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Abstract

We survey some recent results obtained in the joint paper [33]
with M. Otani concerning the existence of solutions to a class
of semilinear evolution equations with nonmonotone mutivalued
terms.

1 Introduction

The aim of this note is to survey some recent results concerning the existence of
solutions to the parabolic differential inclusion in Q7 := [0,7] x Q:

%u (t,x) — Dpu(t,x) € =00 (u(t,z)) + G (t,z,u(t.z)), (t,z) € Qr (1)
coupled with the initial-boundary conditions
u(t,z) =0, (t,x) € [0, T] x 09,
u(0,2) = ug (), x € S

(2)
Here Q is a bounded open subset of RY with smooth boundary 99, T > 0, A,, is the

p-Laplace differential operator defined by

Apu = div (||V71,||%}2Vu) with p > max (1, ]\2,—%),

*Presented at the RIMS workshop ” Innovation of the theory for evolution equations: develop-
ments via cross-disciplinary studies”, October 17-19, Kyoto University, Japan

HInternational Research Fellow of Japan Society for the Promotion of Science, (Invitational Fel-
lowship for Research in Japan: S22031), Graduate School of Science, Tohoku University, Sendai,
Japan



0¢ denotes the subdifferential of a proper lower semicontinuous convex function
¢ : R — [0,00] with ¢(0) = min,er ¢ (u) = 0, and G : Qr x R — 28\{(} is a
nonmonotone multivalued mapping.

Our prototype of (1)-(2) is the case where ¢ = 0 and G(t, x,u) = |u|?"?u, denoted
by (E),, which is studied in [37, 26, 27, 28].

If p > ¢, then for every uy € WyP(f), the existence of a global weak (resp.
strong) solution is shown in [37] (resp. [27]). As for the case where p < ¢, Tsutsumi
[37] showed the existence of a time-global weak solution, for the Sobolev-subcritical
range of ¢ € (p,p*), provided that wg is sufficiently small in W, 7 (Q). Here p* = oo
forpZNandp*:NN—i)forp<N.

However, concerning the existence of strong solutions, ¢ is assumed to be more
restrictive than the Sobolev-subcritical in [27, 28], namely, ¢ € (p, p.] with p, < oo
for N < p, and p, = 1+ % for p < N. Under this condition, the existence of
local solutions is shown in [26, 28] and the existence of small global solution is shown
in [27, 26, 28).

One of the main purposes of our work is to give a new device which enablea us to
discuss the existence of strong solutions of (1)-(2) for the Sobolev-subcritical range
of ¢ € (2,p*). In fact, as a corollary of Theorem 6.1 to be given in §6.1, we have:

Theorem Let max(1, ]\ZZ—JL) < p and q € (2.p*), then for any uy € WP(Q), there

exists Ty € (0,T] such that (E), admits a solution u in (0,Ty) satisfying

{ u e C([0, To]; Wi (),

5 Ay, g(u) = |u|?*u € L*(0, To; L*(Q2)).

Furthermore, this result is generalized for the case where ¢ is replaced by upper
semi-continuous or lower semi-continuous multi-valued functions in the subsequent
subsections.

Differential inclusions appear naturally in the study of parabolic problems with
discontinuous nonlinearities which arise from simplified models in the description of
porous medium combustion (see [17], [18]), chemical reactor theory (see [19]), and
game theory (see [15] and [24] for details and their references). To guarantee the exis-
tence of solutions, we need to extend the discontinuous nonlinearity to a multivalued
mapping by filling the jumps at the discontinuity points of the nonlinearity.

In the context of elliptic systems, the problem has been studied extensively by
many authors using different methods. More specifically, Rauch [35] used mollifica-
tions and truncation techniques, while the approach in Chang [14] is based on the
nonsmooth critical point theory for locally Lipschitz functions, dealing with partial
differential equations involving a discontinuous reaction term. The variational frame-
work introduced in Chang [14] leads to several results, mentioned, for example, in
the monographs [21] and [10].

In the context of parabolic systems, Carl [8] studied nonlinear dynamic problems
with nonmonotone discontinuities by adapting Rauch’s method to the dynamic sit-
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uation, Papageorgiou [34] extended Carl’s work and proposed a different approach
based on evolution inclusions, a more suitable one to the multivalued character of
the problem.

Several other methods have been developed and involved to study the existence of
solutions to the initial-boundary value problems for parabolic equations with discon-
tinuous or multivalued nonlinearities: the upper and lower solutions method together
with a generalized iteration in [9], [7] and also in [11], [12] and [13] to prove the exis-
tence of extremal solutions. We also refer to [3] where existence results were obtained
for a class of parabolic equations with either Carathéodory or discontinuous nonlinear
terms; and [22] where the existence of solutions to parabolic problems with discontin-
uous and nonmonotone nonlinearity was obtained by passing to a multivalued version
by filling in the gaps at the discontinuity points.

The goal of our paper is twofold: it has firstly to set up a framework which en-
ables us to treat wider nonlinearity of G(-,-, u), more precisely, to cover the growth
condition on G(-, -, u) up to the Sobolev-subcritical range, and secondly to adapt and
improve the techniques and arguments developed in [31] and [32] in order to obtain
existence results for the parabolic inclusion (1) with the initial and boundary condi-
tions (2), generalizing corresponding results given by many authors, especially given
in [28], [29], and [32] where the semi-linear case p = 2 is considered. Our approach
uses tools from the multivalued analysis, together with the theory of nonlinear opera-
tors of monotone type and methods from the theory of nonlinear evolution equations.

