BOREL-HIRZEBRUCH TYPE FORMULA FOR THE GRAPH EQUIVARIANT COHOMOLOGY OF A PROJECTIVE BUNDLE OVER A GKM-GRAPH

GRIGORY SOLOMADIN

This is a short summary of the preprint [KS23] that is a joint work with S. Kuroki. The notion of a GKM-graph was introduced by Guillemin and Zara ([GZ01]) by following the work of Goresky, Kottwitz and MacPherson ([GKM98]). Consider any GKM-graph Γ with the underlying n-valent graph G = (V, E), axial function $\alpha \colon E \to \mathbb{Z}^k$ and a connection $\nabla = \{\nabla_e\}_{e \in E}$ (called an (n, k)-type GKM-graph, to indicate the values of n and k). The corresponding graph equivariant cohomology ring is an $\operatorname{Sym}(\mathbb{Z}^k)$ -algebra (where $\operatorname{Sym}(\mathbb{Z}^k) = \mathbb{Z}[x_1, \ldots, x_k]$, $\deg x_i = 2$) defined by

$$H^*(\Gamma) := \{ f \colon \mathcal{V} \to \operatorname{Sym}(\mathbb{Z}^k) \mid f(p) - f(q) \equiv 0 \mod \alpha(e), \ pq \in E \}.$$

By [GKM98], the equivariant cohomology ring $H_T^*(M; \mathbb{Z})$ is isomorphic to $H^*(\Gamma)$ as an $H^*(BT)$ -algebra, where Γ is the associated GKM-graph of any GKM-manifold M with a T-action.

For any T-equivariant rank r vector bundle $\xi_{\mathbb{C}}$ over a GKM T-manifold, there is the corresponding projectivization $\mathbb{P}(\xi_{\mathbb{C}}) \to M$. The T-equivariant cohomology of the projectivization $\mathbb{P}(\xi_{\mathbb{C}})$ over a GKM-manifold M is a free $H_T^*(M)$ -module by Leray-Hirsch theorem. This result was proved in [GSZ12] in a different way, by using combinatorial notions of GKM-theory (with \mathbb{R} coefficients). The classical theorem of Borel and Hirzebruch [GH78] determines the $H_T^*(M)$ -algebra structure of $\mathbb{P}(\xi_{\mathbb{C}})$ in terms of equivariant Chern classes for $\xi_{\mathbb{C}}$. In what follows we give a certain combinatorial version of this theorem.

Define a leg bundle $\xi \to \Gamma$ of rank r to be the triple consisting of the graph $G \times [r]$ with noncompact edges, where [r] has a unique vertex and r distinct noncompact edges emanating from it, a collection $\xi_p^i \in \mathbb{Z}^k$ of vectors labelling the noncompact edge pi $(p \in V, i = 1, ..., r)$, and a collection of permutations $\{\sigma_e\}_{e \in E}$ from the permutation group S_r on [r] satisfying the congruence relation

(1)
$$\xi_p^i - \xi_q^{\sigma_{ei}} = c_{pq}^i \alpha(e), \ e = pq \in E, \ i = 1, \dots, r, \ c_{pq}^i \in \mathbb{Z}.$$

(Here by a slight abuse of the notation $[r] = \{1, 2, ..., r\}$.) For $\xi_{\mathbb{C}} \to M$ from above, the corresponding leg bundle ξ over the GKM-graph Γ of M is given by the weights of the tangential representation on $\xi_{\mathbb{C}}$.

To any leg bundle $\xi \to \Gamma$ associate the triple $\Pi(\xi) = (P(\xi), \alpha^{\Pi(\xi)}, \nabla^{\Pi(\xi)})$ called the *projectivization* of the leg bundle ξ . The graph $P(\xi)$ on the vertex set $V_{P(\xi)} = V \times [r]$ has edges of two different kinds. The *vertical* edges are of the form $pij, p \in V, i \neq j \in [r]$.

This work was supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University. During this work, the author was partly supported by RFBR grant, project number 20-01-00675 A, and by the contest "Young Russian Mathematics".

