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Abstract

For each pair (m,n) of positive integers with (m,n) # (1,1) and an arbitrary
field F with its algebraic closure F, let Poly®™(F) denote the space of m-tuples
(f1(2),--+, fm(2)) € F[z]™ of F-coefficients monic polynomials of the same degree d
such that the polynomials {fx(2)}7, have no common root in F of multiplicity > n.
The space Poly®™(F) was first defined and studied by B. Farb and J. Wolfson [8] for
investigating the homological densities of algebraic cycles in a manifold ([9]). In this
note, we shall report about the recent results concerning the homotopy type of the
space Poly®™(F) for F = R or C. These results are based on the joint works with A.
Kozlowski ([15], [19], [20]).

1 Introduction

Let N be a set of all positive integers. For connected spaces X and Y, let Map(X,Y)
denote the space consisting of all continuous maps f : X — Y with the compact open
topology. Let Map*(X,Y) C Map(X,Y') be the subspace of all base point preserving maps
f:(X,*%) — (Y, %). For a based homotopy class D € my(Map*(X,Y)) = [X, Y], we denote
by Map},(X,Y) C Map*(X,Y') the path component containing the homotopy class D.

When X and Y are complex manifolds, let Hol},(X,Y) C Map},(X,Y) denote the
subspace consisting of all based holomorphic maps f € Map},(X,Y). Then we have the
natural inclusion

(1.1) ip : Hol} (X, Y) == Maph (X, Y).

Definition 1.1. Let f : X — Y be a based continuous map, and let Ny € N be a fixed
positive integer.

(i) The map f is called a homology (resp. homotopy) equivalence through dimension Ny
if the induced homomorphism

(1.2) fot H(X5Z) — He(Y;Z) - (vesp. fi: me(X) — me(Y))

is an isomorphism for any k£ < V.



(ii) Similarly, the map f is called a homology (resp. homotopy) equivalence up to
dimension Ny if the induced homomorphism f, (given by (1.2)) is an isomorphism for any
k < Ny and an epimorphism for £k = Nj.

Definition 1.2. Let Ny € N be a fixed positive integer and let G be a group. Let
f: X — Y be a G-equivariant map between G-spaces X and Y.

(i) The map f is called a G-equivariant homology (resp. homotopy) equivalence through
dimension Ny if the map f# is a homology (resp. homotopy) equivalence through dimension
Ny for any subgroup H C G, where f = f|X# and X# C X denotes the H-fixed subspace
defined by

(1.3) X' ={reX:h-r=xforany h € H}.

(i) Similarly, the map f is called a G-equivariant homology (resp. homotopy) equiva-
lence up to dimension Ny if the map f¥ is a homology (resp. homotopy) equivalence up
to dimension N, for any subgroup H C G.

Definition 1.3. From now on, let d € N, let (m,n) € N? be a pair of positive integers
such that (m,n) # (1,1), and let F be a field with its algebraic closure F.

(i) Let P4(F) denote the space of all F-coefficients monic polynomials f(z) = 2¢ +
a 247+ +ag 12 + ag € F2] of degree d.

(ii) For each m-tuple D = (dy,---,d,) € N™ of positive integers, we denote by
Poly?™(F) = Poly® 4™ (F) the space consisting of all m-tuples (fi(2),---, fm(2)) €
Py, (F) X Py, (F) x - - - x Py, (F) of monic polynomials such that the polynomials {f;(z)}7,
have no common root in F of multiplicity > n. This space Poly”"™(F) is usually called the
space of non-resultant system of bounded multiplicity n with coefficients in F. In particular,
when D,, = (d,d,--- ,d) € N™ (m-times), we write
(1.4) Poly“™(F) = Poly?™™(F) = Poly®® %™ ([F),

n

Remark 1.4. (i) The space Poly®™(F) may be also regarded as one of generalizations of
spaces first studied by Arnold, Vassiliev and Segal and others in several different contexts
(e-g. [2], [4], [5], [6], [11], [12], [25], [28]).