We prove two types of local existence results: one for the case where the multi-
valued mapping u — G (+,-,u) is upper semicontinuous (u.s.c.) with closed convex
values and the second one deals with the case where u — G (-,-,u) is lower semi-
continuous (l.s.c.) with closed (not necessarily convex) values. We also discuss the
extension of large or small local solutions along the lines of arguments developed in
[28].

The existence of local solutions is obtained by following the strategy in [28], i.e.,
we apply Schauder-Tikhonov-type fixed point theorems for the mapping G : h
G(t,x,up), where uy, is the unique solution of the problem (1)-(2) with G(¢,z,u)
replaced by h. With the aid of results in [32], it is shown that G becomes u.s.c. or
Ls.c. from X2 .= L*(0,T; L°(Q)) with the weak topology for suitable a, 8 € (1, c0)
into itself or L'(0,T; L'(€2)) according to the case where u — G (-,-,u) is u.s.c. or
l.s.c., respectively.

Another crucial step is to show that there exist R > 0 and (a sufficiently small)
Ty > 0 such that G maps { h € Xfﬁgﬁ; ||h||X¥,ﬁ < R} into itself. For this purpose,
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we rely on arguments similar to those developed in [28] based on some interpolation
inequalities. In this procedure, we formulate the two different kinds of settings:
Hilbert-space setting with « = § = 2 ( in §3.1) and Non-Hilbert-space setting ( in
§3.2).

The advantage of our treatment lies in the fact that for the existence of time-local
strong solutions of (1)-(2), it allows the Sobolev-subcritical growth order of G(¢, z, u)



with respect to u, which has been left as an open problem even for the case where
G(t,z,u) is a single-valued function.

The structure of our paper is the following: In Section 2, we prepare some nota-
tions and basic definitions from the nonlinear operator theory and the multivalued
analysis used in the following sections. In Section 3, we prepare some auxiliary results
concerning the property of the mapping G in a Hilbert-space setting ( §3.1) and in a
Non-Hilbert-space setting ( §3.2). Section 4 is devoted to the study of the local exis-
tence of solutions to problem (1)-(2). We obtain two kinds of existence results: one
for the case where G is closed convex valued, upper semicontinuous with respect to
the third variable ( §4.1), and the other for the case where the multivalued mapping
G is lower semicontinuous with closed (not necessarily convex) values (§4.2). Both
cases are discussed in the Hilbert-space setting and the Non-Hilbert-space setting. In
Section 5, we study the global existence of solutions, namely, the existence of large
global solutions without assuming the smallness of the given data ( §5.1) and the
existence of small global solutions when the given data are taken sufficiently small
( §5.2). In Section 6, we exemplify the applicability of our results. In particular, it
is shown that our framework can give a new result concerning an open problem for
the classical equation (1), i.e., the case where ¢ = 0 and G(t, x,u) is a single-valued
function.

2 Notations and preliminaries

For easy reference, in this section, we recall some notations and basic definitions from
the multivalued analysis and the nonlinear operator theory, which we shall use in the
sequel. For further details, we refer to [1], [2], [4], [25], [31] and [32].

Let X and Y be Hausdorff topological spaces and let 2¥ be the family of all subsets
of Y. A multivalued map F': X — 2¥\{0} is said to be upper semicontinuous (u.s.c.
for short) on X, if for every closed subset C' of Y, the set

F-(C)={zeX; F(x)NnC #0}
is closed in X. F: X — 2V \{0} is said to be lower semicontinuous (l.s.c for short)
on X, if
FH(C):={zeX; F(z)CC}
is closed in X for each closed subset C' of Y.

It is well known that F: X — 2Y\{0} is upper semicontinuous on X with compact
values, then its graph

Gr(F) ={(z,y) e X XY ;ye€ F(x)}

is closed in X x Y. Conversely, if F: X — 2"\{0} has a closed graph and if for
each x € X, there exists a neighborhood U of z such that F(U) := |J F (z) is

zelU
precompact, then F' is u.s.c. on X (see Propositions 2.22 and 2.23 of [25]).
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By a section of a multivalued map F : X — 2Y\{0} we mean any function
f X — Y such that
f(x) € F(x) for all z € X.

Let (I,%, 1) be a o-finite complete measurable space and (Y, [|-||) be a separa-
ble Banach space. A closed valued multifunction ¥ : I — 2Y\{0} is said to be
Y —measurable (or simply, measurable) if for every open set U C Y, we have

U (U):={wel; VY (w)NnU#0}eX.
It is known that U is measurable if and only if for every y € Y, the map
wid(y, ¥ (w) :=inf{llz -yl ;ze¥(w)}

is a measurable RT™ = R* U {oo}-valued function (see [25], Corollary 19, p.143). A
multifunction ¥ : I — 2¥ with nonempty values is said to be graph measurable if

Gr(0):={(w,2) €I xY;2€V(w)}exxB((Y),

where B (Y') denotes the Borel o-algebra on Y. For multifunctions with closed values,
the measurability implies the graph measurability, while the converse is true if X is
complete.

