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1 Introduction
The (weighted) hypergraph is defined as a triplet G = (V, E,w) of
e a finite set V = {vy,...,v,} (vertex set),

e a family £ C 2V of subsets with more than one element of V, that is, #e > 2 for
every e € E (set of hyperedges),

e a function w : E — (0,00) (edge weight).

This can be interpreted as a model of a network structure in which vertices vy,...,v, € V
are connected by each hyperedge e € E (see Figure 1).

As for the case where G is a usual graph (i.e., every e € E satisfies #e = 2), then an
operator called “graph Laplacian” can be defined as the matrix of order n = #V, which
describes the random walk movement of particles on the graph. It is well known that
the network structure of the graph can be investigated through the study of eigenvalues
of the graph Laplacian, which is called “spectral graph theory” established in the 1980s.
This theory has been applied to the algorithm of measuring the importance of website,
which is called PageRank, and the Cheeger type inequality, which is related to the cluster

analysis (see, e.g., [3, 4, 5, 7] and references therein).
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In order to develop the spectral graph theory to more general networks, Prof. Yuichi
Yoshida introduced an operator called the hypergraph Laplacian L¢, in [19]. As seen in
the next section, L¢ , is a nonlinear and multivalued operator defined as the subdifferential
of some convex function. Therefore, we can apply the abstract theory for the nonlinear
evolution equation to this operator and the differential equation governed by L .

In this paper, we aim to study the hypergraph Laplacian Lg, more precisely beyond
the facts known as the abstract results. In this next section, we state the definition of
the hypergraph Laplacian and some facts which can be derived from the general theory.
In Section 3, as for our main assertion, we introduce an inequality which holds for the
hypergraph Laplacian L¢, and quite resembles the Poincaré-Wirtinger inequality in PDE.
We next consider the evolution equation z'(t) + L¢,(2(t)) 2 h(t). This ODE has been
applied to study the Cheeger like inequality and the PageRank of network represented
by hypergraph (see, e.g., [10, 12, 18]). However, due to the complexity of structure, it
seems that the argument for usual graphs, namely, the case where Laplacian is a matrix,
is almost broken and the details of the ODE have not been well discussed yet. By using
the Poincaré-Wirtinger type inequality, in the final section, we show some results for
this equation other than the solvability, which have been already assured by the abstract

Figure 1: If e € E consists of two elements, then e = {u, v} can be regarded as a segment

theory.

connecting two vertices u,v. Hence every e € FE is a binary set, then G represents a
network composed of points and connecting lines (left figure, called usual graph). The
hypergraph is a generalization of the usual graph which allows the grouping of multiple
members (right figure). The weight w(e) represents the multiplicity of connecting lines

e € E or the degree of ease of a heat/particle flow across the pass e € E.



2 Definition and Properties of Hypergraph Laplacian

2.1 Preliminary

We first review some well-known facts of maximal monotone operators and subdifferential
operators for later use (details and their proof can be found in, e.g., [1, 2, 17]). Let H be a
real Hilbert space with the norm ||-|| and the inner product (-,-). A (possibly) multivalued
operator A : H — 28 (the power set of H) is said to be monotone if (7, — 7y, & — &) >0
holds for any &; € D(A) (the domain of A) and n; € A (j = 1,2). Moreover, a
monotone operator A is said to be maximal monotone if there is no monotone operator

which contains A properly. If A is maximal monotone,

e A¢ forms a closed convex subset in H for every £ € D(A).

o If n,, € A&, & — & strongly in H, and n,, — n weakly in H as m — oo, then
€ € D(A) and n € A hold (i.e., the maximal monotone operator is demiclosed).

It is well known that the subdifferential operator of a proper lower semi-continuous
convex function is always maximal monotone. Here the subdifferential of a proper (i.e.,

g # +00) lower semi-continuous and convex functional g : H — (—o0, +00] is defined by

(1) dg: &= {neH; (n,2-¢) <g(z)—g(§) Vz€ H}.
By the definition, we also find that
(2) 0€09(§) & 9() =g(z) VzeH, ie, g(§)=ming(z).

