Note on spaces of non-resultant systems of bounded multiplicity

山口耕平 (Kohhei Yamaguchi)

電気通信大学 情報理工学研究科 (University of Electro-Communications)

Abstract

For each pair (m,n) of positive integers with $(m,n) \neq (1,1)$ and an arbitrary field \mathbb{F} with its algebraic closure $\overline{\mathbb{F}}$, let $\operatorname{Poly}_n^{d,m}(\mathbb{F})$ denote the space of m-tuples $(f_1(z), \dots, f_m(z)) \in \mathbb{F}[z]^m$ of \mathbb{F} -coefficients monic polynomials of the same degree d such that the polynomials $\{f_k(z)\}_{k=1}^m$ have no common root in $\overline{\mathbb{F}}$ of multiplicity $\geq n$. The space $\operatorname{Poly}_n^{d,m}(\mathbb{F})$ was first defined and studied by B. Farb and J. Wolfson [8] for investigating the homological densities of algebraic cycles in a manifold ([9]). In this note, we shall report about the recent results concerning the homotopy type of the space $\operatorname{Poly}_n^{d,m}(\mathbb{F})$ for $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . These results are based on the joint works with A. Kozlowski ([15], [19], [20]).

1 Introduction

Let \mathbb{N} be a set of all positive integers. For connected spaces X and Y, let $\operatorname{Map}(X,Y)$ denote the space consisting of all continuous maps $f:X\to Y$ with the compact open topology. Let $\operatorname{Map}^*(X,Y)\subset\operatorname{Map}(X,Y)$ be the subspace of all base point preserving maps $f:(X,*)\to (Y,*)$. For a based homotopy class $D\in\pi_0(\operatorname{Map}^*(X,Y))=[X,Y]$, we denote by $\operatorname{Map}^*_D(X,Y)\subset\operatorname{Map}^*(X,Y)$ the path component containing the homotopy class D.

When X and Y are complex manifolds, let $\operatorname{Hol}_D^*(X,Y) \subset \operatorname{Map}_D^*(X,Y)$ denote the subspace consisting of all based holomorphic maps $f \in \operatorname{Map}_D^*(X,Y)$. Then we have the natural inclusion

$$(1.1) i_D: \operatorname{Hol}_D^*(X,Y) \xrightarrow{\subset} \operatorname{Map}_D^*(X,Y).$$

Definition 1.1. Let $f: X \to Y$ be a based continuous map, and let $N_0 \in \mathbb{N}$ be a fixed positive integer.

(i) The map f is called a homology (resp. homotopy) equivalence through dimension N_0 if the induced homomorphism

$$(1.2) f_*: H_k(X; \mathbb{Z}) \to H_k(Y; \mathbb{Z}) (resp. f_*: \pi_k(X) \to \pi_k(Y))$$

is an isomorphism for any $k \leq N_0$.

(ii) Similarly, the map f is called a homology (resp. homotopy) equivalence up to dimension N_0 if the induced homomorphism f_* (given by (1.2)) is an isomorphism for any $k < N_0$ and an epimorphism for $k = N_0$.

Definition 1.2. Let $N_0 \in \mathbb{N}$ be a fixed positive integer and let G be a group. Let $f: X \to Y$ be a G-equivariant map between G-spaces X and Y.

(i) The map f is called a G-equivariant homology (resp. homotopy) equivalence through dimension N_0 if the map f^H is a homology (resp. homotopy) equivalence through dimension N_0 for any subgroup $H \subset G$, where $f^H = f|X^H$ and $X^H \subset X$ denotes the H-fixed subspace defined by

(1.3)
$$X^H = \{x \in X : h \cdot x = x \text{ for any } h \in H\}.$$

(ii) Similarly, the map f is called a G-equivariant homology (resp. homotopy) equivalence up to dimension N_0 if the map f^H is a homology (resp. homotopy) equivalence up to dimension N_0 for any subgroup $H \subset G$.

Definition 1.3. From now on, let $d \in \mathbb{N}$, let $(m, n) \in \mathbb{N}^2$ be a pair of positive integers such that $(m, n) \neq (1, 1)$, and let \mathbb{F} be a field with its algebraic closure $\overline{\mathbb{F}}$.

