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1. Introduction

In this paper, we consider the initial-value problem of the following second-order
differential equation in a Hilbert space H:

u'(t) + Au(t) +u/(t) =0, t € (0,00),
- {(u,u'><o> = (uny ),

where A is a nonnegative selfadjoint operator in H endowed with domain D(A). The
initial data (ug,u;) are given and assumed to be sufficiently regular (ug,u; € D(A?)
for sufficiently large ¢ € N). Of course, the typical example of such a problem is the
initial-boundary value problem of the usual damped wave equation

OPu(z,t) — Au(z,t) + u(z,t) =0, (x,t) € Q x (0,00),
(1.2) u(z,t) =0, (x,t) € 09 x (0, 00),
(u, Opu)(z,0) = (up(x), us(x)) x €,

where Q) C RY is an open set having a smooth boundary 952, 0, = % and A = ivzl %.
k
One can easily find that the solution u of (1.2) satisfies the energy identity

t
101220y + VU@l ) +2/ 10u($)I[72(0 ds = llurllZ2(@) + | VuuollZz(q)
0

which immediately gives the uniform boundedness of the derivative of u. In contrast,
estimates for the solution wu itself is not so clear. Actually, the energy functional
10u]|72) + VUl 2y does not have a good factor to control the L?-norm of u. In the

case = RY, the Fourier transform is a powerful tool to analyse the precise behavior
of solution w. Even if  # RY, the spectral analysis in view of selfadjointness of the
Laplacian could be a good tool for the analysis of solutions to (1.2). Instead of this,
aiming for generalization to the case of problems governed by some non-selfadjoint op-
erators, we shall discuss several properties of (1.1) without such tools which force the
situation to be limited. Here we focus our attention to the framework of energy method.

In 1961, Morawetz [9] suggests the following procedure for the wave equation (with-
out damping term). Let us consider the initial-boundary value problem of the linear



wave equation

OPu(x,t) — Au(z,t) =0, (x,t) € Q x (0,00),
(1.3) u(z,t) =0, (x,t) € 9 x (0, 00),
(u, Oyu)(x,0) = (up(z),us(x)), =€,

where ) is an exterior domain of a star-shaped obstacle in R3. She introduced the
Poisson equation Ah = u; and the auxiliary problem

Px(z,t) — Ax(z,t) =0, (x,t) € Q x (0,00),
(1.4) x(x,t) =0, (x,t) € 92 x (0, 00),
0 0x) (2, 0) = (h(z), uo(z)), = € Q.

Then one can find the relation 0;x = u. This relation provides that the energy identity
for y can be regarded as the L?-estimate of u:

lu®)lZ2@) < 10X O Iz20) + IVXOZ2(0) < luollzzio) + I VA @)

This argument suggests that an L?-estimate of solutions to the wave equation can be
observed via the energy estimate for the “primitive” of the solution as the one of the
wave equation.

Later, in Ikehata-Matsuyama [4], they developed the above “Morawetz’s method”
for the damped wave equation in N-dimensional exterior domain (N > 2) via the
following auxiliary problem

O2x(x,t) — Ax(z,t) + Orx(z,t) = uy(x), (z,t) € Q x (0,00),
(1.5) x(x,t) =0, (x,t) € 0Q x (0, 00),
(X?atX>(I7O) = (Ovu()(I))v x € .

The advantage of the technique in [4] is to avoid the analysis of the Poisson equation
Ah = wuy, which depends on the structure of the fundamental solution. From this
viewpoint, Ikehata—Nishihara [5] employ the modified version of “Morawetz’s method”
to the abstract Cauchy problem (1.1) to prove the diffusion phenomena. More precisely,
in [5], the following modification is used:

U'(t) + AU(t) = —u/(t), t € (0,00),
U(0) = 0.

In that case, one can have u(t) = e~*(ug+uy, ) +U’(t), where (e7*4);5¢ stands for the Cj-
semigroup generated by —A. A suitable energy estimate for U combined with the above
decomposition provides estimates for diffusion phenomena. We refer Chill-Haraux [1]
for a further detailed discussion based on the spectral analysis.

The asymptotic expansion of solutions to (1.2) with Q@ = R™ has been dealt with
n [11]. The strategy in [11] heavily depends on the knowledge of the Fourier analysis,



but (one of) the expansion is written in term of the heat semigroup €' as
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where o, and [, are the appropriate constants (determined through the Taylor expan-
sion for the Fourier symbol of the solution map). This expansion seems to be reasonable
from the viewpoint of an abstract framework in Hilbert spaces.

