is o-minimal.

Of course, all the results in the study of o-minimal structures are not extended to
the definably complete locally o-minimal case. As an appendix, we give an example
in Section A. It is known that any bounded closed definable subgroup of GL(F)
is semialgebraic when the structure is an o-minimal expansion of an ordered ficld
F = (F,<,4+,-,0,1,...) [24, Theorem|. We construct a bounded definable subgroup
of GL(n, F') which is not semialgebraic when F is locally o-minimal.

Section B is another appendix. We give a complete proof of the assertion announced

in the previous report [14] in this section.

2 Results
2.1 Special manifold with tubular neighborhood

We first define special submanifolds. The definition employed here is Fornasiero’s
[8]. It is not identical to the definition employed in [13]. However, these two coincides

with each other by [13].

Definition 2.1. Let F = (F,<,+,0,-,1,...) be an expansion of an ordered field.
Let X be a definable subset of F™ of dimension d and 7 : '™ — F¢ be a coordinate
projection. Let o be a permutation of {1,...,n} such that the composition 7 o7 is

the coordinate projection onto first d coordinates, where & : I — F™ is the map

given by 7(z1,...,2n) = (To(1), - - To(n))-

3



We first consider the case in which 7(X) € F¢ x (0,1)"~4. A point (a,b) € F™ is
(X, 7)-normal if there exist a definable neighborhood A of @ in F'? and a definable
neighborhood B of b in F"~% such that either A x B is disjoint from &(X) or (A x
B) Na(X) is the graph of a definable continuous map f: A — B. We call the point
(a,b) € F™ (X, 7)-C"-normal if the function f given above is a D" map. A point
a € F4is (X, m)-bad if it is the projection of a non-(X,7)-normal point; otherwise,
the point a is called (X, 7)-good. We define (X, 7)-C"-bad points and (X, 7)-C"-good
points similarly.

If X is unbounded, let ¢ : F' — (0,1) be a definable C" diffeomorphism. For
simplicity, we assume that 7 is the projection onto the first d coordinates. We consider
the other cases similarly. Consider the map ¢ := id? xpn—d . Fd x pr—d 5 pd x
(0,1)"~9. We say that a is (X, 7)-good if it is (1)(X), 7)-good. We define (X, 7)-bad
points etc. similarly.

The definable set X is a w-special submanifold if every point of 7(X) is (X, 7)-
good. We simply call it a special submanifold when the projection 7 is clear from the
context. A m-special C" submanifold is defined similarly.

Let {X;}™, be a finite family of definable subsets of F™. A decomposition of
F"™ into special C" submanifolds partitioning {X;}™, is a finite family of special C"
submanifolds {C;}Y | such that (Y, C; = F™, C;NC; = ) when i # j and either
C; has an empty intersection with X; or is contained in X; for any 1 < ¢ < m
and 1 < j < N. A decomposition {C;}¥, into special C" submanifolds satisfies
the frontier condition if the closure of any special submanifold C; is the union of a

subfamily of the decomposition.
We next define a special C" submanifold with a tubular neighborhood.

Definition 2.2 ([13]). Let F = (F,<,+,0,-,1,...) be an expansion of an ordered
field. Let © = (1,...,Zm),y = (y1,...,Ym) be points in F". The notation dist,, :
F™ x F™ — F denotes the D> function given by dist,,(z,y) = Y1, (z; — vi)>.
Set By, (z,r) = {y € F™ | disty,(z,y) < r} for all x € F™ and r > 0. Note
that the definition of By, (z,r) is slightly different from that in [13]. For a given
coordinate projection 7 : F™ — ¢, take a permutation o of {1,...,n} such that the
composition 7 o 7 is the coordinate projection onto first d coordinates. Set X[ =
{r e F"=4 |5 (u,z) € X} for all u € F'? and a definable subset X of F™. The set
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X7 depends on the choice of o, but we only discuss the features of X independent
of ¢ in this paper.

When dim X < n, the tuple (X, m, T, n, p) is a special C" submanifold with a tubular
neighborhood if

TQT: U Bn—d<$7n(u))

xeXT

and
Bp—a(z1,m(u)) N By—a(z2.n(u)) =0

for all x1,z9 € X7 with x1 # xo;
(e) p: T — X is a D" retraction such that, for any u € U, we have p(7~1(u)NT) C
7 Y w)NX and p(G *(u,y))) =7 *(u,z) forall x € XT and y € B,,_q(z,n(u)).

When dim X = n, the tuple (X, w,T,n,p) is called a special C" submanifold with a
tubular neighborhood if X is open, T' = X, n = 0, and 7 and p are the identity
maps on F™ and X, respectively. A decomposition of F™ into special C" submanifolds
with tubular neighborhoods is a finite family of special C" submanifolds with tubular
neighborhoods {(X;, 7;, T, 1:, pi) } ¥, such that {(X;, m;)}X; is a decomposition of F™
into special C" submanifolds. We say that a decomposition {(X;,m;, 75,7, pi)}fil of
F™ into special C" submanifolds with tubular neighborhoods partitions a given finite
family of definable sets and satisfies the frontier condition if so does the decomposition

into special submanifolds {(X;, m;)}Y,.
The following theorem guarantees the existence of the decomposition.

Theorem 2.3. Let F = (F,<,+,0,-,1,...) be a definably complete locally o-minimal
expansion of an ordered field. Let r be a nonnegative integer. Let {X;}™, be a finite
family of definable subsets of F™. There exists a decomposition of F" into special
C" submanifolds with tubular neighborhoods partitioning {X;}7, and satisfying the

frontier condition. In addition, the number of special C" submanifolds with tubular
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neighborhoods is bounded by a function of m and n.

Proof. See [13] and [17]. O

2.2 Definable closed set is the zero set of a D" function

Using Theorem 2.3 instead of definable cell decomposition theorem, we get the

following theorem:

Theorem 2.4. Consider a definably complete locally o-minimal expansion of an or-
dered field F = (F,<,4+,0,-,1,...). A definable closed set is the zero set of a D"

function for r < oo.

Strategy of the proof. We prove it employing the same strategy as the proof of [5, The-
orem C.11] but using decomposition of X into special C" submanifolds with tubular

neighborhoods in place of definable cell decomposition. O

2.3 Approximation theorem

We next recall the definition of definable submanifolds. It is identical to the tradi-
tional definition of definable submanifolds employed in [7, 20].

Definition 2.5 (Definable submanifolds). Let F = (F,<,+,0,-,1,...) be an expan-
sion of an ordered field. Let r be a nonnegative integer. A D" submanifold M of
dimension d in F™ is a definable subset of F™ such that, for any point a € M, there
exist a definable open neighborhood U of the point a, a definable open neighborhood
V' of the origin in £ and a D" diffeomorphism ¢ : U — V such that ¢(a) is the

origin and

(P(]\JQU):{(.Tl,...7.'1:n)€V|$d+1:---:m‘n:0}_

The tangent bundle T M is the set of (z,v) € M x F™ such that v is a tangent vector to
M at z. The normal bundle N M the set of (x,v) € M x F™ such that v is orthogonal
to the tangent space 1, M. They are definable sets. See [3] for instance.