The horizontal edges are of the form (pi, qj), where $pq \in E$, $j = \sigma_{pq}(i)$. Using this notation, define $\alpha^{\Pi(\xi)} : E_{P(\xi)} \to \mathbb{Z}^k$ by

$$\alpha^{\Pi(\xi)}(pi,qj) := \alpha(pq), \ \alpha^{\Pi(\xi)}(pij) := \xi_p^i - \xi_p^j.$$

In addition, there exists a canonical connection $\{\nabla^{\Pi(\xi)}\}_{e\in E_{P(\xi)}}$ [KS23], such that the congruence relation is satisfied for $\alpha^{\Pi(\xi)}$. If $\alpha^{\Pi(\xi)}$ satisfies 2-independence condition then $\Pi(\xi)$ is a GKM-graph. In the above notation, the projectivization $\mathbb{P}(\xi_{\mathbb{C}})$ of the complex vector bundle $\xi_{\mathbb{C}}$ is a GKM-manifold having the GKM-graph $\Pi(\xi)$ (if it is 2-independent). The *i*-th equivariant Chern class $c_i^T(\xi)$ of a leg bundle ξ is the element of $H^*(\Gamma)$ given by

$$c_i^T(\xi)_p := \mathfrak{S}_i(\xi_p^1, \dots, \xi_p^r),$$

where \mathfrak{S}_i denotes the *i*-th elementary symmetric polynomial in r variables. By the localization formula, this agrees with the standard definition of equivariant Chern classes in the case of a toric vector bundle $\xi_{\mathbb{C}}$, e.g. see [P08]. Define the tautological class $c_{\xi} \in H^2(\Pi(\xi))$ of ξ by $(c_{\xi})_{pi} := \xi_p^i$.

Theorem 1 ([KS23]). Let ξ be a leg bundle of rank r+1 over a GKM graph Γ . Assume that its projectivization $\Pi(\xi)$ is again a GKM graph. Then there is the following isomorphism of $H^*(\Gamma)$ -algebras:

(2)
$$H^*(\Pi(\xi)) \cong H^*(\Gamma)[\kappa] / \left(\sum_{k=0}^{r+1} (-1)^k c_k^T(\xi) \cdot \kappa^{r+1-k}\right), \ c_{\xi} \mapsto \kappa.$$

Example 2. The projectivization $\mathbb{PC}P^2$ of the tangent bundle to $\mathbb{C}P^2$ is a GKM-variety with respect to the natural $T = (\mathbb{C}^{\times})^2$ -action. The equivariant cohomology of the base is well-known (e.g. by applying the result of Masuda and Panov [MP06]) to be

$$H_T^*(\mathbb{C}P^2) \cong \mathbb{Z}[\tau_1, \tau_2, \tau_3]/(\tau_1\tau_2\tau_3),$$

where $\tau_i \in H^2_T(\mathbb{C}P^2)$ are equivariant Thom classes of the T-invariant rational lines $\mathbb{C}P^1_i$, i=1,2,3. As an element of the GKM-ring, τ_i is supported on the respective edge in the GKM-graph of \mathbb{P}^2 and is equal to the label of the transversal edge at a vertex. This defines explicitly the $H^*(BT)$ -algebra structure on the right hand side of the above formula. The equivariant Chern class of $T\mathbb{C}P^2$ is computed from the tangential representation data as

$$c^{T}(T\mathbb{C}P^{2}) = 1 + (\tau_{1} + \tau_{2} + \tau_{3}) + (\tau_{1}\tau_{2} + \tau_{1}\tau_{3} + \tau_{2}\tau_{3}).$$

Therefore, by Theorem 1, there is the following isomorphism of $H^*(BT)$ -algebras

$$H_T^*(\mathbb{PC}P^2) \cong \mathbb{Z}[\tau_1, \tau_2, \tau_3, \kappa]/(\kappa^2 - (\tau_1 + \tau_2 + \tau_3)\kappa + (\tau_1\tau_2 + \tau_1\tau_3 + \tau_2\tau_3), \ \tau_1\tau_2\tau_3).$$

Any locally trivial fiber bundle $P \to M$ with fiber $\mathbb{C}P^r$ over a complex GKM-manifold M is a projectivization of some vector bundle. Indeed, the corresponding obstruction in $H^2(M;\mathbb{C}^\times) \cong H^3(M;\mathbb{Z}) = 0$ vanishes. Furthermore, the equivariant version of this statement holds for any T-equivariant projective fiber bundle. In what follows we consider the relation between projective and projectivization fiber bundles in the combinatorial setting.