For 1 < p < oo, we denote by S% the set of all sections of ¥ which belong to the
Lebesgue-Bochner space LP (I; Y) that is

SL={velP(I;Y);v(w) eV (w) p—ae.}.

It is easy to check that for a graph measurable multifunction ¥ : Q — 2¥\{@}, the
set ST, is nonempty if and only if w +— inf {||z|| ; x € ¥ (w)} is majorized by a L? (I)
-function (see [25], Lemma 3.2, p.175).
A set K CLP(I;Y) is said to be decomposable if for all u, v € K and all A €
we have
uxa +vxna € K,

where x4 denotes the characteristic function of A. It is clear that the set Sy is
decomposable.

In the remaining part of this section, we collect some definitions and properties
concerning maximal monotone mappings. Let H be a real Hilbert space with inner
product (-, ), and norm |[|-]|,; and let A : H — 2 be a maximal monotone operator
with domain D(A) :={x € H; Az # 0 }. The minimal section of A is the function
A . H — H satisfying the following conditions:

A’ (z) € A(z) and ||A®(2)|,, =inf{|[]; : €€ A(x)} Vo e D(A).

Recall that, the graph of any maximal monotone operator is demiclosed, i.e.,
closed in H x H,, , where H,, denotes the space H furnished with the weak topology.
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Let ¢ : H — R := RU{+oc} be a lower semicontinuous convex function. We say
that ¢ is proper if its effective domain

D(p) ={r € H; ¢ (r) < +oo}
is non-empty. The multivalued map d¢ : H — 2 defined by
dp(x)={geH;py)—¢(x)=(gy—x)y forally e H} (3)

is called the subdifferential of ¢ (in the sense of convex analysis). It is known that the
subdifferential Op of a proper lower semicontinuous convex function ¢ is a maximal
monotone operator with domain

D (0¢) :={r € H; dp (v) #0} C D(p).

We shall use 9% instead of (9¢)” to denote the minimal section of the maximal
monotone operator dep.

3 Auxiliary results

In what follows, we always assume that € is a bounded open subset of RY with
finite Lebesgue measure denoted by ||, N > 1, T > 0, Qr := [0,7] x 2 and put
xoP = e (0,T; LP(Q)) with 1 < a, 8 < co. We often denote X0P simply by X, if
no confusion arises.

Definition 3.1. Let G : Qr xR —2%\{0} be a multivalued mapping. The multivalued
map G : X—=2%\{0} defined by

Gu)={9€X;g(t,x) €G(tx,u(t,n)) ae (tx)€Qr} (4)
is called the realization of G(-,-,u) in X.

Definition 3.2. We say that the realization G of G in X is a.e.-demiclosed if for any
sequence (Up), oy of functions from Qp into R which converges almost everywhere in

Q7 to a function u : Qr— R and for any sequence (gn),cy of functions from Qp into
R such that

gn (t,x) € G (t,z,u, (t,x)) for each n € N and almost all (t,z) € Qr,
which converges weakly in X to a function g € X, then one has g € G (u), that is,
g(t,x) € G(t,x,u(t,z)) for almost all (t,z) € Qr.

The following result plays an essential role in the later arguments.



Proposition 3.3. Let G : Qr x R —2% be a nonempty closed convex valued multi-
function such that:

For almost all (t,x) € Qr, G (t,z,-) : R — 28\{0} is upper semicontinuous.

Then the realization G of G in X is a.e.-demiclosed.

Proof. We can repeat the same argument as that in the proof of Proposition 3 in [32]
with obvious modifications, namely by replacing L?(0, T; L*(Q)) with X5, O

Let ¥ (R,R,) be the family of all lower semicontinuous convex functions ¢ :
R — [0, 00| such that

¢ (0) = min ¢ (u) = 0.

u€R

Let ¢ € ¥ (R,R,) and define ¢ : L?(Q) — R, by

1—1)/Q|Vu(w)|p de—I—/ng(u(uL))dL if uweD(p),

p(u) =
+ 00 otherwise,
with max (1, ]3—52) <p and

D) = {n €W (@) :60) = [ oule))dr < oo},

Then ¢ becomes a proper lower semicontinuous functional defined on L*(€2) and we
have

Jp (u) = —=Lpu+ 0¢ (u)
with domain
D(0p)={ue D(p); Apue L*(Q), I e L?(Q)
such that b (z) € 9¢ (u(r)) ae. z€Q }.
Moreover, for any z = —A,u+b € d¢ (u) with b € d¢ (u) one has
l2ll72 = 1 Apull7e + [1b]72 and (=Ayu,b)p >0 ()

(see Lemma 1 of Otani-Staicu [31]).



3.1 A direct treatment in the L2-framework

In this subsection, following the strategy in [28], we develop a direct treatment for
our problem in Hy := L?(0,T; L?(Q)). We first recall the following standard result
from Komura-Brézis theory (see Theorem 3.6 of H. Brézis [4]).

Proposition 3.4. Let ¢ € V(R Ry). Then for any h € Hy and ug € D (p), the
problem

% (t,x) — Dpu(t,x) € =00 (u(t,z)) +h(t,x), (t,x)€ Qr,
(B)" < w(t,x) =0, (t.2)€[0,T] % o,

u(0,2) =up (z), = €1,
admits a unique solution uy, € C([0,T]; L*(Y)) satisfying
Jup,
ot
where by, is the section of O¢(uy) satisfying (E)", i.e., a% — Apup, + by, = h.