(ii) Recall that the classical resultant of a systems of polynomials vanishes if and only
if they have a common solution in an algebraically closed field containing the coefficients.
Systems which have no common roots are called “non-resultant”. This is the intuition
behind our choice of the term “non-resultant system of bounded multiplicity.” U

Definition 1.5. From now on, let us suppose that K =R or C.

(i) For a monic polynomial f(z) € Py4(K), we define the n-tuple F,(f) = F.(f)(z) €
P4(K)™ of the monic polynomials of the same degree d by

(1.5) Fu()(2) = (f(2), f(2) + ['(2), f(2) + ['(2), -, f(2) + F70(2)).

Note that f(z) € P4(K) is not divisible by (z—a)" for some o € K if and only if F,(f)(«) #
0,,, where we set 0,, = (0,0,---,0) € K".



(ii) When K = C, by identifying S? = C U oo we define the natural map
it Poly®™(C) — Q3CP™ ! o~ Q2§21 by

{[Fn(fl)(a) F(fo)(@) i - Fa(f)(@)] faeC

1o aEnE =1 o o

for f = (fi(2), -, fm(2)) € Poly“™(C) and o € CUoco = S?, where we choose the points
oo and * = [1:1:---:1] as the base-points of S? and CP™"~! respectively.

Definition 1.6. Let Z; = {£1} denote the (multiplicative) cyclic group of order 2, and
we will regard the three spaces S? = C U oo, CP™ ! and Poly®™(C) as Zy-spaces with
actions induced by the complex conjugation on C.

(i) Let (Q3CP™1)%2 denote the space consisting of all Zs-equivariant based maps
f i (S?,00) = (CP™! %). Since Poly“™(R) C Poly“™(C) and ii’g(PolyZ’m(R)) C
(Q2CP™~1)22 we also define the natural map
(1.

7) i Poly™(R) — (Q3CP™ 1%

by the restriction

(1.8) z'i:’]f{ = ii’f&Polyf;m(R) : Poly™™(R) — (Q2CP™ )%z,
(ii) For K= R or C, let

(1.9) si’flg : Poly®™(K) — Poly?*™(K)

denote the stabilization map given by adding the points from the infinity as in [19, (5.8)].
Note that one can define the map si’g which satisfies the condition

(1.10) sz = sy¢ [Polyy ™ (R) = (sy72)™.

Definition 1.7. Let X be a connected space.
(i) Let F(X,d) denote the ordered configuration space of distinct d points of X defined
by

(1.11) F(X,d)={(z1, -+ ,2q) € X" 2; # x; if i # j}.

(ii) Let S, denote the symmetric group of d-letters. Then the group Sy acts on F\(X, d)
by the coordinate permutation and let Cy(X) denote the unordered configuration space of
d-distinct points of X defined by the orbit space

(1.12) Ca(X) = F(X,d)/S,.

Remark that the space Cy(X) can be identified with the space of all finite subset of X
with cardinal d.



(ili) For connected space X, let D;(X) denote the equivariant half-smash product of X
defined by

where we set FI(X,7), = F(X,j)U{*} (disjoint union), X"V = X AX A---A X (j-times)
and the j-th symmetric group S; acts on X’V by the coordinate permutation. In particular,
for X = S, we set

(1.14) Dj = D;(S") = F(C,j)+ As, (S")".

(iv) Let m,n,d > 1 be positive integers such that (m,n) # (1,1). Define the integers
D(d;m,n;C) and D(d;m,n) by

(1.15) D(d;m,n;C) = (2mn —3)(|d/n]+1) -1,
' D(d;m,n) = (mn—2)(ld/n] +1) —1,

where |z]| denotes the integer part of a real number x.

2 The space Poly’™(C)

Consider the homotopy type of the space Poly®™™(F) for the case F = C. Recall that
mn =2< (m,n) =(1,2) or (m,n) =(2,1).

The case (m,n) = (1,2). If f(z) € Poly?'(C), it is a monic polynomial without multiple
root. Thus, it is represented as

(2.1) f(z) =]z = ax) for some {a;}i_, € Cy(C).

k=1

Using the above representation, we easily obtain the homeomorphism given by

C(C) 2y Ppolydl(C
(2.2) 42(C) = olyy (C)

c={ainy — Thisi(= — an).