There are many studies which are concerned with the theory of solvability of evolution
equations governed by the subdifferential operator, which is the so-called Komura—Brézis
theory. For instance, the existence of a unique solution to the Cauchy problem for a basic

equation has been assured as follows (see [14] and [2, Theorem 3.6-3.7]):

Proposition 1. Let g : H — (—o00,+00] be a proper lower semi-continuous convex
function and assume that & € D(g) :={z € H;g(z) < oo} and h € L*(0,T; H). Then

'(t) +99(&(t) > h(t) te(0,7),

5(0) = 507
possesses a unique solution satisfying & € W12(0,T; H). Moreover, if t, € [0,T) is a
right-Lebesgue point of h (i.e., 3h(ty+0) := lim,_, 1o 2 ot h(s)ds), the solution is right-

;to

(3)

differentiable at tg and its right-derivative satisfies

(@) T (1) = (h(to +0) - D(€(10)))"



where C° := argmin_ ., ||z|| = Proj. 0 for a closed convex set C' C H.

When g, : H - R (u = 1,...,m) are lower semi-continuous convex functions, their
maximum envelope ¢(§) := max,—1__m g,(§) is also convex and lower semi-continuous
on H, and then the subdifferential of g can be define. In the case where H is the finite
dimensional space, we have the following maximum rule of subdifferential (or the so-called

Danskin-Bertseka’s Theorem, see, e.g., [15, Proposition 2.54]):

Proposition 2. Let H be a finite dimensional space, g, : H - R (p =1,2,...,m) be
convex functions satisfying D(g,) = H, and g(§) := max,—1,__m g,(§). Then for every
¢ € H, the subdifferential of g can be represented by

006) = (o 9y(6) ) =eone | | 2nule) ).

ll’:]‘?"'?m
veN(e)

where

VO = {re 2. mk 0= max .6}

pn=1,...m

2.2 Definition

For simplicity, we suppose that the hypergraph G = (V, E,w) is connected throughout
this paper (general case is discussed in [13]). Namely, assume that for every u,v € V
there exist some wg,...,un—1 € V and ey, eq,...,en € E st. uj_1,u; € e; for any
j=1,2,...,N, where ug = v and uy = v (see Figure 2).

In this paper, we consider the operators and the differential equations on RY, which
stands for the family of mappings x : V' — R. Obviously, we can identify R with the
n-dimensional Euclidean space R" by letting x; := z(v;) and x ~ (x4,...,2,). Hence RV
can be regarded as a real Hilbert space with the following standard inner product and

norm:

-y ::Zx(v)y(v) :inyj, || == Vz -z z,y € RY.
i=1

veV

For later use, we here define 15 : V — R with S C V by

1 ifvels,
0 ifoeV\S.
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Figure 2: When G is connected, we can select suitable relay points uq, us, ... and bridges
e1,€s, ... which connect the two vertices chosen arbitrarily. This also implies that there

is no isolated vertex nor island.

When S = {v}, we might abbreviate 15, as 1,. Note that 1,, € RV can be identified
with the ¢-th unit vector of the canonical basis of R™ and 1y ~ (1,...,1). Moreover, let
B. C RY be a subset defined with respect to each hyperedge e € E by

B, :=conv{l, — 1, € RY; u,v € ¢}
(5) v v -
=convy (...,0,1,0,...,0,—1,0,...) e R"; 4,5 s.t. v;,v; €€ p,

which is called the base polytope for e € E. Here conv () denotes the convex hull of
Q CRY.

We here consider

(6)  folw) = max(a(u) - 2(v)) = max|a(u) — o(0v)| = max |r;—z;]  weRY,
u,vee u,vee i,7 s.t.
Vi,V € e

where e € E. By (5), we also have f.(r) = maxpep, b+ x. Clearly, f. : RV — R is
continuous and convex, then f, is subdifferentiable at every z € RY. Since f.(x) is defined
as the maximum envelope of g;;(v) := x; — x; (i, s.t. v;,v; € e) and Jg;;(x) = 1, — 1,
we can derive from Proposition 2

(7) afe(w):argmaxb-az:{beeBe; be-avzmaxb-m}.

beB. beB.