, Dyup, by € He = L (0,15 L% (Q)) ,

Then we can define a multivalued mapping Gy, : h — é(uh), the realization of
G(-,+,up) in Hg, for all S € (0,7, i.e.,

Gus (h) =={g€Hs;g9(t,x) € G(t,x,up(t,x)) ae. (t,2) € Qs} (6)

with
[Grs (M| |34 = sup{ [lg (&, 2)[l5, 5 9 (£, 2) € G (L, 2w (t,2)) }, (7)

where wy, is the solution of (E)".
Here we introduce the following growth condition on G.

(GC), We say that a multivalued map G : Q7 x R — 2% satisfies (GC),, if there exist
nonnegative numbers k € [0,1), ¢, C, and a function a(-) € L'(Qr) such that:

G (¢, w)l|]” < |a(t,2) [+ F[0°6 (u)[* + Cq Ju " (8)
for a.e. (t,2) € Qr , Yu € D(9¢) ,

where [[|G (¢, 2z, u)||| :=sup { |¢] ; € € G (t,x,u) } and ¢ € [2,p.].
Here p, denotes any finite number if N <p;and p, =1+ Z(ﬁ—fp) if p<N.

Note that by virtue of the Sobolev-Poincaré embedding theorem, there exists a
constant K, > 0 such that

Ellull poan < [Vull, Vg€ 2,p] Yue Wg"(9Q). (9)
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Here for R > 0 and S € (0, 7], we put
Ko o= {heMs; |hl;, <R*}. (10)

Then we can show that Gy, maps K;‘S into itself for suitably chosen R > 0 and
S e (0,7].

Proposition 3.5. Let ¢ € ¥ (R,R.) and G : Q7 x R — 2% satisfy (GC), and let
up € D(p). Then there exist R > 0 and Ty > 0 depending on k, |[al[;1q,). ¢ and

¢(ug) such that Gy, maps KgTO into itself.

3.2 Non-Hilbert-space setting

In this subsection we develop another framework to treat our problem in a (non-
Hilbert) Banach space. Throughout this subsection, we always assume that

max (1, ) <p<N
and denote W, ?(Q) by V and its dual by V*. Then V is compactly embedded in
L*(9), since 2 < p* = NN—_’;.

To define the Banach spaces where we work, we need to introduce a couple of
exponents given by

* ok — N * — s
s=s(N,p) =", (p ;’p 2 — (pNt’; 2), r=r(N,p) = PR

Then we note the following relations.
Proposition 3.6. We have:
(i) max (2,p) < p* <s.

(i) 1<s'=25<r<2,

(i) () = £ <r.
Now we define the Banach space X gﬂ“ in which we work by

X .= I7(0,S;L7(Q)) with p:= % >p > 1.
We also introduce the following growth condition on d¢(-).

(GC),, There exists a constant C,, such that

l0¢(w)ll] == sup {I¢]; € € Ip(u) } < Cy (luf" +1) VueR.  (11)
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Then in parallel with Proposition 3.4, we have the following proposition.

Proposition 3.7. Assume that ¢ € U (R, R,) satisfy (GC),. Let h € X5 with
S € (0,T] and ug € L (Q). Then (E)* with T = S admits a unique solution
uy, € C([0,5]; L*(Q)) satisfying

S

sup |[un(O)|[2- +p*ep [ |fun(t)||7. 7 2dt
0<t<S 0 (12)
< [Juol[p +p*Clep)lIPI s,

P P
o » . |[Vwl|7p
where Ep = "5 (p_*+p—2_> KSP7 KSP = lnwaWOl"p(Q)\{O} H“’Hip* )

_pTp=2 x g

O(e,) = 2L (Biiﬂzz) T

*_ 1 p*—1

(uy, € C([0,8]; L7(Q)) V7 e [1,pY),

up, € L(0,S; LP (Q)) N LP(0, S; V),

Ayuy, € LY (0,8;V*),

Quy, /0t € LP(0,8;V*) + X5+ L*(0, S; L*()),
by, € L2(0, S; L*()),

\
where by, is the section of Op(uy) satisfying (E)", i.e., 38% — Ayup, + by = h.
Now we define a multivalued mapping gxg,r h o — é(uh), the realization of
G(-, -, up) in Xg’r, for S € (0,77, i.e.,
Gypr(h)i={ g € XE7: g (1,2) € G (1,2, (1,2)) ae. (7)€ Qs |

with
11Gczr (W)l e = sup { llgllzr s gt ) € Gt unlt. o)) §

where uy, is the solution of (E)".
Here we introduce the following growth condition on G.

(GC)* : We say that a multivalued map G : Q7 x R — 2F satisfies (GC)*, if there exist
nonnegative numbers q € (p., p*), C, and a function a(-) € X% such that:

NGtz w)lll < la(t, 2)] + Cq ul”™

(13)
for a.e. (t,z) € Qr , Yu € D(09) ,

where [[|G(t, z, u)[|| := sup {[¢]; € € G(t,z,u) }.
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For R > 0 and S € (0,T], we put

Ky® ={he X |lhlly <R} (14)

Then, in parallel with Proposition 3.5, we can show that G xZr maps K;g,r into itself
for suitably chosen R > 0 and S € (0, 7.