Now recall the electric field map

given by
GRS
1 if
(2.4) Euc) ) =4 T ,;1 oo TafC
%) otherwise



for ¢ = {a}¢_, € C4(C) and a € S? = CU cc.
If f(z) € Poly?'(C) is represented by (2.1), we see that

fR)+ () _ 1
(2.5) e _1+;Z_ak

Hence, if we identify CP' = S$? = C U oo by the identification [z : y] <+ £, it follows from
25, page 42|, (2.4) and (2.5) that the natural map zgé - Poly?' (C) — Q252 ~ 0283 can be
identified with the electric field map E,. Hence, by [25, page 41-42] we have the following
result.

Theorem 2.1 ([25], [28]). The natural map iy : Polyy" (C) — Q352 ~ Q%S% is a homology
equivalence up to dimension [d/2]. O

Remark 2.2. Let 3; denote the Artin’s classical braid group of d-strings. Since there is a
homotopy equivalence Polyd" (C) = Cy(C) ~ K (84,1), mx(Poly?'(C)) = 0 for any k > 2.
Hence, the natural map z;l(lc is not a homotopy equivalence in any range. O

The case (m,n) = (2,1). Note that there is a homeomorphism
(2.6) Poly??(C) = Hol}(S?, CPY).

Hence, the homotopy type of the space Polyil’z(C) can be easily seen by using the classical
vesults ([5], [6], [12], [14], [25], [28)).

Remark 2.3. If (m,n) = (2,1), the homotopy stability holds for the space Poly®"(C).
However, if (m,n) = (1,2), the homotopy stability does not hold for the space Poly%™(C),
although the homology stability holds (c.f. Theorem 2.1 and Remark 2.2). (I

The case mn > 3. Now we assume that mn > 3. Then we obtain the following results
from [15].

Theorem 2.4 ([15]). Let m,n > 1 be positive integers such that mn > 3.
(i) The natural map
in'® : Polyl™(C) — Q3CP™ ! ~ 2G2mn !
is a homotopy equivalence through dimension D(d;m,n;C).

(ii) The stabilization map

si’g : Polyi’m((C) — Polyd+l’m(C)

n

is a homotopy equivalence if |4 = | L] and it is a homotopy equivalence through

dimension D(d;m,n;C) otherwise.



(ili) There is a homotopy equivalence Poly®™™ (C) ~ Poly!”™"™(C).

ld/n]

(iv) There is a stable homotopy equivalence Poly®™™(C) ~; \/ ZQ(mn_Z)ij, where 7
j=1

denotes the j-fold reduced suspension. U

3 The space Poly?™(R).

Next, consider the homotopy type of the space Poly®™(R).

The case mn = 2. If (m,n) = (2,1), the homotopy type of the space Poly?*(R) was well
studied by G. Segal in [25, Proposition 1.4]. In particular, the homotopy stability holds in
this case.

If (m,n) = (1,2), we can easily see that there is a homeomorphism

Ld/2]
(3.1) Poly?!(R) = H C;(C) (disjoint union).
=0

Thus, if (m,n) = (1,2), the homotopy type of the space Poly®™™(R) can be easily under-
stood by using Theorem 2.1. In this case, the homology stability holds, but the homotopy
stability does not hold (as explained in Remark 2.2).

The case mn > 3. Now, consider the case mn > 3. Recall the following homotopy
equivalence:

(3.2) (QACPYN)22 ~ 2SN+ 5 QSN for N > 2.
Moreover, note that mn =3 < (m,n) = (3,1) or (m,n) = (1, 3), and

(3.3) D(d;m,n) = |d/n| = {CLZd/ZSJ i E::Z; z Eig,
First, recall the following two results:
Lemma 3.1 ([19]). (i) If mn > 4, the space Poly™™(R) is simply connected.
(ii) If mn =3 an d > n, m (Poly>™(R)) = Z. O

Theorem 3.2 ([20]). The space Poly?*(R) is simple if d = 1 (mod 2), and it is simple up
to dimension d if d =0 (mod 2). O

Then we obtain the following results:



Theorem 3.3 ([19], [20]). (i) If mn > 4, the natural map
in't : Polyt™(R) — (Q3CP™ )% ~ 2571 5 Q5mn !
is a homotopy equivalence through dimension D(d;m,n).
(ii) Let (m,n) = (3,1). Then the natural map
it% : PolyP*(R) — (Q4CP%)™ ~ 0°5° x QS5°

is a homotopy equivalence through dimension d if d = 1 (mod 2), and it is a homotopy
equivalence up to dimension d if d =0 (mod 2).