Obviously, b, - # = f.(x) holds for every z € RV and b, € df.(x).

As seen in (1), the subgradient of convex function possibly returns set-value at some
x € RV where the functional is non-smooth. We here check the case where df.(z) is a
singleton or a set-value. Let V' = {vy,v9,v3,v4} and E = {V'}, i.e., the hyperedge includes

all vertices of V. Remark that f. = fy = max; j—1_ 4|z, — x|
(Ex.1) Let © = (z1, 9, x3,24) = (2,1,1,—2). Since f.(z) = x1 — x4, we have

Ofe(x) =(1,0,0,—1) = 1,, — 1,,.
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Namely, df.(x) coincides with the derivative of  +— 27 —z4 and becomes a singleton.

(Ex.2) Let x = (z1, 9, x3,24) = (2,2,0,—1). Since fe(x) = x1 — 4 = x5 — x4, we have

8f6($) = {()‘(1111 - 1v4) + (1 - )‘)<1v2 — 11,4); AE [O, 1]}
— (A (1= ),0,—1); Ae[0,1]}.

(Ex.3) Let x = (x1, 29, x3,24) = (1,1, —1,—1). Since fe(x) = a1 —x4 = 90— 24 = 1 — T3 =
xo—13, then df.(z) coincides with the convex combination of 1,, —1,, = (1,0,0, —1),
1, — 1,, =(0,1,0,-1), 1,, — 1,, = (1,0,—1,0), and 1,, — 1,, = (0,1,—1,0), i.e.,

afe(x) = {</\7 (1 - /\)7 —H, _(1 - :LL)); )‘nu € [07 1]}

These examples imply that 0 f.(x) becomes multi-valued if v — x(v) takes the maximum
or minimum value at several vertices v, that is to say, the components of the vector
r = (x1,...,x,) take maximum or minimum values for multiple coordinates.

By using f. defined for each e € E, we set the following continuous convex function
on RY:
®) paplt) = %;w(e)(fe(ﬁ))p pell o).
Thanks to the subdifferential formula of the composition of functionals (see, [6, Corollary
3.5] and also [13, Proposition 2.2]), we can calculate the subgradient of ¢¢, like the

standard chain rule of differential:

Opcp(x) =Y wle)(fu(z)) " 0f(x)

eckE

(9)
— {Z w(e)(fo(x))P be; b, € argmaxb - z} :

oy beEB.

Definition 1. The hypergraph (p-)Laplacian L, : RV — 28" on the hypergraph G =
(V,E,w) with p € [1,00) is defined by Lg, == 0vap.

Remark 1. If p > 1 and G is a usual graph, i.e., each e € F contains two elements,
L¢p(x) becomes a single-valued operator. Indeed, since f.(z) = |z(v;) — x(v;)| when
e = {v;,v;}, we get

1 n
pep(x) = % > wijlri — ayl?,
ij—=1



where z(v;) is abbreviated to z; and

w({vi,v;}) if {v;,v;} € E, 1ie., v; and v; are connected,
wij =
0 it {v,,v;} € E, ie., v; and v; are disconnected.
Clearly, this functional is differentiable in the classical sense except for p = 1 and its
subgradient coincides with its derivative (see [1, Ch.1.2]). Especially, calculating partial

derivatives for the case where p = 2, we have
n n
Oripaa() = wijw; — x5) = diw; — Yy wij;
j=1 j=1

:<_wi17-"7di_wiia"'a_win)"rv

where d; 1= "7 | w;; denotes the (weighted) number of vertex connected to v;. Hence
L¢ 2 = 0y o coincides with the classical graph Laplacian matrix for the usual graph, that
is, Lgo = D — A, where D := diag(dy,...,d,) and A := (w;;) are the square matrices of
order n = #V called the (weighted) degree matrix and the (weighted) adjacency matrix,
respectively.

On the other hand, when G is a hypergraph, L ,(z) possibly returns a set-value on
Ueers Unveel® € RY; 2(u) = (v)} (union of hyperplanes) by the singularity of derivative

of the max-function even if p > 1.