A projective GKM fiber bundle $\pi \colon \Pi \to \Gamma$ is by definition a morphism of GKM-graphs (where both axial functions take value in \mathbb{Z}^k), such that the preimage of any point in

 V_{Γ} is a complete graph K_{r+1} equipped with an axial function satisfying

$$\alpha^{\Pi}(pij) = \alpha^{\Pi}(pil) - \alpha^{\Pi}(pjl), \ i, j, l \in [r+1], \ p \in V_{\Gamma}.$$

In addition, the connection of Π preserves horizontal and vertical edges, and the identity

$$\alpha^{\Pi}(pi,qj) = \alpha^{\Gamma}(pq),$$

holds. The projectivization of any leg bundle is a projective GKM fiber bundle (if it is 2-independent). Any leg bundle and any projective GKM fiber bundle are GKM fiber bundles in sense of [GSZ12].

Proposition 3 ([KS23]). Let $\Pi \to \Gamma$ be a projective GKM fiber bundle over a GKM graph \mathcal{G} . Then the following are equivalent:

- (1) $\Pi = \Pi(\xi)$ for some leg bundle $\xi \to \Gamma$;
- (2) there exists a line leg bundle $\zeta \to \Pi$ such that $c_{pq}^1 = 1$ holds for any $pq \in E_{\Gamma}$ (see (1)).

By replacing \mathbb{Z} with \mathbb{Q} in the above definitions, one obtains the notions of a \mathbb{Q} -GKM graph, a \mathbb{Q} -leg bundle, etc.

Theorem 4 ([KS23]). Any projective GKM fiber bundle $\Pi \to \Gamma$ with fiber K_{r+1} is the projectivization $\Pi(\xi) \to \Gamma$ of the \mathbb{Q} -leg bundle $\xi = \xi(\Pi)$ given by

(3)
$$\xi_p^i := \frac{1}{r+1} \sum_{j \neq i} \alpha(pij),$$

with the permutations σ_e^i described uniquely by the horizontal edges of Π .

Corollary 5 ([KS23]). Let $\Pi \to \Gamma$ be a projective GKM fiber bundle over a GKM graph \mathcal{G} . Then $H^*(\Pi)$ is isomorphic to the right-hand side of (2) as $H^*(\Gamma)$ -algebra with \mathbb{Q} -coefficients, where $\xi = \xi(\Pi)$ is given by (3).

References

[GKM98] M. Goresky, R. Kottwitz and R. MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), 25–83.

[GH78] P. Griffiths, J. Harris, *Principles of algebraic geometry*. Wiley-Interscience [John Wiley & Sons], New York, 1978. Pure and Applied Mathematics.

[GSZ12] V. Guillemin, S. Sabatini and C. Zara, Cohomology of GKM fiber bundles, J. Alg. Comb. **35** (2012), 19–59.

[GZ01] V. Guillemin and C. Zara, One-skeleta, Betti numbers, and equivariant cohomology, Duke Math. J. 107(2) (2001), 283–349.

[KS23] S. Kuroki, G. Solomadin, Borel-Hirzebruch type formula for the graph equivariant cohomology of a projective bundle over a GKM-graph, arXiv:2207.11380

[MP06] M. Masuda and T. Panov, On the cohomology of torus manifolds, Osaka J. Math. 43 (2006), 711–746.

[P08] S. Payne, Moduli of toric vector bundles, Comp. Math. 144 (2008), 1199–1213.

DEPARTMENT OF APPLIED MATHEMATICS FACULTY OF SCIENCE, OKAYAMA UNIVERSITY OF SCIENCE, 1-1 RIDAI-CHO KITA-KU OKAYAMA-SHI OKAYAMA 700-0005, OKAYAMA, JAPAN *Email address*: grigory.solomadin@gmail.com