The proof of the following theorem is identical to the traditional proof except that

we use Theorem 2.4.



Theorem 2.6 (D"~ ! tubular neighborhood). Consider a definably complete locally
o-minimal expansion of an ordered field F = (F,<,4+,0,-,1,...). Let r be a positive
integer. A closed D" submanifold M of F™ has a D"~ '-tubular neighborhood; i.e.,
there exists a definable open neighborhood U of the zero section of M x {0} in the
normal bundle NM such that the restriction of the map given by NM > (z,v) —
r+v € F" to U is a D"~ !-diffeomorphism onto a definable open neighborhood Q of

M in F™. Moreover, we can take U of the form

U={(z,v) € NM | |lv|| < e(x)},

where € is a positive D" function on M and the notation ||v|| denotes the Euclidean

norm of v.
We recall the definition of D" topology given in [7].

Definition 2.7. Let r be a positive integer. Consider an expansion of an ordered field
F = (F,<,+,0,-,1,...) and a D" submanifolds X and Y of F™ and F™, respectively.
The notation D"(X,Y) denotes the set of D" maps from X to Y. We write D" (X)
when Y = F.

We define a topology on D" (X,Y). We call it the D" topology on D" (X,Y). We
first consider the case in which Y = F. Consider a D"~ ! vector field V on X that is,
V :X — TX is a D"~ map such that the composition 7 o V is the identity map on
X, where T'X is the tangent bundle of X and 7 is the natural projection from 7T'X
to X. The notation V(f) denotes the derivative of f along V for each f € D"(X).
We can take a finite family {V1,...,V,} of D"~! vector fields which span the tangent
space to X at each point x € X. In fact, let z1,...,x, be the coordinate functions

of the ambient space F™ of Y. We can naturally define the orthogonal projection

0 0

II:TF* — TX. The image {H (8_) | (8_)} satisfies the requirement.
T In

For each positive definable continuous function € : X — F, set

Us={9e€D"(X)||Vi,---Vi,g| <efor 1 <iy,...,ip <m,j<r}
The sets {h + U.}. form a neighborhood basis of D"(X) at h, which defines the D"
topology on D" (X).

We consider the case in which Y is general. The D" topology on D"(X, F") =
[T;=, D"(X) is the product topology. The set D"(X,Y) is a subset of D" (X, ™). The
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D" topology on it is defined as the induced topology under the inclusion D" (X,Y) C
Dr(X,F™).

Theorem 2.8. Consider a definably complete locally o-minimal expansion of an or-
dered field F = (F,<,+,0,-,1,...) and two D" submanifolds X andY. A D"~! map
f: X =Y admits a D" approzimation in the D"~ topology.

Strategy of the proof. In spirit, we follow the proof of [7, Theorem 1.1]. In it, a strat-
ification of the ambient space F'™ into cells is used. An approximation is constructed
in each stratum and they are pasted in the original proof. But it is impossible in our
setting. Instead, we use a decomposition of F™ into special C"*! submanifolds with
tubular neighborhoods satisfying the frontier condition given in Theorem 2.3. We

also use the following key lemma in the proof.

Lemma 2.9. Consider a definably complete locally o-minimal expansion of an or-
dered field F = (F,<,+,0,-,1,...). Let r be a nonnegative integer and (X, n,T,n, p)
be a special C"T! submanifold in F™ of dimension d with a tubular neighborhood,
where 7 is the coordinate projection onto the first d-coordinates. Set U = 7(X). Let
f:m Y U) = F be a D" function which is of class C™t1 off X. Assume that the
restriction f|x of f to X is of class C™™1. Let § : 7= Y(U) — F be a positive definable

continuous function. Then there exists a D™t function f: 7 YU) = F such that

lal+p] N
gt D)<

for all sequences of nonnegative integers a and b with |a| + |b] < 7.

Sketch of the proof. By consider the Taylor expansion of f, we construct a D"t func-
tion P sufficiently close to f on X. We also construct a D"+! function A which is one
on X and zero out of tubular neighborhood. The D"+! function f = AP + (1=MNf

satisfies the requirement. Ol
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2.4 Imbedding of D" manifolds

Definition 2.10. Let F = (F,<,+,-,0,1,...) be a definably complete locally o-
minimal expansion of an ordered field. Suppose that 1 < r < oo.
(1) A pair (M,{¢; : U; — Ul}icr) of a topological space and a finite family of

homeomorphisms is called a definable C" manifold or a D" manifold if

e {U,;}icr is a finite open cover of M,

e U/ is a D" submanifold of M™ for any i € I and,

vinu,) © (ilusnu,)~t ei(UiNU;) — ¢ (U; N U;) is a D"
diffeomorphism whenever U; N U, # 0.

e the composition (¢;

Here, the notation ¢;|y,nu, denotes the restriction of ¢; to U; N U;. We use similar
notations throughout the rest of this paper. The family {y; : U; — U/ }ier is called a
D" atlas on M. We often write M instead of (M, {p; : U; — U/}icr) for short. Note

that a D" submanifold is naturally a D" manifold.

Remark 2.11. In the o-minimal setting, a D" manifold is defined as the object obtained
by pasting finitely many definable open sets. D" submanifolds are pasted in our
definition. If we adopt the same definition of D" manifolds as in the o-minimal setting,
D" manifolds of dimension zero should be a finite set because F° is a singleton. A
D" submanifold of dimension zero is not necessarily a D" manifold in this definition.

It seems to be strange, so we employed our definition of D" manifolds.

Definition 2.12. Given a D" manifold M, two D" atlases {¢; : U; — U!}icr and
{¢j 1 Vj = V/}jes on M are equivalent if, for all i € I and j € J,

e the images ;(U; N'V;) and v, (U; N'V;) are open definable subsets of U/ and
Vi

e the D" diffeomorphism (v;]u,nv;) © (jlv.nv;) ™' = @i(Us NV;) = (U N V)
are definable whenever U; N U; # 0.

respectively, and

The above relation is obviously an equivalence relation.
A subset X of the D" manifold M is definable when ¢;(X NU;) are definable for all
i € I. When two atlases {¢; : U; — U] }ier and {9 : Vj = V/};e; of a D" manifold



M is equivalent, it is obvious that a subset of the D" manifold (S, {¢;}icr) is definable
if and only if it is definable as a subset of the D" manifold (M, {¢;},c.z).

The Cartesian product of two D" manifold is naturally defined. A map f:S — T
between D" manifolds is definable if its graph is definable in S x T'.

(2) A definable subset Z of X is called a k-dimensional D" submanifold of X if
each point x € Z there exist an open box U, of x in X and a D" diffeomorphism ¢,
from U, to some open box V, of F'¢ such that ¢, (z) =0 and U,NY = ¢, 1 (FENV,).