In the present paper, an alternative framework for the asymptotic expansion for
(1.1) via energy methods with a decomposition is proposed. This part is based on
[10]. Incidentally, we have found a technique applicable to the following singular limit
problem of the abstract Cauchy problem

(1.6) {gu’e’@) + Au(t) +ul(t) =0, t€(0,00),

(e, uz)(0) = (uo, ua)
with the parameter € > 0. This part is based on the joint work [6] with Professor Ryo
Ikehata (Hiroshima University). The problem is to analyse the behavior of solution u.
when ¢ tends to 0. An expected limit problem can be seen as

{Aua(t) Ful(t) =0, te(0,00),

(1.7) u(0)

which seems to be not reasonable if Aug+ u; # 0. This kind of problem has been dealt
with in Kisynski [7] via the spectral analysis. In [7], it is proved the following.

Theorem 1.1 (Kisynski [7]). Let u. be the solution of (1.7). Then

|ue(t) — e Hug || g = O(£/?) if (ug,u1) € D(AY?) x H,
|ul (t) + Aeug — e 5 (Aug +up)|| g = O(eY?) if (up,u1) € D(A%?) x D(AY?)

as € — +0.

The factor e=*/¢(Aug+u, ) is so-called the initial-layer which bridges the gap between
(1.6) and the limit problem (1.7) (for the general theory for singular limit problems with
boundary layer, see e.g., the book of Lions [8]). Ikehata discussed in [3] the singular
limit problem (1.6) from the viewpoint of the (modified) Morawetz’s method explained
above. Although, in Chill-Haraux [2] the analysis of the singular limit problem has
been developed by the spectral analysis, in the connection explained above, we shall
explain how to apply the decomposition in the idea of asymptotic expansion to the
singular limit problem (1.6).

This paper is organized as follows. In Section 2, a decomposition of solutions to
the abstract second order differential equations is explained. In Section 3, we give the
idea of asymptotic expansion of solutions to (1.1) and the (successive) construction of
each asymptotic profiles via the decomposition. The verification is done by the energy
method. In Section 4, we treat (1.6) from the viewpoint of our decomposition.
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2 A decomposition lemma

Here we introduce the following abstract Cauchy problem with inhomogeneous term:

(2.1) {€w”(t) + Aw(t) +w'(t) = F(t), te (0,00),
(w, w)(0) = (wo, w1),

where € > 0, (wg,w;) € D(AY?) x H and F € C([0,00); H). Then we can prove the
following decomposition for w.

Lemma 1. Let w be the solution of (2.1) for e > 0. Set v and U as the respective
solutions to the following problems:

V() + Av(t) = F(t), t € (0,00),
(22) {U(O) = 1.
23) {5U”(t) FAU@®) +U'(t) = —'(), te (0,00),
‘ (U, U")(0) = (Uy, th),

where vy € D(AY?) and (Uy, Uy) € D(A) x D(AY?). If
U0+€U1 = Wy, U1+AU0:—U)1,

then one has
w(t) = v(t) +U'(1).

Proof. By a suitable approximation, we can assume without loss of generality that vy,
Uy and U, are regular enough.
Put @ = v+ ¢eU’. Then we easily have w(0) = vy +eU; = wy. The equation in (2.3)
gives
w =v +eU" =—(AU + U')

which yields @'(0) = —(AUy 4+ U;) = wy. Moreover, one can show by the equation in
(2.2) that

(ew' 4+ w) = —(cAU —v) = —cAU' — Av+ F = —Aw + F.
The uniqueness of solutions to (2.1) provides @ = w. O

Remark 2.1. In Ikehata—Nishihara [5], the decomposition w = v + U’ as also used as
explained in Introduction. In [5], U was regarded as the solution of the first order
equation U’ + AU = —u/(t) which includes u itself in the inhomogeneous term. From
this viewpoint, the possibility of a further decomposition cannot seen.

The merit of this decomposition is the following. The problem of U has the same
structure as the one of w. Therefore we can successively apply Lemma 1 to the remain-
der term in the following way:

w=v+el =v+e(v,+eU) =v+e(vy +e(ves +eU.)) =
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which suggests the expansion

w=v+ev, + >, +--

in some sense. This consideration will be used in the proof of asymptotic expansion
(¢ = 1) and also in the proof of singular limit problem (0 < ¢ < 1).