Proposition 3.8. Assume that ¢ € U (R,R;) satisfies (GC)y and G : Qr x R —
2"\0 satisfies (GC)™. Then for any ug € L¥" (), there exist R > 0 and Ty € (0,T]

X 3y
depending on ||(I||X§>:,r, q and ||ug|| .+ such that ng’:’" maps K'° into itself.
0

4 Local existence of solutions

4.1 The upper semicontinuous case

In this subsection, we give a couple of existence results for the problem (1) — (2)
when the multivalued map G is upper semicontinuous with closed convex values.
Namely, we assume the following:

(HL) : G : Qp x R — 2% is a multivalued map with closed convex values satisfying the
following conditions:

(i) For almost all (t,z) € Qr, G (t,z,-) : R — 28\{0} is upper semicontinu-
ous.

(i) For each u € R, G (+,-,u) : Q7 — 28\{0} is £ (Q7) —measurable.

Our result in the L2-framework is stated as follows:

Theorem 4.1. Assume that ¢ € U (R,R,) and let G : Qr x R — 2B\{0} be a
multivalued mapping with closed convex values satisfying (HE) and (GC),. Then for

each uy € D(g) = WEP(Q) N D(¢), there exists Ty = To((uo)) € (0,T] such that the
initial boundary value problem (1)-(2) admits a solution w on [0, Ty] satisfying
ue O([0,To]; Wy (),
d(u(t)) is absolutely continuous on [0, Ty), (15)
9 Ayu, b, g € L*(0,Ty; L*(Q)),

where b and g are the sections of dp(u) and G(t,z,u(t,z)), respectively, satisfying

(1), ie, &= Aju+b=g.
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We now give a couple of results in the Non-Hilbert-space setting.

Theorem 4.2. Assume that ¢ € U (R,Ry) satisfies (GC), and let G : Qr x R —
2B\{0} be a multivalued mapping with closed conver values satisfying (H) and
(GC)". Then for each ug € LP(Q), there exists Ty = To(||uo||»+) € (0,T] such that
the initial boundary value problem (1)-(2) admits a solution w on [0,Tp] satisfying

((we O([0,To); L7(Q)) V7 € [L,pY),

u e L>(0,Ty; LY (Q)) N LP(0, S; V),

Ayu € LP(0,Ty; V*), (16)
Ou/ot € LP(0,Ty; V*) + X5 + L0, Ty; L*(2)),

| be L2(0,Ty; LA(R), g € XF.

where b and g are the sections of dp(u) and G(t, z,u(t, x)), respectively satisfying (1),
i.e., % - Apu+b=yg.

Corollary 4.3. Assume that ¢ € ¥ (R,R}) satisfies (GC)y and let G : Qr x R —
28\{0} be a multivalued mapping with closed convexr values satisfying (HE) and
(GC)* with a € X2 N Hy. Then for each uy € D(p) = W,P(Q), there exists
To = To(||uo|| o+ ) € (0,T] such that the initial boundary value problem (1)-(2) admits
a solution u on [0,Ty] satisfying (15).

4.2 The lower semicontinuous case

In this subsection, we are concerned with problem (1) — (2) for the case where
the multivalued map G is lower semicontinuous with closed (not necessarily convex)
values. Namely, the multivalued map is assumed to satisfy the following condition:

(HZ) : G: Q7 x R — 28\{0} is a multivalued map with closed values such that:

(i) For almost all (t,z) € Qr, G (t,x,-) : R — 28\{0} is lower semicontinuous,

(i) G:Qr xR —=2B\{0} is £ (Qr) ® B(R)-measurable.

Then our result in the L? setting is stated as follows:

Theorem 4.4. Let ¢ € U (R,R,) and let G : Q7 x R — 2¥\{0} be a multivalued
mapping with closed values satisfying (HZ) and (GC),. Then for each ug € D(p) =

WaP(Q) N D(), there exists Ty = To(¢(uo)) € (0,T) such that the initial boundary
value problem (1)-(2) admits a solution u on [0,Ty] satisfying

u € C([0, Tl Wy (%),
o(u(t)) is absolutely continuous on 0, To), (17)
9 Apu, b, g € L*(0,Tp; L*(S2)),
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where b and g are the sections of dp(u) and G(t,x,u(t, z)), respectively satisfying (1),
i.e., % - Aju+b=yg.

As in Theorem 4.2 and Corollary 4.3, we obtain the following results in the Non-
Hilbert-space setting.

Theorem 4.5. Assume that ¢ € ¥ (R,Ry) satisfies (GC)y and let G : Qr x R —
2B\{0} be a multivalued mapping with closed values satisfying (HZ) and (GC)”.
Then for each uy € LP(Q), there exists Ty = To(||uo||+) € (0,T] such that the
initial boundary value problem (1)-(2) admits a solution u on [0, Ty] satisfying
(we C([0,T]; LT () Vre[l,p),
u € L=(0,Ty; LP" (Q)) N LP(0, Ty; V),
Ayu € LY (0, Ty; V*), (18)
du/ot € LV (0, Ty; V*) + X2 + L*(0, Ty; L*(Q)),
\ be L2(07T0; LQ(Q))’ g€ X%)T7

where b and g are the sections of 0¢(u) and G(t,x,u(t, z)), respectively satisfying (1),

e, - ANu+b=g.