(3) Let X and Y be D" manifolds with D" charts {¢;U; — Vi}ica and {¢; : U; —
Vj’}jeg, respectively. A continuous map f : X — Y is said to be a definable C" map
or a D" map if for any ¢ € A and j € B, the image (bi(f_l(Vj’) NU;) is definable and
open in F™ and the map ;o f o ot ¢i(f~1(V;)NU;) — F™ is a D" map.

(4) Let X and Y be D" manifolds. We say that X is definably C" diffeomorphic to
Y or D" diffeomorphic to Y if there exist D" maps f: X — Y and h: Y — X such
that foh =1id and ho f =id.

The following is the D" imbedding theorem of D" manifolds:

Theorem 2.13. Let F = (F,<,+,-,0,1,...) be a definably complete locally o-
minimal expansion of an ordered field. FEvery reqular D" manifold is definably

imbeddable into some F™, and its image is a D" submanifold of F™.

Strategy of the proof. A classical proof using partition of unity works also in this case.

For the constriction of a partition of unity, we used Theorem 2.4. O

2.5 Application to D" group

Definition 2.14. Consider an expansion of a dense linear order without endpoints. A
definable group is a group (G, -, e) such that G is definable and both the multiplication

(a,b) — a-b and the inverse a + a !

are definable maps. We define a definable
subgroup of a definable group naturally. A definable group is called a definable C"
group or a D" group if both the multiplication and the inverse are of class C".

A definable equivalence relation E on a definable set X is a definable subset of
X x X such that the relation ~ defined by a ~ b < (a,b) € E is an equivalence

relation. Let G be a definable group and H be its definable subgroup. The relation
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Ey given by Eg = {(9,hg) € G x G | g € G,h € H} is a definable equivalence

relation.

Definition 2.15. Consider an expansion of a dense linear order without endpoints
M= (M,<,...). Let X C M™ and Y C M" be definable sets and f: X — Y be a
definable continuous map. The map f is definably identifying if it is surjective and,
for each definable subset K in Y, K is closed in Y whenever f~!(K) is closed in X.

Consider a structure M = (M,...), a definable set X and a definable equivalence
relation F on X. A definable quotient of X by E is a definably identifying definable
surjective continuous map f : X — Y such that f(x) = f(z’) if and only if (z,z") € E.
In addition, when both X and Y are D" submanifolds and f is a D" map, we call it
a definable C" quotient of X by E or a D" quotient of X by E

We consider the case in which a definable group G acts on a definable set X. Assume
that the action Gx X — X isa D" map. A D" quotient of X by G is defined as the D"
quotient of X by the definable equivalence relation Eq x = {(z,9z) € X x X |z €
X,g € G}.

Theorem 2.16. Consider a definably complete locally o-minimal expansion of an
ordered field. Let 0 <r < oco. Let G be a D" group and H be a definable subgroup of
G. There exist a D" submanifold X of dimension dim G — dim H and a D" quotient
t:G— X of G by H.

In addition, if H is a normal subgroup of G, there exists a D" maps mult : X x X —
X and inv : X — X such that multe, g (t(g1),t(g2)) = t(g192) and invg g (1(g)) =
t(g7Y) for g, 91,92 € G. In other word, the definable set X is a D" group and it is
isomorphic to the quotient group G/H as a group.

Strategy of the proof. We first demonstrate that both G and H are D" submanifolds.
Using this fact, we construct a D" manifold X. We then apply Theorem 2.13. U

We also get the following basic results:

Proposition 2.17. Consider a definably complete locally o-minimal expansion of an

ordered field. A D" group is a D" manifold.

Proposition 2.18. Consider a definably complete locally o-minimal expansion of an
ordered field F = (F,<,4+,-,0,1,...). Let G be a D" group and H be a definable
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subgroup of G. Then, H is a closed in G and D" submanifold of G.

Definition 2.19. Let G be a definable group. A D" group structure on G is a pair of a
D" group H and a definable group isomorphism ¢« : G — H. Two D" group structures

(Hi,t1) and (Hao, t2) are equivalent if the composition ¢4 0 Ll_l is a D" diffeomorphism.

Theorem 2.20. Consider a definably complete locally o-minimal expansion of an
ordered field F = (F,<,+,-,0,1,...). Let G be a definable group. There exists a D"

group structure on G and it is unique up to equivalence.

A Definably complete locally o-minimal expansion of an
ordered field which has a non-semialgebraic bounded

closed definable subgroup of the general linear group

We demonstrated that several properties of o-minimal structures still hold true
in definably complete locally o-minimal structures in the main body of this paper.
We provides an opposite example in this section. When an expansion of an ordered
field F = (F,<,+,-,0,1,...) is o-minimal, any bounded closed definable subgroup of
GL(n, F) is semialgebraic [24, Theorem]. We construct a definably complete locally
o-minimal expansion of an ordered field F = (F, <, +,-,0,1,...) which has a bounded
closed definable non-semialgebraic subgroup of GL(2, F').

The following construction of a structure is standard in model theory and it is
called an ‘ultraproduct’. We give a detailed explanation for non-model theorists here
in a concrete case. See standard textbooks of model theory for more information in
more general case. The authors recommend [22, Exercise 2.5.18, Exercise 2.5.19] for

instance.

Definition and Facts A.1l. Consider a subfamily I of the power set of N. The

family I is called a filter if the following conditions are satisfied:

(i) 0 ¢ T and N € [;
(i) A, Bel=ANDBel,
(iii) Aecl, ACBCN=Bel
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An wltrafilter I is a filter such that, for each subset A of N, we have either A € I or
N\Ael

It is already known that, for any filter I, there exists an ultrafilter J such that
IC.JcCoan

Let £ be a language and {M,};en be a family of L-structures. Let M; be the uni-
verse of M. Fix an ultrafilter I of N. Set X = [[,cy M; := {(zs)ien | 2 € M;}. We
define the equivalence relation ~ on X by (z;)ien ~ (yi)ien © {i €N | z; = y;} € I.
Set M = X/ ~. We denote the equivalence class of (x;);en by [(z;)]. We can naturally
interpret £ in M and define an L-structure M whose universe is M. For any £-formula
¢(T) and any point ([(x14)], ..., [(zni)]) € M™, the formula ¢([(z1:)],- ... [(zn:)]) holds
true in the structure M if and only if {i € N | ¢(x14,...,2,;) holds true in M;} € 1.
This fact implies that any property described by a first-order logic which holds true in
M, for all ¢ € N is still true in M. The structure M is the ultraproduct of {M;};en
by I.

Ezample A.1. Consider the language £ = {<,+,-,0,1,G}. For each i € N, consider
the L-structure F; whose universe is the set of reals R. The symbols in £ other than
G is interpreted naturally and we interpret G as

0= {( Smaleils emaiton )| 0k<i}SCLER)

in F;. Remark that G is a finite set and semialgebraic. Therefore, any set definable
in F; is semialgebraic, and F; is o-minimal. Since an o-minimal structure is always
locally o-minimal and definably complete, F; is locally o-minimal and definably com-
plete.