Remark 2. From the point of view of the graph theory and the discrete convex analysis,
the function f. : RV — R is derived from the Lovész extension of the following set-
function on 2V, that is, the Choquet integral with respect to the following non-additive
measure over V' (see, e.g, [11, §6.3]):

1 ifensS, enS®+#a,

F.(9) = 7

0 otherwise,
which is called the cut function with the hyperedge e € E. In [19], a generalization of the
graph Laplacian (called the submodular Laplacian) is introduced as the subdifferential
of the energy functional consisting of the Lovasz extension of the general submodular

set-function.

2.3 Basic Tools

We here consider the minimizers of f. and ¢¢ . Remark that f.(z), g p,(z) > 0 hold for
any x € RV. By the definition (6), we obtain

Je(x) = magé\av(u) —z(v)|=0 & z(u)==x(v) Yu,v€e.

)
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Namely, z is the minimizer of f. if and only if the elements of x at vertices contained by
e € E take the same value. This fact immediately yields that

Pap(r) = min pep(y) =0 & fe(z)=0 Vee E

yeRV
(10) & z(u)=z() Yuvee Yee E & z(u)=2x(v) Yu,veV
& JeeR st.x=cly=(c...,c),

since the hypergraph G = (V, E,w) is assumed to be connected. Moreover, we obtain the

following.

Theorem 2.1. Let p > 1. Then z € RY satisfies 0 € Lg () if and only if z = cly with
some ¢ € R. Furthermore, for every € RV and ¢ € R, it holds that

(11) (PG,p(I + ClV) = ‘PG,p(I)v LG,p<I + ClV) = LG,p(‘T)'

PROOF. The first result is derived from (2) and (10) directly. We next check (11).
Since (1, — 1,) -1y =1 —1 = 0 holds for any u,v € V, we obtain b- 1y, = 0 for any
be B. =conv{l, —1,; u,v € e}. This leads to

felx +cly) = gréaBi(U (x+cly) = Ibré%):b cx = fo(x)
for every e € E, x € RV, and ¢ € R. By (7), we also have

be € 0fe(x+cly) & be-(v+cly) =maxb- (z+cly)

beB.
& be-zzlbré%:;(b-x & b, € Ofe(x).
Therefore, these and the definition (8)(9) entail (11). O

Remark 3. Theorem 2.1 implies the lack of coerciveness of ¢ ,. Indeed,

SDG,p($ + ClV) _ SOG,p(m)
|z + cly|] |z + cly||

— 0 as |c] = o0,

3 Poincaré—Wirtinger Type Inequality

By the general theory of gradient flows, the solution to the evolution equation &'(t) +
0g(&(t)) 3 0 acts toward the minimizer of the energy functional g and the limit of solution
lim; o &(t) attains the minimum of g. According to this fact, we can expect that the
hypergraph Laplacian L¢, has the effect of homogenizing the values of x and then the

solution might move toward the mean value of the initial state.
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Based on this, we here define the averaging of x by

_ 1 1 ¢ 1 ¢
(12) T = (EZMU)) 1V—<EZ:C¢,...,EZ:C¢>,
veV i=1
that is, a vector whose elements are the mean value of . Then we can obtain the following

inequality.

Theorem 3.1. Let p > 1. Then every z € RY and y € Lg () satisfy

(13) |z =Z[|” <pTappep(®) =Tap vy,
where

nP(N*)P~1
(14) FG,p = ( )

min.cp w(e)

and N* is the “diameter” of G, i.e.,

N* := max dist(u, v),
u,veV
Juq, ... 1€V, dey,... E s.t.
dist(u, v) := min{N; Uty .oy UN—1 €V, J€1,...,6N € LS }

ui—,u € e, Vi=1,2....N (ug=u, uy =0).