3 Asymptotic expansion

Here we give a successive derivation of arbitrary order of the asymptotic profiles of the
solution u to (1.1). To shorten the notation we set uf = ug + u;. Applying Lemma 1
with (v, Up, Uy) = (ug, 0, —uy) to (1.1), we first have u = Vj + U] with

‘ Vo(0) = ug.
(3.2) UL (t) + AUL(t) + Ui(t) = =V5(t), ¢ € (0,00),
(U1, U7)(0) = (0, —ua).
We can find the well-known representation of the first asymptotic profile Vo (t) = e~*Au.
Then we apply Lemma 1 with (—uq,0,u;) to (3.2), we secondly have U; = V; 4+ U, with
VI(t) + AVi(t) = =V{(t) = Ae g, t € (0,00),
(3.3)

(3.4) {Ug(t) + AUs(t) + Uj(t) = =V{(¢), t € (0,00),

(Uz, U3)(0) = (0, ua).

The problem (3.3) gives Vi (t) = —e "u; + tAe " uj which suggests that the second
asymptotic profile is given by

‘G,(t):AG_tAU1+A€ tA * tAQ —tA 0

As in the same way, we successively determine V;,, (m > 2) by the respective solutions
of the following problems

(3.5) {V'(t) + AV, (t)——V,;_l(t), t € (0, 00),

Vin(0) = (=1)"u

Then by induction, we can verify the following representation of V,, for m € N.

Definition 1. For m € N, define

Vin(t) = (=1)™ [zm: (?:f) (—;ﬁ)ﬁ eyl 4 (-1 : (mk— 1) (_/i—?)k e—tAm] ;

Jj=1

note that V,,, satisfies (3.5).



Moreover, by the direct calculation we reach the representations of - i 4"V which are

nothing but the representation of all asymptotic profiles of the solution u to the problem
(1.1).

Definition 2. For m € NU {0}, define @,, as

ﬂO(t) - 6_tAuSa

2m —1 '\ (—tA) oty om — 1Y\ (—tA)F .,
Z;<m+j—1> ! o +Z<m+k‘) T
]:

Then the following assertion holds, which describes the asymptotic expansion of
solutions to the damped wave equations.

Theorem 3.1 ([10]). Assume (ug,u,) € [D(A™2)]2 for some n € N. Let u be the
solution of (1.1) and let (Um)menuioy be given in definition 2. Then there exists a
positive constant C,, > 0 such that for every t > 0,

=S

Since for every m = 0, 1, ...,n, one can find the following estimate for u,, as

TU(t) = A™

Con(1 48 (Yt gty + 1l i)

[m @l < Crn(1+ 87" (Ilugllpeam + llusllpeam)

for some E’m, we can say that u,, is surely the m-th order asymptotic profile of the
solution u to (1.1).
Here we already have found the decomposition

_ dn+1Un+1
u(t) = Z U (t) + W(t)

where U, 1 is the solution of
56 ULy () + AU, 1 (8) + Upy () = V() t€ (0,50),
(Unt1,Up1)(0) = (0, (=1)" 1y ).

Via the energy method, we can prove Theorem 3.1. To achieve this, we need to control
the inhomogeneous term —V/ (given by the operator A and the Cyp-semigroup e~*4).
The following basic estimate for the analytic semigroup e~*4 is crucial.

Lemma 2. If f € H, then for everyn € NU{0} and t > 0,

t
n|| A2t e=*
/0 | A% e f |2 ds = | £

Moreover, if f € D(A™?), then there exists a positive constant C' (depending only n)
such that

n+1

(3.7) le™™ 4 £11* +

/0 (1+s)" A" e Af|2ds < C(|fII* + A2 £]2).



Sketch of the proof of Theorem 3.1. We only demonstrate the usual energy estimate for
U, 1. To simplify the notation, we use U = U,,.; and V = V,,. The computation is the
following:

LA, + |0+ VI = 207, AV), +2(07 + 0.0+ 1),
=2(U"AU) , +2(-AU -V ,U' +U),
= 2| A2U;, —2(V,U"),, —2(V',U),
< || AU + 101 + 1AV 5 + 1AV,
%[HMUH%, U] = 2007 + Av),,
= =2|U"|[5 - 2(U". V')
= — U5 + 1AV |13,

where we have used the equation in (3.6) and the fact V' = AV for some V. These
inequalities imply that

d
[+ (1a720 1 + 1071 ) + 211472015 + 200" + Ul
<~ U5 = IAY2U I + (6 4+ )| AV [ +2] 472V |3,

The integrability of (1 + t)||AV]|% and ||AY2V||2, (by Lemma 2) shows the estimate

sup (L+OI0OI) + [ A+ OIT Ol dt <+
>0 0
which is the end of estimate for U’. To reach the estimate for %, we argue by

induction with a similar energy method for £% (¢ = 1,...n) by computing the derivative