(iii) Let (m,n) = (1,3). Then the natural map
iyw : Polyg (R) — (QICP%)™ ~ Q°5° x Q5°
is a homology equivalence through dimension |d/3]. O
Theorem 3.4 ([19], [20]). (i) Let mn > 4. Then the stabilization map
s © Poly™(R) — Poly;™"(R)

is a homotopy equivalence if L%J = Ld%lj, and it is a homotopy equivalence through
dimension D(d;m,n) if | 4] < | =]

(ii) Let (m,n) = (3,1). Then the stabilization map
sf:% : Poly‘li’?’(R) — Polyf“’?’(R)

is a homotopy equivalence through dimension d if d = 1 (mod 2), and it is a homotopy
equivalence up to dimension d if d =0 (mod 2).

(iii) Let (m,n) = (1,3). Then the stabilization map
53:111% : Poly$! (R) — Polyst"!(R)

is a homology equivalence if ng = L%J, and it is a homology equivalence through

dimension | ] if |2] < [4]. O
Theorem 3.5 ([19]). If mn > 3, there is a stable homotopy equivalence

Ld/n]
1=1

i20,5>1,i4+2j<|d/n]
Corollary 3.6 ([19]). If mn > 3, there is a stable homotopy equivalence

Poly®™(R) ==, Polyl®™™™(R). O
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Since Poly®™(C)%2 = Poly®™(R), (it7)% = it and (spg)? = si%, by using Theo-
rems 2.4, 3.3 and 3.4, we also obtain the following results:

Corollary 3.7 ([19], [20]). (i) If mn >4, the natural map
i Poly®™(C) — Q2CP™ ! ~ 2§t
is a Zo-equivariant homotopy equivalence through dimension D(d;m,n).
(ii) Let (m,n) = (3,1). Then the natural map
i <c : Poly$*(C) — Q2CP? ~ Q%5°

is a Zs-equivariant homotopy equivalence through dimension d if d =1 (mod 2), and
it is a Zs-equivariant homotopy equivalence up to dimension d if d =0 (mod 2).

(iii) Let (m,n) = (1,3). Then the natural map
Zsc Polyd!(C) — Q3CP? ~ 025°
is a Za-equivariant homology equivalence through dimension [d/3]. O
Corollary 3.8 ([19], [20]). (i) Let mn > 4. Then the stabilization map
s2m: Poly™(C) — Poly?™™(C)

is a Zo-homotopy equivalence if L%J = Ld%lj, and it is a Zy-equivariant homotopy

equivalence through dimension D(d;m,n) if [£] < [£L].
(ii) Let (m,n) = (3,1). Then the stabilization map
st : Poly]*(C) — Poly{™%(C)

is a Za-equivariant homotopy equivalence through dimension d if d =1 (mod 2), and
it 1s a Zo-equivariant homotopy equivalence up to dimension d if d =0 (mod 2).

(iii) Let (m,n) = (1,3). Then the stabilization map
sy Poly§! (C) — Poly™(C)
is a Zy-equivariant homology equivalence if 4] = | 52|, and it is a Zy-equivariant
homology equivalence through dimension |d/3] if 4] < [4*] O

Remark 3.9. (i) Although we suppose that the homotopy stability also holds for the space
Poly®™(R) for the case (m,n) = (1,3), we cannot prove this at the moment.

(ii) We can consider the space of non-resultant systems determined by a toric variety
as one of generalizations of the space Poly®™ () (see [16] and [18] for further details). [
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