- (i) Let $P_d(\mathbb{F})$ denote the space of all \mathbb{F} -coefficients monic polynomials $f(z) = z^d + a_1 z^{d-1} + \cdots + a_{d-1} z + a_d \in \mathbb{F}[z]$ of degree d.
- (ii) For each m-tuple $D=(d_1,\cdots,d_m)\in\mathbb{N}^m$ of positive integers, we denote by $\operatorname{Poly}_n^{D,m}(\mathbb{F})=\operatorname{Poly}_n^{d_1,\cdots,d_m;m}(\mathbb{F})$ the space consisting of all m-tuples $(f_1(z),\cdots,f_m(z))\in \operatorname{P}_{d_1}(\mathbb{F})\times\operatorname{P}_{d_2}(\mathbb{F})\times\cdots\times\operatorname{P}_{d_m}(\mathbb{F})$ of monic polynomials such that the polynomials $\{f_j(z)\}_{j=1}^m$ have no common root in $\overline{\mathbb{F}}$ of multiplicity $\geq n$. This space $\operatorname{Poly}_n^{D,m}(\mathbb{F})$ is usually called the space of non-resultant system of bounded multiplicity n with coefficients in \mathbb{F} . In particular, when $D_m=(d,d,\cdots,d)\in\mathbb{N}^m$ (m-times), we write

(1.4)
$$\operatorname{Poly}_{n}^{d,m}(\mathbb{F}) = \operatorname{Poly}_{n}^{D_{m};m}(\mathbb{F}) = \operatorname{Poly}_{n}^{d,d,\cdots,d;m}(\mathbb{F}).$$

- **Remark 1.4.** (i) The space $\operatorname{Poly}_n^{d,m}(\mathbb{F})$ may be also regarded as one of generalizations of spaces first studied by Arnold, Vassiliev and Segal and others in several different contexts (e.g. [2], [4], [5], [6], [11], [12], [25], [28]).
- (ii) Recall that the classical resultant of a systems of polynomials vanishes if and only if they have a common solution in an algebraically closed field containing the coefficients. Systems which have no common roots are called "non-resultant". This is the intuition behind our choice of the term "non-resultant system of bounded multiplicity."

Definition 1.5. From now on, let us suppose that $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .

(i) For a monic polynomial $f(z) \in P_d(\mathbb{K})$, we define the *n*-tuple $F_n(f) = F_n(f)(z) \in P_d(\mathbb{K})^n$ of the monic polynomials of the same degree d by

$$(1.5) F_n(f)(z) = (f(z), f(z) + f'(z), f(z) + f''(z), \cdots, f(z) + f^{(n-1)}(z)).$$

Note that $f(z) \in P_d(\mathbb{K})$ is not divisible by $(z-\alpha)^n$ for some $\alpha \in \mathbb{K}$ if and only if $F_n(f)(\alpha) \neq \mathbf{0}_n$, where we set $\mathbf{0}_n = (0, 0, \dots, 0) \in \mathbb{K}^n$.

(ii) When $\mathbb{K} = \mathbb{C}$, by identifying $S^2 = \mathbb{C} \cup \infty$ we define the natural map

$$i_{n,\mathbb{C}}^{d,m}:\operatorname{Poly}_n^{d,m}(\mathbb{C})\to\Omega_d^2\mathbb{C}\mathrm{P}^{mn-1}\simeq\Omega^2S^{2mn-1}$$
 by

$$(1.6) i_{n,\mathbb{C}}^{d,m}(f)(\alpha) = \begin{cases} [F_n(f_1)(\alpha) : F_n(f_2)(\alpha) : \cdots : F_n(f_m)(\alpha)] & \text{if } \alpha \in \mathbb{C} \\ [1 : 1 : \cdots : 1] & \text{if } \alpha = \infty \end{cases}$$

for $f = (f_1(z), \dots, f_m(z)) \in \operatorname{Poly}_n^{d,m}(\mathbb{C})$ and $\alpha \in \mathbb{C} \cup \infty = S^2$, where we choose the points ∞ and $* = [1:1:\dots:1]$ as the base-points of S^2 and $\mathbb{C}\mathrm{P}^{mn-1}$, respectively.

Definition 1.6. Let $\mathbb{Z}_2 = \{\pm 1\}$ denote the (multiplicative) cyclic group of order 2, and we will regard the three spaces $S^2 = \mathbb{C} \cup \infty$, $\mathbb{C}P^{mn-1}$ and $\operatorname{Poly}_n^{d,m}(\mathbb{C})$ as \mathbb{Z}_2 -spaces with actions induced by the complex conjugation on \mathbb{C} .