PROOF. Since b,-x = f.(x) holds for every x € RV and b, € df.(x), the representation
of Lg, implies z -y = Y _pw(e)(fe(z))? = ppap(x) (recall (9)). In order to show
|z —Z||? < p Dapeap(e), fix u,v € V arbitrarily and select uy,...,ux—1 € V and
é1,...,exy € F such that u;_1,u; € e; for any i = 1,2,..., N, where uyp = v and uy = v
(recall that G is assumed to be connected and note that N < N*). Hence by using

Holder’s inequality, we have

N
|z (u) |<Z’$uzl_$uz SZ

*\1/p’ e *\1/p'
o (Zw(e)(fe(:v))p> e i (Pl

~ mineep w(e)l/? gy mineep w(e

where p’ = p/(p — 1) is the Holder conjugate exponent. Recalling (12), we obtain

*)1/p
o) = 7(w)] < -3 low) = 2(0)] < e (g (o) Ve V.

min wile
veV e€l (

Therefore, by the general inequality ||z]] < D7, |z, we can derive (13) with (14). O

9



One might find some similarities between (13) and the Poincaré-—Wirtinger type in-
equality in PDE (see, e.g, [8, §5.8.1 Theorem 1]):

i),
u—— [ udz
Q[ Jo

For the hypergraph Laplacian, we also obtain the inverse inequality:

p
< ’YHVUHZ(Q) = W/Qu (=V - (|Vul[P?Vu))dz  Vue WP(Q).
LP(Q)

Theorem 3.2. Let p > 1. Then every x € RV and y € Lg () satisfy

(15) ||$ - EHP >p ’YGP‘PGP(‘T) =7p T"Y,
where

1
(16)

TGp = .
oy pwle)
PROOF. Since Z(u) = T(v) = £ 3" | ; holds for any u,v € V, we have

fe(z) = max|z(u) — z(v)| = max |z(u) — T(u) + T(v) — z(v)]

u,vee u,vee
<D le(v) = z(v)| < Vallz — 7.
veV

Hence we have

ppep(r) < nl? <Z w(€)> |z —z||”

which yields (15) with (16). O

Remark 4. One of the differences between the hypergraph Laplacian and p-Laplacian in
PDE is that 0y¢,, is not strongly monotone. Indeed, let #V =4, E ={V}, w =1, and

T = ($1,$2,$3,$4) = (17a17b17 _1)7 y= (9179271/37114) = (1,@2,[)2,—1).

By letting |a;|,|b;] < 1 (j = 1,2), we have argmax,y z(v) = argmax, y(v) = v; and

argmin, .y, x(v) = argmin, ¢y y(v) = v4. Then fo(z) = fo(y) = (1 — (—1)) =2 and
Lap(r) = Lay(y) = (27,0,0,=2"7).

Hence we obtain (Lg,(z) — Lap(y)) - (¢ —y) = 0 although a;,b; € (—1,1) can be chosen
arbitrarily so that x # y and T =7¥. That is to say, (Lgp(z) — Lap(y)) - (x — y) can not
be bounded from below by |z — y| nor ||(z —7) — (y — 9)||-

10



4 Evolution Equation with Hypergraph Laplacian

4.1 Cauchy Problem

Using the Poincaré type inequalities provided in the previous section, we here consider
the following Cauchy problem of a multi-valued nonlinear ordinary differential equation
associated with the hypergraph Laplacian:

z'(t) + Lap(x(t)) 2 h(t) te(0,7),

(17)
z(0) = o,

where z : [0,7] — RY is an unknown function and h : [0,7] — RY is a given external
force. Since Lg, coincides with the subdifferential dy¢ p, the Komura-Brézis theory
(Proposition 1) is applicable to (17) and we can assure that for any given data xy €
D(pc,p) = RY and h € L?(0,T;RY) there exists a unique solution = € W'2(0, T;RY).
We here aim to discuss the time global behavior of solution to (17) more precisely as a
result which can not be discussed only by the abstract theory.

We test the equation (17) by 1y = (1,...,1). Note that = -1y = >, x; holds for
any € RV and b- 1y = 0 for any b € B, = conv{l, — 1,; u,v € e} (recall our proof for
Theorem 2.1). Therefore, we have y - 1y, = 0 for every y € L¢ (), which implies

s (%szt)) == > o),

=1
that is, for every ¢t € [0,T],

(18) T(t) = 7o + /O h(s)ds.

Especially, Z(t) = Ty holds for any ¢ > 0 if h = 0.
By this “mass” conservation law of (17), we obtain the following decay estimate of

solution tending to the mean value of initial state.