Corollary 4.6. Assume that ¢ € U (R,R}) satisfies (GC), and let G : Qr x R —
28\{0} be a multivalued mapping with closed values satisfying (HZ) and (GC)* with
a € XP"OHy. Then for each ug € D(p) = WyP(Q), there exists Ty = To(||uo|| 1) €
(0,T] such that the initial boundary value problem (1)-(2) admits a solution u on
[0, T0] satisfying (17).

To prove these results, the following fact plays a crucial role.

Lemma 4.7. Let all assumptions in Theorem 4.4 or Theorem 4.5 be satisfied. Then
for any S € (0,T), the mapping Gy : K — X with X = Hg or X = Xg’r becomes
lower semicontinuous from X* into X* and L'(Qg). Here X“ denotes X endowed
with the weak topology.

Remark 4.8. (1) Under the assumptions assumed in Lemma 4.7, Gy is also lower
semicontinuous from XV into X*, X with the strong topology, for the following cases:

(i) The case where X = Hg and (8) holds with q € [2,p.) and k = 0.
(i) The case where X = X5 and (13) holds with q € [p., p*).

(2) For the semi-linear case p = 2, under assumptions assumed in Theorem .}
with the condition on q in (GC), replaced by the Sobolev subcritical condition, i.e.,
q < 2%, Gy, becomes lower semicontinuous from Hg into L'(Qg). Moreover if (8)
holds with k = 0, then Gy, becomes lower semicontinuous from HY into Hg with the
strong topology.
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5 Global existence of solutions

In this section, we discuss the global extension of local solutions given in the previ-
ous section. So in what follows, we always assume that G satisfies required assump-
tions with Q7 and a € L'(Q7) (or a € LP(0,T; L"(2))) for any T > 0.

Let u(t) be a time-local solution of problem (1)-(2) on [0,7}] given in Theorems
4.1 and 4.4 (or Theorems 4.2, 4.5, Corollaries 4.3, 4.6 ). Then w,(t) defined on [0, T)
with T, > T} is called an extension of u(t) if

(1) we(t) is a solution of (1)-(2) satisfying (15) ( or (16)) with Tj replaced by T}
for all 71 € (Tp, T¢).

(i) we(t) = u(t) for all t € [0, Ty,

and u,,(t) defined on [0,7},) is called a maximal extension of u(t), if u,,(t) is an

extension of u(¢) and there is no extension of u,,(t), i.e., u,,(t) can not be continued

to the right of 7,, as a solution of (1)-(2) with same regularity as (15) ( or (16)).
We first prepare the following alternative lemma.

Lemma 5.1. Let u(t) be a time-local solution of problem (1)-(2) on [0,Ty] given in
Theorems 4.1 and 4.4 ( or Theorems 4.2, 4.5, Corollaries 4.3, 4.6 ). Then (under
the same assumptions of the above theorems) we have

(1) There exists a least one mazimal extension um,(t) of u(t) defined on [0,T,,)
with T,, € (Ty, +00].

(2) Let uy,(t) be any mazimal extension of u(t) defined on [0,T,,), then the follow-
ing alternative (i) or (ii) holds.
(1) T, =400,
(17) T < 400 and

dim o (um (1) = +oo (o lim fjum(t)[| e = +o0). (19)

By virtue of Lemma 5.1, to prove the existence of global solutions, it suffices to
establish a priori bounds for ¢(u(t)) or ||u(t)]|| -

5.1 Large global solutions

Theorem 5.2. Let ¢ =2 or q < p be satisfied. Then any local solution of (1) — (2)
given in Theorems 4.1, 4.2, 4.4, 4.5 and Corollaries 4.3, 4.6 can be continued globally
to [0, 4+00).
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5.2 Small global solutions

In this subsection, we show the existence of small global solutions for sufficiently
small data a(t) and ug(z). In what follows we use the following notation:
t+1
sup | fls)ds for f € L}, (0,00),

{f()}e = p=tee tt+1~
sup f(s)ds for f e L'(0,T) with 0 <T < oo,

0<t<oo Jt

where f(s) is the zero extension of f(s) to [0, c0).

Theorem 5.3. Let max (p,2) < q, then there exists a (sufficiently small) number
ro > 0 such that if {{|a(-, 1)[|1(@) e < ro and p(uo) < 1o (resp. {[|a(- D)7 ) te < 7o
and ||ug||Le+ < 710), then any local solution given in Theorems 4.1 and 4.4 (resp.
Corollaries 4.3 and 4.6) can be continued globally to [0, +00).

To prove this result we prepare the following lemma which is essentially proved
in the proof of Lemma 4.3 given in [28§].

Lemma 5.4. Let f € L' (0,T) and j () be an absolutely continuous positive function
on [0, S] with S € (0,T] such that

d

(0 +aj ) <|f )] ae te0,8], (20)
where a and § are given positive parameters. Then we have
sup (1) < max (7 (0) (a0w)™5) +2(w+ D {If )} (21)

where w 1s an arbitrary positive constant.

6 Examples

In this section, we exemplify the applicability of our results.