(i) Let $(\Omega_d^2 \mathbb{C} P^{mn-1})^{\mathbb{Z}_2}$ denote the space consisting of all \mathbb{Z}_2 -equivariant based maps $f: (S^2, \infty) \to (\mathbb{C} P^{mn-1}, *)$. Since $\operatorname{Poly}_n^{d,m}(\mathbb{R}) \subset \operatorname{Poly}_n^{d,m}(\mathbb{C})$ and $i_{n,\mathbb{C}}^{d,m}(\operatorname{Poly}_n^{d,m}(\mathbb{R})) \subset (\Omega_d^2 \mathbb{C} P^{mn-1})^{\mathbb{Z}_2}$, we also define the natural map

(1.7)
$$i_{n,\mathbb{R}}^{d,m}: \operatorname{Poly}_{n}^{d,m}(\mathbb{R}) \to (\Omega_{d}^{2}\mathbb{C}P^{mn-1})^{\mathbb{Z}_{2}}$$

by the restriction

$$(1.8) i_{n,\mathbb{R}}^{d,m} = i_{n,\mathbb{C}}^{d,m} | \operatorname{Poly}_n^{d,m}(\mathbb{R}) : \operatorname{Poly}_n^{d,m}(\mathbb{R}) \to (\Omega_d^2 \mathbb{C} P^{mn-1})^{\mathbb{Z}_2}.$$

(ii) For $\mathbb{K} = \mathbb{R}$ or \mathbb{C} , let

$$(1.9) s_{n,\mathbb{K}}^{d,m} : \operatorname{Poly}_{n}^{d,m}(\mathbb{K}) \to \operatorname{Poly}_{n}^{d+1,m}(\mathbb{K})$$

denote the stabilization map given by adding the points from the infinity as in [19, (5.8)]. Note that one can define the map $s_{n,\mathbb{C}}^{d,m}$ which satisfies the condition

$$(1.10) s_{n,\mathbb{R}}^{d,m} = s_{n,\mathbb{C}}^{d,m} | \operatorname{Poly}_n^{d,m}(\mathbb{R}) = (s_{n,\mathbb{C}}^{d,m})^{\mathbb{Z}_2}.$$

Definition 1.7. Let X be a connected space.

(i) Let F(X, d) denote the ordered configuration space of distinct d points of X defined by

(1.11)
$$F(X,d) = \{(x_1, \dots, x_d) \in X^d : x_i \neq x_j \text{ if } i \neq j\}.$$

(ii) Let S_d denote the symmetric group of d-letters. Then the group S_d acts on F(X, d) by the coordinate permutation and let $C_d(X)$ denote the unordered configuration space of d-distinct points of X defined by the orbit space

(1.12)
$$C_d(X) = F(X, d)/S_d.$$

Remark that the space $C_d(X)$ can be identified with the space of all finite subset of X with cardinal d.

(iii) For connected space X, let $D_j(X)$ denote the equivariant half-smash product of X defined by

(1.13)
$$D_{j}(X) = F(X, j)_{+} \wedge_{S_{j}} X^{\wedge j},$$

where we set $F(X, j)_+ = F(X, j) \cup \{*\}$ (disjoint union), $X^{\wedge j} = X \wedge X \wedge \cdots \wedge X$ (j-times) and the j-th symmetric group S_j acts on $X^{\wedge j}$ by the coordinate permutation. In particular, for $X = S^1$, we set

$$(1.14) D_j = D_j(S^1) = F(\mathbb{C}, j)_+ \wedge_{S_i} (S^1)^{\wedge j}.$$

(iv) Let $m, n, d \ge 1$ be positive integers such that $(m, n) \ne (1, 1)$. Define the integers $D(d; m, n; \mathbb{C})$ and D(d; m, n) by

(1.15)
$$\begin{cases} D(d; m, n; \mathbb{C}) &= (2mn - 3)(\lfloor d/n \rfloor + 1) - 1, \\ D(d; m, n) &= (mn - 2)(\lfloor d/n \rfloor + 1) - 1, \end{cases}$$

where $\lfloor x \rfloor$ denotes the integer part of a real number x.