Then for every t > 0,

9 _ 1/(2-p) 9 _ 1/(2-p)
(X(O)Q‘p — pt) < X(t) < (X(O)Q‘p — pt) if 1 <p<2,

7G7p + - PG,p +
X (0) exp (—7(_;71pt) < X(t) < X(0)exp (—Fé}pt) if p=2,
1 p— 2 -1/(p—2) 1 p— 2 -1/(»p-2) .
t < X(t) < t fp>2
(o) <x0< (st =2

11



where (s)4 := max{s,0} and ', g, are constants defined by (14), (16), respectively.

PROOF. Since Zg = cly with ¢ = 1 3" 1 ¢(v), we have for every y(t) € Le(2(t))

y(t) - (z(t) — To) = ppap(x(t) — c(y(t) - Iv) = ppap(x(t)).

Hence multiplying (17) by x(t) — Tg, we obtain the following identity:

1d _
(19) 57170 = Toll* + pocp((t)) = 0.
Then applying Theorem 3.1 and 3.2, we deduce
_ _ d _ _ _
(20) ~2g,lle(t) = O < Zll2(t) = To|* < =20} () = 21",
which together with Z(t) = Ty leads to the inequalities in Theorem 4.1. O

Remark 5. By Remark 4, 0p¢ ), is not strongly monotone and then it is difficult to show
the asymptotic behavior of two different solutions x(¢) and y(¢) by the standard method
via a priori estimate of x(t) — y(¢). However, by virtue of Theorem 4.1 and the triangle
inequality, we easily obtain the following.

Corollary 1. Let x,y be the solutions to (17) with A = 0 and the initial data zg, yo,

respectively. If Tg = 7, then we have for every ¢ > 0

( 1/(2-p) 1/(2-p)
2 — 2 —
(Xg—p e t) + (YOH e t) if1<p<2

FG,p + Fva +
z(t) — y(®)|| < { (Xo+ Yo) exp (=I'gLt) if p =2,
1 p—2 —1/(p-2) ( 1 p—2 )—1/(p—2) .
+ t + + t ifp>2,
(X€_2 FG,p ) Yop_2 FGm P
where X := ||zo — To|| and Yy := ||yo — Tol|-

Remark 6. Multi-valued operators in the evolution equation possibly cause the “jump” of
the derivative and then the solution to set-valued differential equations might not belong
to C''-class in general. For (17), we can construct an example of solution whose derivative
is not continuous.

Let #V =4, E ={V}, w =1, and p = 2. Then the solution to (17) with A = 0 and
xo=(2,1,-1,2) is

2¢ % if t < llog2,

x1(t) = 2 z4(t) = —a1 (1),
V2e if t > %log 2,
1 if t < llog2,

Ig(t) = 2 Ig(t) = —l’2<t).

V2e™ ift > %log 2,

12



Indeed, when 0 < ¢ < tg := 1 log 2, we have by z(t) > a5(t) > 3(t) > x4(t)
fe(@(t)) = 21(t) — 2a(t) = 4™,
dpca(z(t)) = fe(2(t))(1,0,0,—1) = (4e7>,0,0, —4e~*)

(recall Ex.1 of §2.2), which satisfies 2/(t) = (—4e7%*,0,0,4e™%) = —dpg2(z(t)). If t > to,
we have by x1(t) = xo(t) > x3(t) = x4(t) (see Ex.3 of §2.2)

z1(t) — 24(t) = 2o(t) — 23(t) = 2v/2e7,

{2v2e (1= ), =~ =) A e 0.1]]

(ﬂe‘t, V2et —/2e7, —\/ie_t) = —a/(t).

fe(x(t)
0pc2(x(t)

)
) =
>
Hence z(t) fulfills —2/(t) € Opaa(z(t)) except for ¢ = t3. Moreover, we can easily check
that

(=0pca2(2(t))” = — (Dpca(z(t)))”
(—4e72t,0,0,4e™%) if 0<t<ty,

(_\/ie_t7 _\/ie_t7 \/ie_t7 \/ie_t) if ¢ Z tO?

coincides with the right derivative of solution %(t) for every t > 0.

