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counter-examples of the integral Hodge conjecture
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Abstract

Consider the naively formulated “weak integral Hodge conjecture” without making use of the Hodge
structure, whose validity is equivalent to the validity of the usual integral conjecture when the correspond-
ing Hodge conjecture holds. Then I shall report my recent theorem which derives some algebro-geometric
property from being a counter-example of the weak integral Hodge conjecture, and outline its proof.

Together with a theorem of Totaro, this theorem actually deduce the above algebro-geometric property
from some purely homotopy theoretical chromatric cohomological condition.

1 Background

1.1 Weak integral Hodge conjecture

For a complex projective algebraic manifold X, we have the cycle map
cyc’ : CH'(X) — Hdg*(X,Z):= H*(X,Z)n H"(X,C) (€ H*(X,Z))
whose cokernel is commonly denoted by Z2/(X) :

Z?(X) := Coker (cyczi : CHY(X) — Hdg?(X,Z) := H*(X,Z) n H"(X, (C)).

While the traditional (codimension i) Hodge conjecture predicts Z?(X)g = 0, the (codimension i)
integral Hodge conjecture asks Z2/(X) = 0, for which many counter examples have been presented by
Atiyah-Hirzebruch [AH62], Kollar [KK90], Totaro [T97, ?], and many others.

Here, I consider geometric implication of being a conter example of the codimension ¢ weak integral
Hodge conjecture, which asks where the torsion part Z%/(X){tors} of the finitely generated abelian group
Z%(X) vanishes:

Z*(X){tors} 20

I am more interested in the weak integral Hodge conjecture than the integral Hodge conjecture here,

because of the following reasons:
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e Assuming the validity of the codimension ¢ Hodge conjecture Z%(X)g = 0, the validity of the codi-
mension ¢ weak integral Hodge conjecture is clearly equivalent to the validity of the codimension

integral Hodge conjecture:

Z2(X){tors} =0 <<= Z*(X)=0

Not surprisingly, all the known counter examples of the integral Hodge conjecture are also counter

examples of the weak integral Hodge conjecture.

e The weak integral Hodge conjecture can be formulated much easily than the the integral Hodge
conjecture, without using the Hodge theory. In fact, by the structure theorem of finite genrated

abelian groups,
£-primary torsion part

72 (X))t = Z% (X))t = ; 72 (X){e>
( ){ OTS} top( ){ 07"5} De:prime top( ){ } )

where
72 (X) := Coker (1o eyl’ : CH'(X) << Hdg® (X, Z) := H*(X,Z) N H"(X,C) < H¥(X,Z))

= Coker (cycltop:CHi(X) — H2i(X,Z)).

And, for each prime ¢, we may further rewrite Z2 (X){(>°} as:

ZQi

top

(O{e=} = ZE(X){=},
where Z2/(X) is defined using the étale cycle map cycles

Z2(X) = Coker (cyclet:CHi(X)@)Zg — H% (X,Z(1)) ::@Hfg (X, u;%f)).

1.2 The codimension ¢ = 1 case

The codimension 1 integral Hodge conjecture is known to hold by Lefschetz and Hodge [KS53, p.876,
Theorem 4]. The essense may be summarized by the following commutative diagram arising from the
short exact sequence 0 — Z — Oxan —» O%an — 0 of sheaves on the corresponding complex analytic
manifold X" :

H' (X,0%) =—— CH(X)

lcycll

H' (X% O%..) — H? (X, 7) — H? (X, Oxan)

Serre’s GAGA

1.3 The codimension : = 2 case
In this case, we have the following fantastic theorem of Colliot-Thélene and Voisin:

Theorem 1.1. (i) [CTV12, Theorem 3.7] For a complex projective algebraic manifold X, we have a short
exact sequence:
Hy, (X,Q(2) — Hy, (X,Q/Z(2)) — Z*(X){tors} — 0,



(ii) [CTV12, Proposition 3.3, Theorem 3.9] Suppose further X is (—2) rationally connected in the sense
of [M21, Definition 2.1.(v)], then H2,.(X,Q(2)) =0, and so

Hy, (X,Q/Z(2)) = Z*(X){tors},

which is actually equal to Z*(X) under the (—2) rationally connected assumption [BS83, Theorem 1
(iv)]. O

Together with [V19, Lemma 1.14], the above Theorem 1.1 immediately implies the following:
Corollary 1.2. e Z4(X){tors} is a stable birational invariant.

o If Z4(X){tors} # 0, then X is not a rational retract of a smooth projective Y with
trivial H, (Y,Q/Z(2)) = 0.

o In particular, X is not (—2) retract rational in the sense of Definition 2.1 (v).

In fact, from Theorem 1.1 (i), we immediately find
ZHX){tors} #0 = H> (X,Q/Z(2)) #0,
from which, the claim is proved by use of the motivic property of the unramified cohomology. O

Remark 1.3. Looking at the above proof, Corollary 1.2 might appear too crude. However, when
restricted to the case of (—2) rationally connected smooth projective complex varieties like the setting of

the Liiroth problem, Theorem 1.1 (ii) suggests that would not be the case.

The main result I shall state in the next section generalizes this Corollary 1.2.