2 The space $\operatorname{Poly}_n^{d,m}(\mathbb{C})$

Consider the homotopy type of the space $\operatorname{Poly}_n^{d,m}(\mathbb{F})$ for the case $\mathbb{F} = \mathbb{C}$. Recall that $mn = 2 \Leftrightarrow (m,n) = (1,2)$ or (m,n) = (2,1).

The case (m,n)=(1,2). If $f(z)\in \operatorname{Poly}_2^{d,1}(\mathbb{C})$, it is a monic polynomial without multiple root. Thus, it is represented as

(2.1)
$$f(z) = \prod_{k=1}^{d} (z - \alpha_k) \text{ for some } \{\alpha_k\}_{k=1}^{d} \in C_d(\mathbb{C}).$$

Using the above representation, we easily obtain the homeomorphism given by

(2.2)
$$C_d(\mathbb{C}) \xrightarrow{\Phi_d} \operatorname{Poly}_2^{d,1}(\mathbb{C})$$
$$c = \{\alpha_k\}_{k=1}^d \longrightarrow \prod_{k=1}^d (z - \alpha_k).$$

Now recall the electric field map

$$(2.3) E_d: C_d(\mathbb{C}) \to \Omega_d^2 S^2$$

given by

(2.4)
$$E_d(c)(\alpha) = \begin{cases} 1 + \sum_{k=1}^d \frac{1}{\alpha - \alpha_k} & \text{if } \alpha \notin c \\ \infty & \text{otherwise} \end{cases}$$

for $c = \{\alpha_k\}_{k=1}^d \in C_d(\mathbb{C})$ and $\alpha \in S^2 = \mathbb{C} \cup \infty$. If $f(z) \in \text{Poly}_2^{d,1}(\mathbb{C})$ is represented by (2.1), we see that

(2.5)
$$\frac{f(z) + f'(z)}{f(z)} = 1 + \sum_{k=1}^{\infty} \frac{1}{z - \alpha_k}$$

Hence, if we identify $\mathbb{C}P^1 \cong S^2 = \mathbb{C} \cup \infty$ by the identification $[x:y] \leftrightarrow \frac{y}{x}$, it follows from [25, page 42], (2.4) and (2.5) that the natural map $i_{2,\mathbb{C}}^{d,1}: \operatorname{Poly}_2^{d,1}(\mathbb{C}) \to \Omega_d^2 S^2 \simeq \Omega^2 S^3$ can be identified with the electric field map E_d . Hence, by [25, page 41-42] we have the following result.

Theorem 2.1 ([25], [28]). The natural map $i_{2,\mathbb{C}}^{d,1}$: Poly₂^{d,1}(\mathbb{C}) $\to \Omega_d^2 S^2 \simeq \Omega^2 S^3$ is a homology equivalence up to dimension $\lfloor d/2 \rfloor$.

Remark 2.2. Let β_d denote the Artin's classical braid group of d-strings. Since there is a homotopy equivalence $\operatorname{Poly}_2^{d,1}(\mathbb{C}) \cong C_d(\mathbb{C}) \simeq K(\beta_d,1), \ \pi_k(\operatorname{Poly}_2^{d,1}(\mathbb{C})) = 0$ for any $k \geq 2$. Hence, the natural map $i_{2,\mathbb{C}}^{d,1}$ is not a homotopy equivalence in any range.

The case (m, n) = (2, 1). Note that there is a homeomorphism

(2.6)
$$\operatorname{Poly}_{1}^{d,2}(\mathbb{C}) \cong \operatorname{Hol}_{d}^{*}(S^{2}, \mathbb{C}P^{1}).$$

Hence, the homotopy type of the space $\operatorname{Poly}_1^{d,2}(\mathbb{C})$ can be easily seen by using the classical results ([5], [6], [12], [14], [25], [28]).

Remark 2.3. If (m,n)=(2,1), the homotopy stability holds for the space $\operatorname{Poly}_n^{d,m}(\mathbb{C})$. However, if (m,n)=(1,2), the homotopy stability does not hold for the space $\operatorname{Poly}_n^{d,m}(\mathbb{C})$, although the homology stability holds (c.f. Theorem 2.1 and Remark 2.2).

The case $mn \geq 3$. Now we assume that $mn \geq 3$. Then we obtain the following results from [15].

Theorem 2.4 ([15]). Let $m, n \ge 1$ be positive integers such that $mn \ge 3$.