; dtf
0
dé—i—lU )
2041 1/2
(ac+1) (HA ol H—dtm H ):
dé—i—lU
2 1/2
(ac+1) (HA At H H A1 dtf H )
with suitable positive constants a,. As a result, we obtain
dn—i—lU
14t 2n+1’ " H ) <
sup (1074 | G )], ) < +oo
which is the desired estimate. O

4 Singular limit problem

The content of this section is based on [6]. The problem in this section is the singular
limit problem (1.6). From the viewpoint of the decomposition in Lemma 1, we reprove
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Theorem 1.1. It should be noticed that if we proceed the same strategy in Section 3 for
the singular limit problem (1.7), then we will apply Lemma 1 with (ug + eu, 0, —uq).
This implies

lus(t) = €7 (uo + ewr) [l < C2([luoll parvzy + Nl pearz))

which is properly weaker than the first assertion in Theorem 1.1. In the other words,
we cannot deal with the initial data (u,u;) in the energy space D(A'Y?) x H in this
treatment.

To fill the gap, we introduce the resolvent operator J, = (1+cA)~!, that is, h = J.g
is the solution of the equation h+cAh = ¢g. Then we apply Lemma 1 with (vo, Uy, Uy) =
(uo + eJeuy, —eJouy, —J-uq). This enables us to find the relation u. = v. + 0,U. with

vL(t) + Av.(t) =0, t € (0,00),
(4.1) {ve(O) = uy + eJouy,
o SUY(t) + AUL(8) + UL(E) = —(t) = Aua(t), t € (0,00),
‘ (U, U)(0) = (—edouy, —Jouy).

Since the resolvent equation shows the estimate
=gl + ell A Jgl3 < llgll,

the following estimate for the solution v, = e " (uy + eJ.u;) of (4.1) holds via Lemma
2:

o0 2
2 [ Aol dt < |4 00 < (14 00l + )
0

Moreover, by the equation in (4.2) we have

(O + 147200 = 2(00),0"(1) + AV () ,
=2(U'(t), =U'(t) + Avc(t)) ,,
< Al

which implies
1 2
NI + AU @I < ell Tl + 21 AY2 Tl + 5 (14" 2uoll + /2 e |1
9 2
< (11420l + &2 ur]1 )

Consequently, we obtain the first estimate in Theorem 1.1:

lu(t) — e ol < lu(t) = ve(O)lln + elle™ Jour ||

= e|U' )l +elle™ o ||

5)
< 2 (2014 2ol + el )



For the second estimate for (ug,u1) € D(A%?) x D(AY?), we divide the solution u. as
Ue = Upe + Uge With

euf (t) + Aup(t) + uf(t) =0, t€(0,00),
4 {(uk,uaexm — (0, — Au),
(44 {eu;;@ + Aup(t) + (1) =0, ¢ € (0,00),
(ze, 1) (0) = (0, 9).

where we put ¢ = Aug + u; for short. Since typical terms related to the initial layer
do not appear in the solution ui. of (4.3), we shall only explain the strategy for the
analysis of the other solution ug.. By using Lemma 1 with (eJ.g, —¢J.g, —J-g) to (4.4),
we have uy. = ee ' J.g + 8@5 with

(5) eUL(t) + AUs.(t) + Ul (t) = eAe A Jg, t € (0,00),
‘ (U2€7 Uéa)(()) = (_€J€g7 _JE )

Then setting
Vae(t) = =27 g + tAe g

(in view of the same manner in Lemma 1), we find that Us. = [725 — eVh, satisfies
eUS(t) + AUs.(t) + Ui (t) = —eViL(t), t € (0,00),
(Use, Upe)(0) = (eJeg, —9)-

This suggests the relation Us. + us. = eWs,., where wy. is the solution of

eW5L(t) + AWac(t) + Wi (1) = =V3l(1), T € (0,00),
(WZEa WQIe)(O) = (Jaga O)

(4.6)

(4.7)

Consequently, connecting the above decomposition, we arrive that
s (t) = e g + eUs(1)
=ce g+ eVy(t) + Uy (t)
= ce g+ eV (t) — cuy () + X W, (t)

which can be regarded as the first order differential equation for us.. By estimating
W3, via the energy method and solving this equation, we can reach

Theorem 4.1 ([6]). Let us. be the solution of (4.4). Then there exists a positive
constant C' such that for everyt >0,

luze (t) — (e g — e 2g)[lr < C¥2| A2 g .

Although the estimate in Theorem 4.1 differs from the second estimate in Theorem
1.1, it can be seen (and can be verified) that the derivative of the profile (of order ¢)
satisfies

g g(eMg—eeg)| = —cde Mg+ e g =g+ O(e)

which is nothing but the initial layer term found by Kisynski.
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