We next consider the filter I C 2V defined by

Acel<dneN VneN (m<n)—neA.

There exists an ultrafilter J with I C J. Let F = (F,<,+,-,0,1,G) be the ultraprod-
uct of {F;};en by J. Since F; is locally o-minimal and definably complete, F is also
definably complete and locally o-minimal. Since G is bounded, discrete and closed in

the structure F; for each ¢, GG is bounded, discrete and closed also in F.

10
Fix an arbitrary m € N. The sentence “JA € GG such that A™ # ( 01 )” holds
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true in the structure F; for i > m. We have

e}

{ieN‘EIAEGsuchthatAm;é(é X )}eIgJ.

10
It implies that the sentence “JdA € G such that A™ # ( 0 1 >” holds true in the

ultraproduct F. Since m is arbitrary, GG is not a finite group in F.
The definable set G is bounded, closed, discrete and infinite group in F. It implies

that G is not semialgebraic in F.

B Affiness of topological space definable in a definably
complete uniformly locally o-minimal structure of the

second kind
B.1 Introduction

In this section, we give a necessary and sufficient condition for a one-dimensional
regular and Hausdorff topological space definable in a definably complete uniformly
locally o-minimal structure of the second kind. It was announced in [14].

We recall a basic definition.

Definition B.1. A locally o-minimal structure M = (M, <, ...) is a uniformly locally
o-minimal structure of the second kind if, for any positive integer n, any definable set
X Cc M™! a € M and b € M", there exist an open interval I containing the point a
and an open box B containing b such that the definable sets X, NI are finite unions

of points and open intervals for all y € B.
Here is the definition of definable topology.

Definition B.2. Consider an expansion of a dense linear order and a definable set X.
A topology 7 on X is definable when 7 has a basis of the form {B, C X},cy, where
Y is a definable set and J,cy{y} x By is definable. We call the family {By},ey a
definable basis of 7. The pair (X, 7) of a definable set and a definable topology on it
is called a definable topological space.

Since X is a subset of a Cartesian product M™, X has the topology induced from the
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product topology of M™. It is definable and called the affine topology. The notation
72 denotes the affine topology.

A Definable Complete Uniformly Locally O-minimal expansion of ordered Abelian
group of the Second kind is called a DCULOAS structure in short. We are now ready
to introduce our main result. Our target in this paper is to demonstrate the following

theorem:

Theorem B.3. Consider a DCULOAS structure M = (M;<,+,0,...) such that
every automorphism of (M, +,0) is definable. Let X be a definable bounded subset of
M™ of dimension one. Let T be a definable topology on X which is Hausdorff and
reqular. Assume further that, for any 0 < u < v, there exist 0 < v’ < u < v < v and
a definable increasing T%-homeomorphism between [0,v'] and [0,v'].

The following are equivalent:

(1) The definable topological space (X, T) is definably homeomorphic to a definable
subset of M* with its affine topology for some k.
(2) There is a definable T-closed and T-discrete subset G of X at most of dimension
zero satisfying the following conditions:
(i) The restriction of T to X \ G coincides with the affine topology on X \ G;
(ii) There exists a positive integer K such that, for any x € G and a definable
T-open neighborhood U of x, we can find a definable T-open neighborhood V/
of x contained in U such that V\{x} has at most K 7%-definably connected

components.

B.2 Preliminary

We prove four lemmas in this section. We crucially use the local definable cell

decomposition theorem in proving the second lemma.

Lemma B.4. Consider a DCULOAS structure M = (M;<,+,0,...). Let v :
(0,u] = M™ be a definable continuous map having a bounded image. There exists
a unique point x € M™ such that, for any open box B containing the point x, the

intersection v((0,u]) N B is not empty. We denote this point by lim; o v(t).
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In particular, if C' is a bounded definable cell of dimension one, the frontier of C

consists of two points.

Proof. The image D = v((0,u]) is not closed because 7 is continuous and (0, u] is not
closed. The frontier 0D of D is not empty. We have only to demonstrate that 0D is
a singleton. Since «([t,u]) is closed by [23, Proposition 1.10] for any 0 < t < u, we
have (x) : 0D C (ycyey, cl(7((0,2))). Assume for contradiction that JD contains two
points, say x and y. Take € > 0 so that 2¢ < max{|z; —y;| | 1 <i < n}, where z; and
y; are the i-th coordinates of x and y, respectively. Let B, and B, be the open boxes
whose length are 2¢ centered at x and y, respectively. There exists d, > 0 such that
either (0,4,) C v 1(B,) or (0,0,) Ny 1(B,;) = 0 by local o-minimality. The latter
equality contradicts the inclusion (*). We have (0,d,) C v~ 1(B,). We can also take
8, > 0 so that (0,6,) C v *(B,). Set 6 = min{d,,d,}. The open interval (0,4) is
contained in v~ (B, N By), which contradicts the fact that B, N B, = 0.

When C'is a bounded definable cell of dimension one, it is the image of a bounded
open interval (a,b) under a definable continuous map ~ : (a,b) — M™ having the
bounded image. Therefore, the frontier of C' consists of two points lim;_,, y(¢) and

limy 5 (). O

Notation B.5. When M = (M;+,0,...) is an expansion of an abelian group, M™ is
naturally an abelian group. For any definable subset C' of M™ and a point a € M™,
the notation a + C' denotes the set {x € M" |z —a € C}.

Lemma B.6. Consider a DCULOAS structure M = (M;<,+,0,...). Let X and
Z be definable subsets of M"™ with dimX = 1 and dimZ = 0. Let R be a positive
element in M. There exist finitely many bounded definable subsets C1,...,Cn of M"

of dimension one satisfying the following conditions:

(a) For any z € Z and 1 < i < N, the intersection X N (z + C;) either coincides
with z + C; or is an empty set;
(b) There exist 0 < u < R and definable continuous injective maps v; : (0,u) — M"
such that
e the limits limy_,ov;(t) are the origin,
o the limits z + limy_,,, ;(t) are not in Z for all z € Z and
e the images v;((0,u)) coincide with C; for all 1 <i < N;
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(c) The closure of X'\ ({z} U Ufil(z + C’Z)) intersects with z+cl(C;) possibly only
at the point z + lim;_,,, v;(t) for any z € Z.

Proof. We first construct a bounded open box B with Z Ncl(z + B) = {z} for any
z € Z. Let p; : M™ — M be the projection onto the i-th coordinate for every
1 < i < n. The image p;(Z) is closed and discrete by [10, Theorem 1.1] and [12,
Lemma 2.3]. We assume that p;(Z) has at least three points for every 1 <i < n. We
can construct B in the same manner in the other cases. Define the definable functions
gi : pi(Z)\ {suppi(Z2)} - M and h; : p;(Z) \ {inf p;(Z)} — M by

gi(z)=inf{x € Z |z > 2z} — z and

hi(z) =z—sup{z € Z |z < z}.