6.1 Classical problem

To demonstrate that our framework covers a broad range of the application even
for classical problems, we consider some open problem for the following equation in
Qoo 1= [0, 4+00) x

%u(t, x) — Apu(t,z) — gt z,u(t,x)) = f(t,z) (t,2) € Qu,
(P) ¢ u(t,z) =0 (t,x) € [0,400) x 09,
u(0, ) = ug(x) x €€,

15



which corresponds to (1)-(2) with Qr = Qu, ¢(-) = 0 and G(t,z,u) = g(t,x,u) +
f(t,x) is a single-valued function. This problem with ug € W,y™"(Q), especially for
the case p = 2, is extensively investigated by many authors. As for the local well-
posedness in the L2-framework for the semi-linear case, p = 2, is shown under the
Sobolev-subcritical growth condition on g, i.e.,

lg(t, z,u)| < Cy (Jul*" +1) with g <2" forae. (t,2) € Qu, (22)

where 2* = oo if NSQ;and2*:]\2,—]f2 if 2<N.

On the other hand, the study for the quasi-linear case, p # 2, is not amply
pursued. Tsutsumi [37] and Ishii [26] studied the case where p, ¢ € (2,00); g(t,x,u) =
|u|?"2u; f = 0. In [37], it is shown by using Galerkin’s method that there exists a
global weak solution u of (P) satisfying u € L®(0,T; Wy"(Q2)), 2 € L2(0,T; L*(Q2))
for all T" > 0, for the following two cases:

(i) ¢ < pand uy € W, 7(Q).

(il) p < q < p* and ug belongs to the so-called ”Stable Set” W, which is assured
by the smallness of v in VVO1 (). Here p* is the Sobolev critical exponent
associated with the embedding Wol’p(Q) C L%(Q) given by p* = oo for p > N
andp*:NN—i]forp<N.

The existence of strong solutions u satisfying (15) is also discussed in [27, 26, 28].
The existence of a global strong solution for case (i) above is shown in [27]. For the
case where p < ¢, the existence of a strong solution is discussed for more restrictive
range of g, more precisely, under the growth condition: ¢ < p, (p. is the exponent
given in (GC),).

The existence of a local strong solution is shown in [26, 28] for any uy € W, 7(Q),
and the existence of a global strong solution is shown in [27, 26, 28] for small ugy in
Wy ().

On the analogy of the semi-linear case p = 2, it is reasonable to support the
conjecture that the existence of local solutions for (P) is assured under the Sobolev-
subcritical growth condition ¢ < p*. In the former studies, however, this conjecture
was not confirmed because of the lack of the elliptic estimate for —A,, which is the
essential tool for the proof of this conjecture for the semi-linear case p = 2.

Our framework here provides another approach giving a positive answer to this
conjecture, which does not rely directly on the elliptic estimate for —A,,.

Theorem 6.1. Let max (1, ]3—52) < p and assume
(Hy) g: Qr x R — R satisfies the following conditions:

(i) For almost all (t,z) € Qw, g (t,z,-) : R — R is continuous,
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(ii) For eachu € R, g (-, u) : Qoo — R is L (Qo) —measurable.

iii) There exists non-negative numbers q € (1,p*), C,1. C,o such that:
) q, 4,

lg(t, z,u)| < Cyy Ju|Tt + Cho ace. (t,z,u) € Qu X R. (23)

Then for any ug € Wy (Q) and f € XE"NL2(0,T; L*(Q)), there exists Ty € (0,T]
such that (P) admits a solution u satisfying
{ w e (00, B W3 H(9), o
9u Apu, g(-,-,u) € L*0, To; L*(R2)).

Moreover, we have:

(i) Let 1 < ¢ <2or2< g < p be satisfied, then the local solution given above
can be continued to [0, +00).

(ii) Let max (p,2) < g and Cy5 = 0, then there exists a (sufficiently small) number
ro > 0 such that if {||f(¢)||z2}¢ < ro and ||u0||W5¢p < (resp. {|IFOI5}e <o
and ||uo|l,» < 7o ), then the local solution given above can be continued to
[0, +00), provided that ¢ < p, (resp. p. < g < p*).

Proof. 1t is easy to see that (HY), (GC,) and (GC*) are derived from (H,) with
G=g+ fand a=f+ C,2. We note that the case 1 < ¢ < 2 can be reduced to the
case q = 2, since

[l <|ul+1 VueR, Vge(L,2). (25)

Then we can apply Theorem 4.1 and Corollary 4.3 for the existence of local solutions.
To derive the continuation of local solutions, it suffices to apply Theorems 5.2 and
5.3. O

6.2 The case where D (¢) = R!
Let 8 () = ¢ (-) be a maximal monotone graph in R! x R! such that
¢(0) =0 = ming (u)
and there exists C7 > 0 such that
Oy (Ju]®=1 — 1) < |3°p(u)|* for all u € D(¢) =R, 1 < 503 < 0. (26)

We also introduce a class of continuous functions C, by the following: f € C, if
and only if f : R! — R! is continuous and satisfies

If(u)| < C, lul' +Cy Vu e R, (27)

where 1 < ¢ < max (p*,sg), C; > 0, Cp > 0. In the following we consider the case
where

G(t,z,u) = Go(u) + fe (t,2), (28)

where f.(t,x) is a given forcing term defined on Q.
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6.2.1 The upper semicontinuous case

Take fi, fi, fo, fa € C,, such that

fi(u) < fy (w) Vu € (=00,0],
S (u) < f5" (u) Vu € [0,+00),

and define
[fr (u), fy (W] if u<0,
Go(w) =4 [ (). 7 (w)] if u>0,

[f(0), £ (0)] if w=0.