2 Main Theorem

To state my main theorem, I have to preprare some terminologies:

2.1 Double Hierarchy in algebraic geometry

Definition 2.1. For all of the definitions below, if ¢ = 0 we shall usually omit “> c(= 0) from their
terminologies:

(i) Let us say a rational map f: X — — >Y a codimension > ¢ rational map and denote it by

(>c)
f: X——>Y,

if its indeterminacy locus Iy C X has codimension larger than c :
codimx Iy > c.

(ii) Let us say codimension > ¢ rational maps f : X ——>Y, g: X —— > Y codimension > ¢ equivalent

and denote this situation by
(>0)

f_97



if there is a closed subscheme I such that Iy UI, C I C X of codimension > c: codimxI > ¢, such that

f‘X\I = 9|X\1

(iil) Let us say two equi-dimensional k-schemes X,Y codimension > ¢ birational equivalent and denote

this situation by
>c
X (z) Y.

)

(>c¢) (>c)
if there are codimension > c rational maps f : X —— >Y, g: Y —— > X such that both go f and fog

are also codimension > c rational maps such that

gof P rax,  fog'Z Iy

(iv) Let us say X is codimension > ¢ rational retract of Y, if there are codimension > ¢ rational maps

(>c) (>c¢)
f:X——>Y g:Y ——> X such that go f is also a codimension > ¢ rational map such that

(v) Let us say a smooth proper X (—i) codimension > ¢ rational, if there exists an i-dimensional smooth

proper Z* such that

X (>zc) ]P)dimX—i % ZZ

(vi) Let us say a smooth proper X (—i) codimension > c stable rational, if there exists some N € Zx

such that PN x X is (—i) codimension > ¢ rational.

(vii) Let us say a smooth proper X (—i) codimension > ¢ retract rational if there exist an i-dimensional

smooth proper Z', N € ZL>p, such that X is codimension > c rational retract of PN x Z°.
Remark 2.2. (i) We have the following impliations of double hierarchies:

{ (i) codimension > ¢ rational }; ccz., =
{ (i) codimension > ¢ stable rational }; .cz., == { (—i) codimension > ¢ retract rational }; cez_,,,

which induces a web of implications induced by (—i) = (— (i+1)) and > (c+1) = >c.
(ii) The cases i = 0 essentially correspond to the hierarchies considered in [M21, M22].

2.2 Schreieder’s higher unramified cohomologies

For a separated scheme X of finite type over a field k, Schreieder [S23] consider the increasing filtration
by pro-schemes
XE0) - x() - o x(SdimX) _ X,

where, by setting codim(z) := dim X — dim({z}), each X(<9) is defined as follows: 1)
X&) = {z € X | codim(z) < j} ~ lim U.

UCX, open subset
s.t. codimx (X\U)>j.

DIn [S23], X(=9) is denoted by F;X.



If we set H*(—,n) := H}, (—, ug") for each 1 < r < +o0, then by working as in [BS15], we have
HY (XD n) = lim H*(U,n).
UCX, open subset

s.t. codimx (X\U)>j.

Then, Schreieder [S23] defined his higher unramified cohomologies ) by

HY, (X,n)|:=Im (H*(X<Si+1>,n)—>H*(X<Sj>,n)>,

J,nr

which generalizes the usual unramified cohomology: Hf,.(X,n) = Hy (X, p1g") . Now the following
theorem, which generalizes the theorem of Colliot-Thélene and Voisin recalled in Theorem 1.1, explains

why Schreieder’s higher unramified cohomologies are so important for my purpose:

Theorem 2.3. [S23, Theorem 1.6] For a complex projective algebraic manifold X, we have a short exact
sequence:
HZS5h(X,Q(0) — HSY (X, Q/Z(i) — Z*(X){tors} — 0,

i—2,nr i—2,nr

2.3 Statement of my Main Theorem

Now, I am ready to state my main theorem:
" N

Theorem 2.4. o Z%(X){tors} is a codimension > (i — 2) stable birational invariant.

o If Z?(X){tors} # 0, then X is not a (—i) codimension > (i — 2) retract rational
of a smooth projective Y with trivial H*3* (Y,Q/Z(i)) = 0.

1—2,nr

o In particular,X is not (—i) codimension > (i — 2) retract rational

in the sense of Definition 2.1 (v).
o /

This is proved just like Corollary 1.2: By Theorem 2.3, note that

Z*(X){tors} £0 = H5,, (X, Q/Z(i)) #0,

1—2,nr
from which, the claim is proved by use of some basic properties of the higher unramified cohomologies
proved in [S23] and the crucial motivic property of the higher unramified cohomologies proved in [S22]. O

Remark 2.5. Let us recall Totaro’s theorem [T97] on the factorization of the cycle map through the
Thom reduction:

MU*(X) @nu+ H* H*(X,Z)

T |

MU*(X) ————3 BP*(X) ——3 -+ —— BP(n + 1)*(X) —— BP(n)"(X) — - -- BP{0)*(X) = H*(X,Z) ;)

Then we find the conclusions of Theorem 2.4 are implied by some purely homotopy theoretical chromatic

condition.

The detail will appear elsewhere.

21In [S23], Schreieder’s higher unramified cohomologies are called refined unramified cohomologies.
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