Here, we set p;(Z) \ {supp;(Z)} = pi(Z) when sup(Z) = oco. We define p;(Z) \
{inf p;(Z)} in the same manner. The images of ¢g; and h; are of dimension zero by |10,
Theorem 1.1]. They are discrete and closed by [12, Lemma 2.3]. We can take a positive
d; € M such that d; < inf g;(p;(Z) \ {supp;(Z2)}) and d; < inf h;(p;(Z) \ {inf p;(Z)}).
Set B = Hévzl(—di, d;). We obviously have Z Ncl(z + B) = {z} for any z € Z.
Consider the definable set Y = | J, ., {2} x ((—2)+X). It is of dimension one by [12,
Proposition 2.13, Theorem 3.14]. Let m : M?® — M™ be the coordinate projection
forgetting the first n coordinates. We have dim7(Y) =1 by [9, Lemma 5.1] and [10,
Theorem 1.1] because 7(Y) contains the one-dimensional definable set (—z) + X.
Shrink the open box B if necessary. Then, there exists a definable cell decomposition
D = {D;}E_, of B partitioning the singleton consisting of the origin and (Y)N B by
[9, Theorem 4.2]. Let £ be the family of the cells in D of dimension one contained
in 7(Y) whose closure contains the origin. Let Ey,..., Ex be the enumeration of the
elements in £. For all 1 <i¢ < N, we can take definable homeomorphisms ~v; : I, — Ej,
where I; is bounded open intervals, for all 1 < ¢ < N by the definition of cells. We
may assume that I; = (0,7;) for some positive r; and the limit lim;_,;(¢) is the
origin without loss of generality. The number of cells are finite and there are only
finitely many points contained in the frontier of 1-dimensional cell by Lemma B.4.
Taking smaller r; if necessary, we may assume that cl(D)N~;((0,7;)) = 0 for any cell
D € D of dimension one with D # FE;. Furthermore, we may assume that r; < R.
Fix 1 <i<N. Set Z; ={2€ Z| XN(z2+ E;) # 0}. It is a definable set of

dimension zero. For any z € Z;, one of the following condition is satisfied because of
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local o-minimality.

e There exists a positive r < r; such that z +7;(t) € X forall 0 < t < r;
e There exists a positive 7 < r; such that z + ;(t) € X for all 0 < ¢t < r.

Let Z;1 be the set of points in Z; satisfying the former condition. The set of points
in Z; satisfying the latter condition is denoted by Z;5. They are obviously definable
subsets of Z; at most of dimension zero. In this proof, we construct C; only when
both Z;; and Z;5 are not empty. We can construct C; similarly in the other cases.
We define definable maps f;1 : Z;1 — M and fijs : Z;o — M by

fir(z) =sup{t e M |0 <t <r; and z+(s) € X for all 0 < s < ¢t} and
fio(z) =sup{t e M |0 <t <r;and z+;(s) € X for all 0 < s < t}.

The images f;;(Z;;) are of dimension zero by [10, Theorem 1.1] for j = 1,2. They
are closed and discrete by [12, Lemma 2.3]. The infimums of f;;(Z;;) are elements
in f;;(Z;j), and they are positive. Set v = min{inf f;;(Z;;) | 1 <i < N,1 < j <2}
We put C; = v;((0,u)). Three conditions (a) through (c) in the lemma are obviously
satisfied. O

Lemma B.7. Consider a DCULOAS structure M = (M;<,+,0,...). Let Z and U
be definable subsets of M™ such that dim Z = 0. Let vy : (0,u) — M™ be a definable
map such that, for any z € Z, there exists t > 0 satisfying the inclusion z+~((0,t)) C
U. There exists a definable map v : Z — (0,00) such that z +~((0,7(z))) C U for all
z € /.

Proof. Consider the definable function r : Z — (0,00) given by r(z) = sup{t >
0] z+~((0,t)) CU}. It satisfies the requirement of the lemma. O

B.3 Proof of main theorem

We begin to demonstrate the main theorem. Consider a DCULOAS structure
M= (M;<,+,0,...). Let X be a definable subset of M™. For any definable subset
U of X, the notation cI*(I/) means the closure of U in M™ under the affine topology.
Consider a definable topology 7 on X. The notation B, denotes the definable basis
of neighborhoods of a € X.
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Definition B.8. We define the set of shadows of a point a € X to be

S-(a) = ﬂ I*(U).
UveB,
The set S, (a) is a definable closed subset of M™. We call a point in S.(a) a shadow

of a. We simply write S(a) when the definable topology 7 is clear from the context.

Proof of Theorem B.3. We first demonstrate that the condition (1) implies the con-
dition (2). Let f : (X,7) — (Y, 7)) be a definable homeomorphism, where Y is a
definable subset of M*. Here, the notation 73 denotes the affine topology on Y.
Consider the affine topology 7% on X. Let f/ : X — Y be a definable map defined by
f'(z) = f(z). Let G be the set of points at which f’ is discontinuous with respect to
4. We have dim G < dim X = 1 by [10, Corollary 1.2]. We get dim f(G) < 0 by [10,
Theorem 1.1]. The set f(G) is T®-closed and 72-discrete by [12, Lemma 2.3]. The
set GG is 7-closed and 7-discrete because f is a homeomorphism.

The restriction f'|x\¢ of f’ to X \ G induces a homeomorphism between (X \
G, T;f\G) and (Y \ f(G),T;f\f(G)). We call it g. The composition h = g~ o f|x\¢
(X\ G 7Ix\q) = (X\ G,Tj‘(f\G) is a definable homeomorphism given by h(z) = =.
Here, the notation 7| x\ ¢ denotes the topology on X\ G induced from 7. In particular,
it implies the condition (2)(i).

Apply Lemma B.6 to Y and f(G). There are finitely many definable subsets
Dy,...,Dg of M* such that the conditions (a) through (c) in Lemma B.6 are satis-
fied. Let n; : (0,u') — M™ be the definable continuous maps given in the condition
(b) for all 1 < i < K. Take z € G. Set z = f(x). Permuting the sequence
D1, ..., D if necessary, we may assume that Y N (z + D;) = z+ D; for 1 <i < L
and YN (z+ D;) =0 for L <i < K by the condition (a). For any definable 7-open
neighborhood U of z, the image U’ = f(U) is a 7*-open neighborhood of z. We can
take a 7-open neighborhood V’ of z contained in U’ such that V'’ does not intersect
with Y\ ({z}U Uf; z+D;) and n; (V') is of the form (0,7), where 7 is a sufficiently
small positive element. The inverse image V = f (V') is a 7-open neighborhood
of x. The 7#-definably connected components of V' \ {2z} are of the form n;((0,7)).
Their inverse images f~(n;((0,7))) are also 7*-definably connected by the condition
(2)(i). Therefore, V' \ {z} has at most K 7#-definably connected components. We
have demonstrated that the condition (2)(ii) is satisfied.
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We next prove the opposite implication. There is nothing to prove when G is an
empty set. So, we assume that G is not empty. The frontier of X is at most of
dimension zero by [9, Theorem 5.6] and it is discrete and closed by [12, Proposition
2.13, Proposition 3.2]. Set Z = 90X UG. Note that Z is discrete and closed in the

affine topology. We demonstrate two claims.
Claim 1. S(z) C Z for all z € G.