(i) The natural map

$$i_{n,\mathbb{C}}^{d,m}:\operatorname{Poly}_n^{d,m}(\mathbb{C})\to\Omega^2_d\mathbb{C}\mathrm{P}^{mn-1}\simeq\Omega^2S^{2mn-1}$$

is a homotopy equivalence through dimension $D(d; m, n; \mathbb{C})$.

(ii) The stabilization map

$$s_{n,\mathbb{C}}^{d,m}:\operatorname{Poly}_n^{d,m}(\mathbb{C})\to\operatorname{Poly}_n^{d+1,m}(\mathbb{C})$$

is a homotopy equivalence if $\lfloor \frac{d}{n} \rfloor = \lfloor \frac{d+1}{n} \rfloor$ and it is a homotopy equivalence through dimension $D(d; m, n; \mathbb{C})$ otherwise.

(iii) There is a homotopy equivalence $\operatorname{Poly}_n^{d,m}(\mathbb{C}) \simeq \operatorname{Poly}_1^{\lfloor d/n \rfloor, mn}(\mathbb{C}).$

(iv) There is a stable homotopy equivalence
$$\operatorname{Poly}_n^{d,m}(\mathbb{C}) \simeq_s \bigvee_{j=1}^{\lfloor d/n \rfloor} \Sigma^{2(mn-2)j} D_j$$
, where Σ^j denotes the j-fold reduced suspension.

3 The space $\operatorname{Poly}_n^{d,m}(\mathbb{R})$.

Next, consider the homotopy type of the space $\operatorname{Poly}_n^{d,m}(\mathbb{R})$.

The case mn = 2. If (m, n) = (2, 1), the homotopy type of the space $\operatorname{Poly}_1^{d,2}(\mathbb{R})$ was well studied by G. Segal in [25, Proposition 1.4]. In particular, the homotopy stability holds in this case.

If (m,n)=(1,2), we can easily see that there is a homeomorphism

(3.1)
$$\operatorname{Poly}_{2}^{d,1}(\mathbb{R}) \cong \coprod_{j=0}^{\lfloor d/2 \rfloor} C_{j}(\mathbb{C}) \quad \text{(disjoint union)}.$$

Thus, if (m, n) = (1, 2), the homotopy type of the space $\operatorname{Poly}_n^{d,m}(\mathbb{R})$ can be easily understood by using Theorem 2.1. In this case, the homology stability holds, but the homotopy stability does not hold (as explained in Remark 2.2).

The case $mn \geq 3$. Now, consider the case $mn \geq 3$. Recall the following homotopy equivalence:

$$(3.2) \qquad \qquad (\Omega_d^2 \mathbb{C} P^N)^{\mathbb{Z}_2} \simeq \Omega^2 S^{2N+1} \times \Omega S^N \qquad \text{for } N \ge 2.$$

Moreover, note that $mn = 3 \Leftrightarrow (m, n) = (3, 1)$ or (m, n) = (1, 3), and

(3.3)
$$D(d; m, n) = \lfloor d/n \rfloor = \begin{cases} d & \text{if } (m, n) = (3, 1), \\ \lfloor d/3 \rfloor & \text{if } (m, n) = (1, 3). \end{cases}$$

First, recall the following two results:

Lemma 3.1 ([19]). (i) If $mn \geq 4$, the space $\operatorname{Poly}_n^{d,m}(\mathbb{R})$ is simply connected.

(ii) If
$$mn = 3$$
 an $d \ge n$, $\pi_1(\operatorname{Poly}_n^{d,m}(\mathbb{R})) = \mathbb{Z}$.

Theorem 3.2 ([20]). The space $\operatorname{Poly}_1^{d,3}(\mathbb{R})$ is simple if $d \equiv 1 \pmod{2}$, and it is simple up to dimension d if $d \equiv 0 \pmod{2}$.

Then we obtain the following results:

Theorem 3.3 ([19], [20]). (i) If $mn \ge 4$, the natural map

$$i_{n,\mathbb{R}}^{d,m}:\operatorname{Poly}_n^{d,m}(\mathbb{R})\to (\Omega_d^2\mathbb{C}\mathrm{P}^{mn-1})^{\mathbb{Z}_2}\simeq \Omega^2S^{2mn-1}\times \Omega S^{mn-1}$$

is a homotopy equivalence through dimension D(d; m, n).