By this example, one might perceive that the solutions to (17) first behave to bring
the maximum value and the minimum value in e € E (i.e., z1(t) and z4(t)) closer and the
other components with middle value (z2(t) and x3(¢)) halt. After the components with
the maximum or minimum value touch others, these components simultaneously act and

the jump of time-derivative occurs.

4.2 Periodic Problem

Next we consider the following time-periodic problem:

2'(t) + Lap(x(t)) 2 h(t) te (0,7),

21
2 z(0) = (7).

As for the known results, [2, Corollaier 3.4] assures the solvability of the time-periodic
problem of nonlinear evolution governed by the subdifferential operator with the coercive-
ness. For the case where the subdifferential is not coercive, [9, Théoreme 3] guarantees
the existence of a periodic solution to &'(t) + dg(&(t)) > h(t) under the assumption that

13



T fOT h(t)dt belongs to the interior of the range of dg. However, the fact that y-1y = 0 for
every y € Lgp(z) implies that R(Lg,) C {cly € RY; c € R}t = {z € RY; T = 0}, which
has no interior point. Hence, to the best of our knowledge, there are very few abstract
theory which can be applied to our problem (21).

Although (21) cannot be solved by known results, one might perceive that the hy-
pergraph Laplacian has properties similar to those of the Neumann-Laplacian in PDE so
far, for instance, the lack of coerciveness, the mass conservation law, and the convergence
of solution toward the mean value of initial state. So we can expect that a solution to
(21) can be constructed by employing a technique for parabolic equations governed by
the Neumann Laplacian (see, e.g., [16]). Note that

(22) /0 ' h(t)dt =0

is obtained as a necessary condition of the existence of solutions satisfying x(0) = z(T")
by (18) with ¢ = T.

Theorem 4.2. Let h € L¥ (0, T;R") with p/ := max{2, p'} and assume (22). Then (21)
possesses at least one solution z € W12(0, T;RY).

PRrROOF. We set the following approximation problem with the parameter € > 0:

(23) 2L (t) + ex.(t) + Lap(z:(t)) 2 (1) te (0,7,
ze(0) = (7).

Since
€
o p(T) = §H~TH2 + e p()

satisfies the coerciveness and 0¢f ,(z) = ex + Lg (), (23) possesses a unique periodic
solution x. € WH2(0,T;RY) for any given h € L?(0,T;R") (see [2, Corollaire 3.4]).
Multiplying (23) by 1y, integrating over [0, 7], and using the condition x.(0) = z.(T)

and (22), we get
T n
/ (Z %i(t)) dt =0,
0 \i=1

which implies that there exists some ¢. € [0,7] such that Y !, z.(t.) = 0, that is,
Z:(t.) = 0. Testing (23) by 1y again and integrating over [t.,t] (¢t € [t.,t. + T]), we have

<Z$Ei(t)> = /t e—=(t=9) (Z hi(s)> ds = T(t) = /t et~ (s)ds,

14



which leads to
T
(24) sup [[z=(¢)| S/ |h(s)lds.
0<t<T 0

Multiplying (23) by x. and integrating over [0, 7], we have

. / leo(8) 2t + p / (o (0)dt

<(/ ' ol i) " [( / eat) - w0l o (/ ) (ot W] .

Let C denote a general constant independent of € > 0. Then by (13) and (24),

(25) / ||xs<t>||2dt+/0 lao(t)Pdt < C.

Let ty € [0, 7] attain the minimum of ¢ — ||z.(¢)||. Clearly (25) implies ||z.(to)]| < C.
Testing (23) by x., we get

T T
(20) | ol < [ ppoira
We here use the chain rule for the subdifferential (see [2, Lemme 3.3)):
d
ye(t) - 2l(t) = Eg&g,p(xe(t)) a.e. tel0,T],

where y. : [0,7] — RY is the section of Lg ,(z.) satisfying (23), i.e., 2. (t)+ex.(t)+y.(t) =
h(t) and y.(t) € Lgp(2.(t)) for ae. t € (0,T). Since ||z(t)]| < C, (26) yields

(27) sup [le-()]] < C
0<t<T
and
T
(28) / lye ()12t < C.
JO

By (26)(27)(28), we can discuss the standard argument of convergence of solutions and
equation as € — 0, whence it follows Theorem 4.2. O

Remark 7. The uniqueness of time-periodic solution dose not hold in general. Indeed,
let #V =4, E={V},w=1,p=2,a,5 >0 and

2ccexp (2(t — 1)) + 28



then

becomes a solution to (21) for arbitrary fixed a,b € (—a — 3, a + f3).