Take a point y € Z. Since 7 is Hausdorff, we take a 7-open definable subset U of
X such that z € U and y ¢ U. Since 7 is regular, we get a 7-open definable subset
V of X such that z € V C ¢I"(V) C U. In particular, we have y ¢ cl” (V). By the
assumption, we get cI”(V) N (X \ G) = cl® (V)N (X \ G). In particular, y ¢ cI* (V).
It implies that y ¢ S(x). The proof of Claim 1 has finished.

Claim 2. Let A be a bounded definable subset such that c1*(4) € X \ G. We
have cl*f(A) = ¢l (A).

The condition (2)(i) implies the inclusion cl*(A) C cI”(A) C cI*(A4) UG. We have
only to demonstrate that cl” (A)NG is an empty set. Assume for contradiction that we
can take a point z € cI”(A)NG. Consider the definable family {cI*(A)Nel™(U)}yes,
of nonempty definable 7#-closed sets. This family is obviously a definable filtered
collection, which is defined in [18, Definition 5.5]. Since cI*'(A) is definably compact
by [18, Remark 5.6], the intersection (\y¢p. (cI*(A) N I (U)) is not an empty set.
We take a point y in this intersection. The relation y € S(x) immediately follows
from the definition of the set of shadow points. It contradicts Claim 1 because y €
cI(A) € X \ G. We have demonstrated Claim 2.

We have dim Z = 0 by [9, Corollary 5.4(ii), Theorem 5.6]. Let M™ be the ambient
space of X. Shifting X if necessary, we may assume that claf(X ) is contained in
(0, R)™ for some R > 0. Applying Lemma B.6 to X and Z, we obtain an open box B
in M™ containing the origin and finitely many bounded definable subsets C1,...,Cxn

of B of dimension one satisfying the following conditions:

(a) For any z € Z and 1 < ¢ < N, the intersection X N (2 + C;) either coincides
with z + C; or is an empty set;

(b) There exist 0 < u < R and definable continuous injective maps v; : (0,u) — M"
such that
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e the limits lim;_,o~;(t) are the origin,
e the limits z + lim;_,,, 7;(¢) are not in Z for all z € Z and
e the images ~;((0,u)) coincide with C; for all 1 <i < N;
(¢) The closure of X \ ({z} U Ui.vzl(z + CZ)> intersects with z + cl*(C;) possibly
only at the point z 4 lim;_,,, 7;(t) for any z € Z.

By the assumption, there exists a definable increasing 7*-homeomorphism @ : [0, u] —
[0,3nR] taking a smaller u and a larger R if necessary.

The notation C; . denotes the set z + C; for every 1 <i < N and z € Z. We say
that C; . is inclusive if X N C; , = C; », and we call it ezclusive if X N C; , = 0. The
definable set C; , is either inclusive or exclusive by the condition (a). By the condition
(b) and Lemma B.4, the frontier 0C; , of C; . under the affine topology consists of
two points. One is the point z. Another point is called the non-trivial endpoint of

C; ». The map

is the definable map so that p;(z) is the non-trivial endpoint of C; , for all 1 <i < N.
Note that the map p; is injective. By the condition (b), the non-trivial endpoint of
inclusive C; , lies in X \ G.

Consider an inclusive C; .. The notation 07C; . denotes the 7-frontier cl” (C; ) \

C; .. We investigate the T-frontier 07C; , of C; ..
Claim 3. The intersection (07C; ,) N G has at most one point.

Consider the case in which (07 C; ) NG is not empty. Take a point « in this set. We
have only to demonstrate that y & cl” C; , for y € G with y # x. Since 7 is Hausdorff,
we can take a 7-open definable subset U of X with x € U and y ¢ U. Since 7 is
regular, we can take a T-open definable subset V' of X such that x € V C cl" (V) C U.

By local o-minimality, we have either z++;((0,7)) C V or (247, ((0,7)))NV = 0 for
any sufficiently small » > 0. If the latter holds true, we have = € cl” (z + v;([r, uw))).
On the other hand, we get cl”(z + ~;([r,u))) = cl®(z + yi([r,u))) by Claim 2. Tt
implies z € cl®(z 4 4;([r, «))), which is a contradiction to the condition (b).

Take r > 0 so that 24 ~;((0,7)) C V. We finally get c1” (C; ) = cl” (2 +7:((0,7))) U
A" (z + vi([r w))) C ™ (V) Ucl™(z 4 ~;([r,u))) using Claim 2 again. It implies that
y & cl” ;.. because y € G and G Ncl™(z +~;([r,u))) = 0. The proof of Claim 3 has
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been completed.

Thanks to Claim 3, (07C; ») N G has a unique point when it is not empty. This

unique point is called the 7-connection point of C; .. We set

Zvoi = {2z € Z | C;, is inclusive and does not have its T-connection point},
Zseifi = {z € Z | C; , is inclusive, and it has its 7-connection point
and its T-connection point = z}
2, ={z€ Z |, is inclusive, and it has its 7-connection point

and its T-connection point # z}

for 1 <i < N. The sets Zy0.i, Zseif,i and Z; are definable. We also define the definable
maps
Gi: ZiUZgty — G
so that (;(z) is the 7-connection point of C; ..
Fix1<i< Nandze€Z Let7,, : [0,2u] — M™ be the 7#-continuous extension
of the definable 7®-continuous curve t + 2z +7;(t) for all 1 < i < N and z € Z;.
Such extension exists by Lemma B.4. On the other hand, for any two points z =

(1,...,2,) and y = (y1,...,Yn), We set
n
d(z,y) = Z i — yil.
i=1

We set d; _(t) = d(¢i(2),7; .(t)) + 2d(0n, 7, ,(t)) for simplicity, where 0,, denotes the
origin of M™. The function d; , is definable and r3_continuous. We get ®(0) = 0 <
d; ,(0) = d(Ci(2),2) +2d(0n, z) and ®(u) = 3nR > d((i(2), pi(2)) + 2d(0n, pi(2)) =
d; ,(u). By the intermediate value theorem, we obtain ®(v) = d; ,(v) for some 0 <

v < u. Therefore, the map v; : Z; — (0,u) given by
vi(z) =inf{0 <t <u|®(t) =d; (1)}

is a well-defined definable function. The definable map ¢; : Z; — U ¢z, Ci - is given
by ¢i(2) = z + 7i(vi(2)). We get ¢i(2) € C; - and

d(Gi(2), 4i(2)) + 2d(0n, gi(2)) = P (vi(2)) (1)
because both @ and d; , are continuous. We put

Ci - =2+ 7((0,vi(2))).
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We also need the following claim.

Claim 4. The inverse images Ci_l(m) have at most K points for all 1 <i < N and

x € @G.