(ii) Let (m, n) = (3, 1). Then the natural map

$$i_{1,\mathbb{R}}^{d,3}:\operatorname{Poly}_1^{d,3}(\mathbb{R})\to (\Omega_d^2\mathbb{C}\mathrm{P}^2)^{\mathbb{Z}_2}\simeq \Omega^2S^5\times\Omega S^2$$

is a homotopy equivalence through dimension d if $d \equiv 1 \pmod{2}$, and it is a homotopy equivalence up to dimension d if $d \equiv 0 \pmod{2}$.

(iii) Let (m, n) = (1, 3). Then the natural map

$$i_{3\mathbb{P}}^{d,1}: \operatorname{Poly}_{3}^{d,1}(\mathbb{R}) \to (\Omega_{d}^{2}\mathbb{C}\mathrm{P}^{2})^{\mathbb{Z}_{2}} \simeq \Omega^{2}S^{5} \times \Omega S^{2}$$

is a homology equivalence through dimension $\lfloor d/3 \rfloor$.

Theorem 3.4 ([19], [20]). (i) Let $mn \geq 4$. Then the stabilization map

$$s_{n,\mathbb{R}}^{d,m}:\operatorname{Poly}_{n}^{d,m}(\mathbb{R})\to\operatorname{Poly}_{n}^{d+1,m}(\mathbb{R})$$

is a homotopy equivalence if $\lfloor \frac{d}{n} \rfloor = \lfloor \frac{d+1}{n} \rfloor$, and it is a homotopy equivalence through dimension D(d; m, n) if $\lfloor \frac{d}{n} \rfloor < \lfloor \frac{d+1}{n} \rfloor$.

(ii) Let (m, n) = (3, 1). Then the stabilization map

$$s_{1,\mathbb{R}}^{d,3}:\operatorname{Poly}_1^{d,3}(\mathbb{R})\to\operatorname{Poly}_1^{d+1,3}(\mathbb{R})$$

is a homotopy equivalence through dimension d if $d \equiv 1 \pmod{2}$, and it is a homotopy equivalence up to dimension d if $d \equiv 0 \pmod{2}$.

(iii) Let (m, n) = (1, 3). Then the stabilization map

$$s_{3,\mathbb{R}}^{d,1}: \operatorname{Poly}_3^{d,1}(\mathbb{R}) \to \operatorname{Poly}_3^{d+1,1}(\mathbb{R})$$

is a homology equivalence if $\lfloor \frac{d}{3} \rfloor = \lfloor \frac{d+1}{3} \rfloor$, and it is a homology equivalence through dimension $\lfloor \frac{d}{3} \rfloor$ if $\lfloor \frac{d}{3} \rfloor < \lfloor \frac{d+1}{3} \rfloor$.

Theorem 3.5 ([19]). If $mn \geq 3$, there is a stable homotopy equivalence

$$\operatorname{Poly}_{n}^{d,m}(\mathbb{R}) \simeq_{s} \left(\bigvee_{i=1}^{\lfloor d/n \rfloor} S^{(mn-2)i} \right) \vee \left(\bigvee_{i \geq 0, j \geq 1, i+2j \leq \lfloor d/n \rfloor} \Sigma^{(mn-2)(i+2j)} D_{j} \right). \quad \Box$$

Corollary 3.6 ([19]). If $mn \geq 3$, there is a stable homotopy equivalence

$$\operatorname{Poly}_n^{d,m}(\mathbb{R}) \simeq_s \operatorname{Poly}_1^{\lfloor d/n \rfloor, mn}(\mathbb{R}).$$

Since $\operatorname{Poly}_n^{d,m}(\mathbb{C})^{\mathbb{Z}_2} = \operatorname{Poly}_n^{d,m}(\mathbb{R}), \ (i_{n,\mathbb{C}}^{d,m})^{\mathbb{Z}_2} = i_{n,\mathbb{R}}^{d,m} \text{ and } (s_{n,\mathbb{C}}^{d,m})^{\mathbb{Z}_2} = s_{n,\mathbb{R}}^{d,m}, \text{ by using Theorems 2.4, 3.3 and 3.4, we also obtain the following results:}$

Corollary 3.7 ([19], [20]). (i) If $mn \ge 4$, the natural map

$$i_{n,\mathbb{C}}^{d,m}:\operatorname{Poly}_{n}^{d,m}(\mathbb{C})\to\Omega_{d}^{2}\mathbb{C}\mathrm{P}^{mn-1}\simeq\Omega^{2}S^{2mn-1}$$

is a \mathbb{Z}_2 -equivariant homotopy equivalence through dimension D(d; m, n).