By virtue of [9, Théoreme 5], however, we can see the following fact.

Theorem 4.3. Let x,y € WH2(0,T;RY) be two solutions to (21) with the same given h
satisfying (22), then there exists some constant z € RV such that z =y + z.

References

[1] V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces,
Springer, New York, 2010.

[2] H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans
les Espaces de Hilbert, North-Holland, Amsterdam, 1973.

[3] S. Brin and L. Page, The anatomy of a large-scale hypertextual Web search engine,
Comput. Networks ISDN Syst. 30 (1998), 107-117.

[4] F. Chung, Spectral Graph Theory, American Mathematical Society, Providence, RI,
1997.

[5] F. Chung, The heat kernel as the pagerank of a graph, Proc. Nat. Acad. Sci. USA.
104(50) (2007), 19735-19740.

[6] C. Combari and M. Laghdir and L. Thibault, A note on subdifferentials of convex
composite functionals, Arch. Math. 67(3) (1996), 239-252.

[7] D.M. Cvetkovi¢ and M. Doob and H. Sachs, Spectra of Graphs, Theory and Applica-
tion, Academic Press, 1980.

[8] L.C. Evans, Partial Differential Equations Second Edition, American Mathematical
Society, Providence, RI, 2010.

9] A. Haraux, Equations d’évolution non linéaires: solutions bornées et périodiques,
Ann. Inst. Fourier. 28(2) (1978), 201-220.

16



[10] K. Fujii and T. Soma and Y. Yoshida, Polynomial-time algorithms for submodular
Laplacian systems, Theoret. Comput. Sci. 892 (2021), 170-186.

[11] S. Fujishige; Submodular functions and optimization, Annals of Discrete Mathematics
47, North-Holland, Amsterdam, 1991.

[12] M. Ikeda and A. Miyauchi and Y. Takai and Y. Yoshida, Finding cheeger cuts in
hypergraphs via heat equation, Theoret. Comput. Sci. 930 (2022), 1-23.

[13] M. Ikeda and S. Uchida, Nonlinear evolution equation associated with hypergraph
Laplacian, to appear in Math. Meth. Appl. Sci. (doi: 10.1002/mma.9068).

[14] Y. Komura, Nonlinear semi-groups in Hilbert space, J. Math. Soc. Japan. 19 (1967),
493-507.

[15] B.S. Mordukhovich and N.M. Nam, An Easy Path to Convex Analysis and Applica-
tions, Morgan and Claypool Publishers, Williston, VT, 2014.

[16] M. Otani and S. Uchida, Global solvability of some double-diffusive convection system
coupled with Brinkman-Forchheimer equations, Lib. Math. (N.S.) 33(1) (2013), 79—
107.

[17] R.E. Showalter, Monotone operators in Banach space and nonlinear partial differen-

tial equations, American Mathematical Society, Providence, RI, 1997.

[18] Y. Takai and A. Miyauchi and M. Ikeda and Y. Yoshida, Hypergraph Clustering
Based on PageRank, Proc. 26th ACM SIGKDD Int. Conf. Knowledge Discovery &
Data Mining (2020), 1970-1978.

[19] Yoshida Y. Cheeger Inequalities for Submodular Transformations, Proc. 2019 Annu.
ACM-SIAM Sympos. Discrete Algorithms (SODA) (2019), 2582-2601.

Shun UCHIDA

Department of Integrated Science and Technology,
Faculty of Science and Technology,

Oita University

700 Dannoharu, Oita, 870-1192,

JAPAN.

E-mail:shunuchida@oita-u.ac.jp

17