Assume for contradiction that ¢; '(z) has K + 1 points zy,...,2x41. Consider
the definable 7®-closed subsets z; + 7;([u/3,2u/3]) for 1 < j < K + 1. It is also
T-closed by Claim 2. There exists a definable T-open neighborhood U of x in X such
that U N (z; + vi([u/3,2u/3])) = 0 for all 0 < j < K +1 and U \ {z} has at most
K 1*.definably connected components by the condition (2)(ii). On the other hand,
the set z; + 7;((0,7;)) is a 7-definably connected component of U \ {z} for some
sufficiently small r; for any 1 < j < K + 1 because of the definition of 7-connection

points. Contradiction. We have proved Claim 4.

The inverse image (i_l(:c) consists of at most K points by Claim 4. We set

Zix = {2 € Z;| 2 is the k-th smallest element in ¢; *(¢;(2))

in the lexicographic order}

for1<i< N and1l<k<K. It is also definable. We have Z; = Uszl Z; - We also
put

/ /
Cro,i = Ci 2, Cself,i = Ci,z, ik — U Ci,z and

ZEZno,'L’ Zezself,i Zezi,k
K
/
Ci = Cuoi U | J Cli-
k=1

We can define the definable map p; : C; — Z so that p;(z) = z if and only if z € C; ..

We need an extra preparation. For given points p,q € M™, the standard con-
nection between p and q is the union of n segments connecting the n + 1 points
p = Vg, V1,...,V, = ¢ in the given order, where v; is the point whose last j coordi-
nates equal the last j coordinates of ¢ and whose first n — j coordinates are the first
n — j coordinates of p. We denote it by Std(p, ¢). We can easily construct a definable
map ¥ : {(t,p,q) € M x M™ x M™ | 0 <t < d(p,q)} — M™ such that, for fixed
p,q € M™, the restriction U(-,p,q) : [0,d(p,q)] — M™ has the image Std(p,q) and

this restriction is a 7*-homeomorphism onto its image.
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We have now finished long preparation. We construct a definable subset Y of
M™I+EN) and a definable homeomorphism f : (X,7) — (Y, 7). The notation 0,,
denotes the origin of M™ for any positive integer m.

We define that Y is the union of the following subsets of M™(1+KN).

o (X\UY,C) x {Onxn}:
e For any 1 <4 < N and z € Z such that Cj , is inclusive,
— {pi(2)} x {G(i—l)nK} x (0,u) x {GnK(N—i+1)+n—1} for z € Zy,i;
— when 2z € Z; j, the union of the following three definable sets:
 {Gi(2)} X {0, } x Std(0n, gi(2)) x {Om, },
+ Std(Gi(2), 4i(2)) X {Om, } x {@i(2)} x {0, } and
* {qi(2)} X {Om, } x Std(gi(2),0n) x {0, },
where m1 =n((i — 1)K + (k— 1)) and mgo = n(KN —iK + K — k).

Roughly speaking, when z € Z;, we connect the point ¢;(z) and the 7-connection
point (;(z) with a curve for any 1 < i < N and z € Z. Since at most KN curves
whose 7#-closures do not contain the point z gather at any point z in G under the
topology 7, we can connect them so that two curves do not intersect each other. We
can construct a first order formula defining the set Y using ¢;, (; and C;. It implies
that Y is definable.

We next construct the definable homeomorphism f : (X, 7) — (Y, 7). We define
f(z) as follows:

e f(z) = (z,0,kxn) when z is in X \ Uf\;1 Ci;

e When z is contained in C;, we define as follows:

— When = € Cyo, we set f(z) = (pi(pi()),0mr,u — 75 (= pi(2)), Oay),
where m} = (i — 1)nK and my) =nK(N —i+1)+n— 1.

— We consider the case in which z € C; i, set z = p; x(z), t = fyi_l(a; - 2),
q= qi( ) and ¢ = (;(z). We define as follows:
f(x) =(¢,0m,, ¥(t,0,,9q),0p,) when 0 < t < d(0y,,q);

* f(x) (¥ (t—d(0n,9),¢. ), Omy , 4, Oy ) when d(0y, q) <t < d(05, )+
(¢, 9);

* f(x) = (q4,0m,, ¥(t — d(0n,q) — d(¢,q),9,00),0pm,) when d(0,,q) +

d(C,q) <t < @(vi(2)),
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where m; =n((i — 1)K + (k— 1)) and my = n(KN —iK + K — k).

The map f defined above is a definable map. It is not difficult to prove that f is
a bijection. The proof is left to the readers. The remaining task is to show that f
is a homeomorphism. Note that the restriction of f to X \ G induces a definable
homeomorphism between (X \ G, 7a¢) and (Y \ f(G), Taf) by the equality (1).

We prove that f is an open map. Take a 7-open definable set U of X. Set V' = f(U).
Take a point y € V and set = f1(y). We construct a definable open neighborhood
W of y contained in V. The case in which = ¢ G is easy. The set U \ G is 7*-open
by the assumption. Take a 7#-open neighborhood U; of = in X contained in U \ G.
It is also T-open because G is T-closed. Since the restriction of f to X \ G induces a
definable homeomorphism, the image W = f(U;) is an 7*-open neighborhood of y.

When z € G, take all C; , whose 7-connection point is z. We can take finitely many
such sets by Claim 4. Set D(z) = {(i,2) € Zx Z |1 <i <N, z € Z;UZst;, Ci(2) =
x}. For any (i,z) € D(x), there exists u; , > 0 such that z +~;((0, u; ,)) is contained
in U \ G by the definition of 7-connection points. We can choose u; , so that the map

Z —+ u; » is definable by Lemma B.7. By the definition of Y and f,

W={ytu | Fu(0,uz))
(,2)€D(x)
is a definable 7®-open subset of V containing the point y.

We next prove that the inverse =1 of f is an open map. Take a 7®-open definable
set V of Y. Set U = f~1(V). Take a point z € U. We construct a definable open
neighborhood U;j of = contained in U. The case in which x ¢ G is easy. We omit the
proof.

We consider the case in which z € G. Since G is 7-closed and 7-discrete, the
set G\ {z} is 7-closed. We can take disjoint definable 7-open subsets U; and Us
of X such that x € Uy and G \ {z} C U, because 7 is regular. We show that
(z 4+ v ((0,8))) NU; = 0 for all sufficiently small ¢ > 0 when 1 < i < N, z € Z;
and (;(z) # z. Assume the contrary. There exists 1 < i < N and z € Z; such that
(i(2) # = and z 4+ v;((0,t)) € Uy for some t > 0 by local o-minimality. The set
2z 4+ 7;((0,t)) has a nonempty intersection with any 7-neighborhood of (;(z) by the
definition of a 7-connection point. In particular, we have Uy N Uy # (), which is a

contradiction.
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We next consider the intersection of Uy with C; . for z € Z,,,. Shrinking U, if
necessary, we may assume that U; has at most K 72f-definably connected components
by the condition (2)(ii). In particular, we have only finitely many z € Z,,; such that
Uy contains z + 7;((0,¢)) for some ¢ > 0. Since z + ~;((0,%/2]) is 7-closed by Claim
3, we may assume that, for any z € Z,, (2 +7:((0,s))) N Uy = O for all sufficiently
small s > 0 by removing z + 7;((0,¢/2]) from U; if necessary.