(ii) Let (m, n) = (3, 1). Then the natural map

$$i_{1,\mathbb{C}}^{d,3}:\operatorname{Poly}_1^{d,3}(\mathbb{C})\to\Omega^2_d\mathbb{C}\mathrm{P}^2\simeq\Omega^2S^5$$

is a \mathbb{Z}_2 -equivariant homotopy equivalence through dimension d if $d \equiv 1 \pmod{2}$, and it is a \mathbb{Z}_2 -equivariant homotopy equivalence up to dimension d if $d \equiv 0 \pmod{2}$.

(iii) Let (m, n) = (1, 3). Then the natural map

$$i_{3,\mathbb{C}}^{d,1}: \operatorname{Poly}_{3}^{d,1}(\mathbb{C}) \to \Omega_{d}^{2}\mathbb{C}\mathrm{P}^{2} \simeq \Omega^{2}S^{5}$$

is a \mathbb{Z}_2 -equivariant homology equivalence through dimension $\lfloor d/3 \rfloor$.

Corollary 3.8 ([19], [20]). (i) Let $mn \ge 4$. Then the stabilization map

$$s_{n,\mathbb{C}}^{d,m}:\operatorname{Poly}_n^{d,m}(\mathbb{C})\to\operatorname{Poly}_n^{d+1,m}(\mathbb{C})$$

is a \mathbb{Z}_2 -homotopy equivalence if $\lfloor \frac{d}{n} \rfloor = \lfloor \frac{d+1}{n} \rfloor$, and it is a \mathbb{Z}_2 -equivariant homotopy equivalence through dimension D(d; m, n) if $\lfloor \frac{d}{n} \rfloor < \lfloor \frac{d+1}{n} \rfloor$.

(ii) Let (m, n) = (3, 1). Then the stabilization map

$$s_{1,\mathbb{C}}^{d,3}:\operatorname{Poly}_1^{d,3}(\mathbb{C})\to\operatorname{Poly}_1^{d+1,3}(\mathbb{C})$$

is a \mathbb{Z}_2 -equivariant homotopy equivalence through dimension d if $d \equiv 1 \pmod{2}$, and it is a \mathbb{Z}_2 -equivariant homotopy equivalence up to dimension d if $d \equiv 0 \pmod{2}$.

(iii) Let (m, n) = (1, 3). Then the stabilization map

$$s_{3\mathbb{C}}^{d,1}:\operatorname{Poly}_{3}^{d,1}(\mathbb{C})\to\operatorname{Poly}_{3}^{d+1,1}(\mathbb{C})$$

is a \mathbb{Z}_2 -equivariant homology equivalence if $\lfloor \frac{d}{3} \rfloor = \lfloor \frac{d+1}{3} \rfloor$, and it is a \mathbb{Z}_2 -equivariant homology equivalence through dimension $\lfloor d/3 \rfloor$ if $\lfloor \frac{d}{3} \rfloor < \lfloor \frac{d+1}{3} \rfloor$

Remark 3.9. (i) Although we suppose that the homotopy stability also holds for the space $\operatorname{Poly}_n^{d,m}(\mathbb{R})$ for the case (m,n)=(1,3), we cannot prove this at the moment.

(ii) We can consider the space of non-resultant systems determined by a toric variety as one of generalizations of the space $\operatorname{Poly}_n^{d,m}(\mathbb{F})$ (see [16] and [18] for further details). \square

Acknowledgements. The author was supported by JSPS KAKENHI Grant Number JP22K03283. This work was also supported by the Research Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University.