(29)

Then it is easy to see that G (t,z,u) = Gy (u) + f. (t,z) is a closed convex and upper
semicontinuous multivalued function satisfying (HZ,). We here note that there is no

continuous section of Gy (-).

Since fi, fi', 3, fs € C,, by virtue of (27), there exist Cy > 0, and 5[1 > 0 such

that
NGt 2, u)][|* < Co + |folt, 2)|? + Cy |ul0™V (¢, 2,u) € Qoo x R,

(I) Local solutions

(30)

(1) Let ¢ € (Imax (p.,s0)), uo € D() = WyP() N D(¢) and f. €

L2

loc
tence of local solutions satisfying (15).

(0,00; L3(Q2))). Then we can apply Theorem 4.1 to assure the exis-

In fact if ¢ € (1,p.), then in view of (30) and (25), we can easily check (8)
of (GC), with k =0, C;, = C, and a = Cy + | f|* € L' (Q) for any T > 0.
As for the case where 1 < ¢ < s, since for any ¢ > 0 there exists C. > 0
such that

u@D < e u*Y £ . for all ue R, (31)
in view of (26), for sufficiently small £ > 0, we can show that (8) is satisfied
with k=52 € (0,1), a(t,z) =|fe(t,2) + Co+ Cy(C. +¢) € LN (Qr) for
any 7'> 0 and C, =0, ¢ = 2.
(2) Let g € (Lp*), uo € D(¢) = Wy*(Q) N D(¢) and f. € L*(Qr) N X}
for any 7" > 0. Furthermore we assume that ¢ satisfies (GC)4. Then in
view of (30) and (25), we can check (13) of (GC)* with C, = (C,)*/? and
la| = (|f]? + Co)V? € L*(Qr) N XE" for any T > 0. Hence Corollary 4.3
assures the existence of local solutions satisfying (15).

Furthermore we have:

(IT) Large global solutions
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(3) The case where 1 <g<2o0r2<g<p:

Theorem 5.2 assures that every local solution can be continued globally to
[0, +00). ( Note that the case 1 < ¢ < 2 can be reduced to the case ¢ = 2
by (25).)

(4) The case where ¢ < 59 < 400 : As already mentioned above, (8) is satisfied
with €y, = 0, ¢ = 2. Then we can apply Theorem 5.2 with ¢ = 2 to assure
the existence of global solutions.

(III) Small global solutions

(5) The case where max (p,2) < ¢ < p* : We here assume that f and f
satisfy (27) with Cy = 0. Then (30) is satisfied with Cy = 0 and we can
apply Theorem 5.3 with k£ =0, C, = 5q and a = [f.]? if 1 < ¢ < p, ; and
with k =0, C, = (C,)Y? and a = |f.| if p, < ¢ < p*. Thus the existence
of global solutions is assured for sufficiently small ug and f, in the sense
of Theorem 5.3.

6.2.2 The lower semicontinuous case
Let —oo <1y < 0 <7 <400 and take fT, f~ € C, such that
() < f(u) Yue (rog,m)

and define
{fT(u)} if r; <wu (when r; < 400),

Go (u) = {f (v} if u <7y (when — oo < ry), (32)
(), fr(w]NQ, if ue (ro,m),

where Q,, := {¢ € Q: 10"q € Z} with n sufficiently large so that [f~ (u), f* (u)] N
Q, # 0 for all u € (rg,r1) .

Then it is easy to see that G(t, v, u) = Go(u) + f.(t, z) is a closed but not convex
valued lower semicontinuous function satisfying (HZ,), and that there is no continuous
section of Gy(-). Furthermore, since f* € C,, (30) is also satisfied.

Thus the same assertions on the existence of local and global solutions as those
in the previous case hold.

6.3 The case where D (¢) is precompact
Here we consider the case where D (¢) is precompact, i.e.,
D(¢) ={ueR'; ¢(u) < +oo} C[a,b] with —oo<a<0<b< +o0.

Typical examples are given by
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B B 0 ifué€la,b],
¢ (u) = Iiap (u) = { +o0o  otherwise,

and
{0} if wé€(a,b),
(—o0,0] if w=a,
[0,400) if u=b,
0 if ué¢a,b];

99 (u) = 0oy (u) =

h(u) if b
¢ (u) = én (u) = { +(:o) loltlhirg\cf?se?7

where h € C* ((a,b) ;R!) is convex and satisfies

lim h(u)= lim h(u)=+oc.

u—a—+0 u—b—0
Then we have

06 (u) = Don (u) = { S-S

We again define G(u) by (29) ( resp. (32) ) and G (¢, x,u) by (28). Assume that
£ (resp. f*) belong to C(RY;RY). Then since D (9lj,y) = [a,b] and D (9¢y) =
(a,b), we can verify (GC), with k =0, C, = 0 ( for any q € [2,p)) and a(t,z) =
Ct + fo(t,z), where Cp = max {|f=(7)];a <7 < b, i=12} (resp. C; =
max {|F2(0];a <7 <b})

Hence, for every uy € D () and f. € L7 _([0,00); L*(€2)), Theorem 5.2 assures

loc
the existence of global solutions of (1) for the case where Gy is u.s.c (resp. Ls.c).
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