We set Ziyi(z) = {2z € Z; U Zsarri | Gi(2) = 2} and Zoysi(x) = Znoi U{z €
Z; U Zsari | Gi(2) # x}. We also consider the definable map &; : Zout,i(2) — M given

by
&i(z) =sup{0<t<ul(z4+((0,t))NU = 0}.

Consider the definable set

N
n=x\|bpul/J U G+r0amu J G
i=1 \2€Zout,i(x) 2€Zin,i(x)
It is a definable 7®-closed subset of X \ D. It is also 7-closed by Claim 2. Removing
) Ci .. As we
demonstrated previously, D \ {z} is 7-closed. Removing it from U, we may assume
that U; is contained in {z} U Uivzl U.ezi(x) Cisz-
Take a sufficiently small r; , > 0 so that z + 7;((0,7;.)) C U forany 1 <i < N

IT from U, we may assume that U; is contained in D U Uivzl U.ez.. (@

and z € Ziy ;(z). We can choose r; , so that the map z +— r; . is definable by Lemma
B.7. The definable set vazl Usezi i) (Z + (102, 0)) Upi(2)) s r_closed. It is also
T-closed by Claim 2. Removing this set from U;, we may assume that U; is contained

in U. We have finally constructed a definable 7-open neighborhood U; of x contained
in U. U

Remark B.9. Consider the following condition:

e There exists a positive integer K such that [{y € X | z € S(y)}| < K for all
z € d.

The condition (2)(ii) implies this condition as demonstrated in Claim 4, but the
converse is not true at least when X is not bounded. Consider the locally o-minimal
structure (R; <,4,0,Z) given in [21, Example 20]. Consider the definable topology

7 on R whose open basis B is given below: For any x # 0, we set B, = {(x —r,z +
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r) | 0 <r e R} Wealso set By = {(—r,r)U(Zsy) | 0 < r € R, n € Z}, where
Ly :={x € Z |z >n}. We have S(x) = {z} for all z € R, and the above condition
is satisfied. However, the condition (2)(ii) fails when = = 0 because any definable
T-open neighborhood of the origin is of the form (—r,r)U (Z,), and it has infinitely

many 7*-definably connected components of the form {m} with m € Z.

B.4 Extension of Peterzil and Rosel’s result to non-bounded case

Y. Peterzil and A. Rosel gave necessary and sufficient conditions for a one-
dimensional topological space with a topology definable in an o-minimal structure to
be affine in [25] when the definable set in consideration is bounded. We extend this

result to the non-bounded case in this appendix. We first review their main theorem.

Theorem B.10 ([25, Main theorem]). Let M = (M;<,0,+,...) be an o-minimal
expansion of an ordered group. Assume that arbitrary two closed bounded intervals
are definably homeomorphic. Let X C M™ be a definable bounded set with dim X =1,
and let T be a definable Hausdorff topology on X. Then the following are equivalent:

(1) (X,7) is definably homeomorphic to a definable subset of M* for some k, with
its affine topology.

(2) There is a finite set G C X such that every T-open subset of X \ G is open with
respect to the affine topology on X \ G.

(3) Every definable subset of X has finitely many definably connected components,
with respect to T.

(4) T is reqular and X has finitely many definably connected components with re-

spect to T.

The assumption that X is bounded could be omitted when there exists a definable
bijection between a bounded interval and an unbounded interval. The structure not
satisfying the above condition is investigated in [6]. It is called a semi-bounded o-
minimal structure. Theorem B.10 is not true if we omit the assumption that X is
bounded as in the example in [25, Section 4.3]. In the non-bounded case, we get the

following proposition:

Proposition B.11. Let M = (M;< .0,+,...) be a semi-bounded o-minimal expan-
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sion of an ordered group. Assume that arbitrary two closed bounded intervals are
definably homeomorphic. Let X C M™ be a definable set with dim X = 1, and let T
be a definable Hausdorff topology on X. Then the following are equivalent:

(1) (X,7) is definably homeomorphic to a definable subset of M* for some k, with
its affine topology.

(2) There is a finite set G C X such that the restriction of T to X \ G coincides
with the affine topology on X \ G.

Proof. When X is bounded, the proposition follows from Theorem B.10. Therefore,
we only treat the case in which X is not bounded.

We first demonstrate that the condition (1) implies the condition (2). Let f :
(X,7) = (Y, %) be a definable homeomorphism, where Y is a definable subset of M.
Here, the notation T{}f denotes the affine topology on Y. Consider the affine topology
i on X. Let f/: (X,7%) — (Y, 7)) be a definable map defined by f(z) = f'(z).
Let G be the set of points at which f’ is discontinuous with respect to T}‘*(f. It is
well-known that dim G < dim X = 1, so G is a finite set. The restriction f'|x\¢g of f’
to X \ G induces a homeomorphism between (X \ G, ng\G) and (Y \ f(G), T;f\f(G)).
We call it g. The composition h =g~ o flx\¢ : (X \ G, T|x\¢) = (X\G,7'§(f\G) is a
definable homeomorphism given by h(x) = z. Here, the notation 7|x\ ¢ denotes the
topology on X \ G induced from 7. In particular, it implies the condition (2).

We next prove the opposite implication. Since G is finite, there exists a bounded
open box B in M™ containing the set G. We get a stratification of cl(X) partitioning
X, G and X N B by [4, Chapter 4, Proposition 1.13]. Let X’ be the union of bounded
cells in the stratification contained in X. It is a bounded definable set. There exist a
definable subset Y of M! for some [ and a definable homeomorphism f’ : (X', 7|x/) —
(Y',735) by Theorem B.10.

Let C1,...,CxN be the unbounded cells of the stratification contained in X. Note
that the topology on C; induced from 7 coincides with the affine topology by the
definition of the stratification. The cells C; are the graphs of definable continuous
maps @; : I; — M™, where I; are open intervals, and the frontier 9C} is either a finite
set or an empty set for all 1 < i < N. We may assume that either I; = (0,00) or
I; = M without loss of generality. Since C; is unbounded X N dC; is at most one
point. We may assume that X N0C; # (0 for all 1 < i < L and X N9C; = § for all
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L < i < N. Let x; be the unique points in X NoC}; forall 1 <: < L. For L <i < N,
take distinct points z; in M' out of cl(B).

Set k = [+ 1. We construct a definable subset Y of M* and a definable homeomor-
phism f: (X,7) — (Y, 7). We set

Y’ x {0})U LJ{x b x I,

The map f : X — Y is defined as follows. We set f(z) = (f'(x),0) when z € X'.
We set f(z) = (2i,¢; *(z)) when 2 € C; for some 1 < i < N. Tt is a routine to

demonstrate that f is a homeomorphism. Ol
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