References

- [1] M. Adamaszek, A. Kozlowski and K. Yamaguchi, Spaces of algebraic and continuous maps between real algebraic varieties, Quart. J. Math. **62** (2011), 771–790.
- [2] V. I. Arnold, Certain topological invariants of algebraic functions, (Russian), Trudy Moskov. Obshch. **21** (1970), 27-46
- [3] M. F. Atiyah and J. D. S. Jones, Topological aspects of Yang-Mills theory, Commun. Math. Phys. **59** (1978), 97–118.
- [4] C. P. Boyer and B. M. Mann, Monopoles, non-linear σ models, and two-fold loop spaces, Commun. Math. Phys. **115** (1988), 571-594.
- [5] F. R. Cohen, R. L. Cohen, B. M. Mann and R. J. Milgram, The topology of rational functions and divisors of surfaces, Acta Math. **166** (1991), 163–221.
- [6] F. R. Cohen, R. L. Cohen, B. M. Mann and R. J. Milgram, The homotopy type of rational functions, Math. Z. **207** (1993), 37–47.
- [7] F. R. Cohen, M. E. Mahowald and R. J. Milgram, The stable decomposition for the double loop space of a sphere, Proc. Symp. Pure Math. 33 (1978), 225–228.
- [8] B. Farb and J. Wolfson, Topology and arithmetic of resultants, I, New York J. Math. **22** (2016), 801-821.
- [9] B. Farb, J. Wolfson and M. M. Wood, Coincidences between homological densities, predicted by arithmetic, Advances in Math., **352** (2019), 670-716.
- [10] M. A. Guest, The topology of the space of rational curves on a toric variety, Acta Math. 174 (1995), 119–145.
- [11] M. A. Guest, A. Kozlowski and K. Yamaguchi, Spaces of polynomials with roots of bounded multiplicity, Fund. Math. **116** (1999), 93–117.
- [12] M. A. Guest, A. Kozlowski and K. Yamaguchi, Stable splitting of the space of polynomials with bounded multiplicity, J. Math. Kyoto Univ. **38** (1998), 351-366.
- [13] I. M. James and G. Segal, On equivariant homotopy type, Topology 17 (1978), 267-272.
- [14] A. Kozlowski and K. Yamaguchi, The homotopy type of spaces of polynomials with bounded multiplicity, Publ. RIMS. Kyoto Univ. **52** (2016), 297-308.
- [15] A. Kozlowski and K. Yamaguchi, The homotopy type of spaces of resultants of bounded multiplicity, Topology Appl. **232** (2017), 112-139.

- [16] A. Kozlowski and K. Yamaguchi, The homotopy type of spaces of rational curves on a toric variety, Topology Appl. **249** (2018), 19-42.
- [17] A. Kozlowski and K. Yamaguchi, The homotopy type of the space of algebraic loops on a toric variety, Topology Appl. **300** (2021), paper ID: 107705.
- [18] A. Kozlowski and K. Yamaguchi, Spaces of non-resultant systems of bounded multiplicity determined by a toric variety, (to appear) Topology Appl., (arXiv:2105.14601).
- [19] A. Kozlowski and K. Yamaguchi, The homotopy type of spaces of non-resultants of bounded multiplicity with real coefficients, preprint (arXiv:2212.05494).
- [20] A. Kozlowski and K. Yamaguchi, Homotopy stability of spaces of non-resultants of bounded multiplicity with real coefficients, preprint (arXiv:2305.00307).
- [21] J. P. May, The geometry of iterated loop spaces, Lecture Notes in Math. **271**, Springer-Veralg, 1972.
- [22] J. Mostovoy, Spaces of rational loops on a real projective space, Trans. Amer. Math. Soc., **353** (2001), 1959-1970.
- [23] J. Mostovoy, Spaces of rational maps and the Stone-Weierstrass Theorem, Topology 45 (2006), 281–293.
- [24] G. B. Segal, Configuration spaces and iterated loop spaces, Invent. Math. **21** (1973), 213-221.
- [25] G. B. Segal, The topology of spaces of rational functions, Acta Math. **143** (1979), 39–72.
- [26] V. P. Snaith, A stable decomposition of $\Omega^n S^n X$, J. London Math. Soc. 2 (1974), 577–583.
- [27] V. A. Vassiliev, Topology of spaces of functions without complicated singularities, Functional Anal. Appl., 23 (1989), 24-36.
- [28] V. A. Vassiliev, Complements of discriminants of smooth maps, Topology and Applications, Amer. Math. Soc., Translations of Math. Monographs 98, 1992 (revised edition 1994).

Department of Mathematics, University of Electro-Communications 1-5-1 Chufugaoka, Chofu, Tokyo 182-8585, Japan E-mail: kohhei@im.uec.ac.jp