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1 Introduction

In this article, we study a useful method to analyze partial differential equations with time
delay. To treat partial differential equations with time delay, we have to focus on the multi-
dimensional problem and the delay effect. These two properties make complicated problems,
and few methods are known to handle them simultaneously. In this sense, we need a versatile
approach to analyze partial differential equations with time delay. Under this situation, we
employ the energy method and try to get a global-in-time solution to the Cauchy problem.

As a good example, we consider the following viscous Burgers equation with time delay:

Oip — vd2p+ 0 (pV (pr)) = 0, t>0, zeR, (1.1)

where p = p(t, z) is an unknown function, the positive constant v denotes the diffusion coeffi-
cient, and p,(t,z) = p(t — 7,2) with a positive delay parameter 7. Also, V' (p) denotes a given
function that depends only on p. The Burgers equation (1.1) is one of the simple models of
traffic flow, in which p means the traffic density.
Here, we shall focus on the Cauchy problem and assign the initial history:
p(0,x) = po(0, ), -7<60<0, zekR (1.2)

Then, our main goal is to derive a global-in-time solution to the Cauchy problem (1.1), (1.2)
and analyze the property of the solutions. To mention our main theorem, we introduce the
notation:

0 1/2
Io¢=< sup [lpo(0)] [ + / Haxpo(H)Hzde) -

—7<0< —T

The main theorem describes the existence of the global-in-time solution when the product of
the size of the delay parameter and the one of the initial history is suitably small.

Theorem 1.1 ([1]). Suppose that py € C([—7,0]; H') and V is C! class function of p under
consideration. Then there exists a positive number § such that if

(1+ Kovr)*V/7(1+ 15)I <6,
then (1.1), (1.2) has a unique global-in-time solution p € C([—7,00); H') satisfying
Op € L*(0,00;L%),  8yp € L*(0,00; H')

and the energy estimate:

lo)12 + /0 (00(8)]122 + [Dap(s)[201) ds < Co(1 + T2

fort >0, where Ko := |V (0)| and Cy is a certain positive constant which does not depend on 7.
Furthermore, the solution p satisfies the asymptotic behavior: || p(t)||re — 0 as t — oo.
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2 A priori estimate

The key to the proof of Theorem 1.1 is to construct the following a priori estimate.

Proposition 2.1 (A priori estimate). Let T > 0 and suppose that p € C([-7,T); H') is a
solution to (1.1), (1.2), which satisfies p € L*(0,T; L?) and d.p € L*(0,T; H'). Then there
erists a positive number 0y such that if

(1+ Kov7)*V7 sup_|p(s)|z= < do, (2.1)

—7<s<T

then the solution p satisfies the following estimate:

1 [t v [t
o6+ 5 [ lowe)ieds + 5 [ loco(e)lfnds < Cot1 + 1)1

for t € [0, T], where Cy is a certain positive constant that does not depend on 7.

The a priori estimate is derived by the energy method. To construct the energy estimate,
we reformulate our Cauchy problem. More precisely, we introduce a new function:

2(t,0,2) = p(t+6,z), t>0, 6ec|[-71,0], zekR.
Then, we find z(t,0,z) = p(t,x), 2(t,—7,2) = p-(t,x), 2(0,0,x) = po(f,x), and
Otz — Opz = 0, t>0, 6ec[-71,0, ze€R. (2.2)

By this reformulation, (1.1) and (2.2) are regarded as the dynamical boundary problem, and
we can apply the energy method to (1.1) and (2.2). Then we also construct the desired energy
estimate. Proposition 2.1 consists of the lower-order estimate and higher-order estimate of
solutions. The lower-order estimate is given as follows.

Lemma 2.2. Suppose the same assumption as in Proposition 2.1. Then the solution p satisfies
the following estimate:

o0+ [ ezt Oaao + % [ gt s+ 2 [ oupeo)ls
- (2.3)

/ / G/THO z(s, G)HLgdﬁdS—I— 1e 1/—|—2K2 / / |Oep(o HLgdads < C’OIO

fort €[0,T], where Cy is a certain positive constant which does not depend on .

In Lemma 2.2, we used notations

1 for t>r,
w(t)::{ or T

0 for 0<t<,

and

—7<60<0

0 1/2
i ::( sup [lpo(8)]2: + / Hazpowwigde) -

At the end of this section, we give a proof of Lemma 2.1.



Proof of Lemma 2.1. To obtain (2.3), we derive a priori estimates for ¢t € [0,7] and ¢ € [r,T],
respectively. Since (2.2), we have 0,0;z — 0,09z = 0. Then, multiplying this equation by e?9, 2
and integrating the resultant equation with respect to 6 over [—,0], we obtain

@(/ﬂéﬁaﬁﬁw>—4@pﬂ+efwam02+e/oé%@@%w:o, (2.4)

-7 -7

where ¢ is a positive parameter determined later. On the other hand, multiplying (1.1) by p
and taking into account the relation

V(p)pdup = 0y ( /0 ' V(n)ndn> :
we get
%&(;ﬁ) + 0, (pQV(pT) — vpap — /Op V(n)ndn) +v(02p)? + (V(p) = V(pr))pdep = 0. (2.5)
Furthermore, multiplying (1.1) by 8;p, we have

gat(axp)Q — v0:(0ipp) + (3:p)? + Depdu(V (pr)p) = 0. (2.6)

Then, integrating (2.6) with respect to t over [t — 7, ¢], this yields

t t t
V(axp)2 — V(axp7)2 — 21/8;(; < 8tp8xpds) + 2/ (8tp)2d5 + 2/ atp(?x(V(pT)p)ds =0
t t—1

t—1 —T
(2.7)
for ¢t > 7. Thus, calculating (2.5) + (2.4) X o+ (2.7) x 3, we obtain

OHE+0,F+D+R=0, (2.8)

where « and [ are positive parameters determined later, and

0
E = %pQ + a/ e*0(0,2)2db),
. p t
F = p*V(ps) — vpdep — /0 Vi(nndn —2Bv | 9ip(s)dxp(s)ds,
t—T

0
@W@+%/eﬂ@ﬁw,

—T

D= (14 B)v — a)(Dap)? + (e~ — B)(Dupr)? + 26 |

t—7
t

R = (V(p) = V(pr))pdep+26 | 9p0:(V(pr)p)ds.

t—1
Integrating (2.8) with respect to x over R, we get

d 1 2 0 0 2
(Il +a [ e10,2(,6)[3d0

dt .
(14 B — ) ep(®) 2= + (ae™T = B0)l|ups (D2 29)
t 0
28 [ o) Rads +as [ 0ua(00) 30 + [ Rz =0,
R

t—T1 —T



The next step is to estimate the remainder term / Rdx. Employing
R

V(@) =Vip:(t)) = [ sV (p(s))ds

t—T

t

= /t; V'(p(s))Oep(s)ds < v/7 (/t V’(p(S))Q(atP(S))2d8> "

—T

derived by the Schwarz inequality, we have

1/2
[0 = Vo pupte < ol owpl ( [ - v<pT>\2dx>
R R

t 1/2
< Kvv/7lplle 18epl 12 ( / ||atp<s>||%zds) (2.10)
t—7
1 2 K12 t 2
< 3Vrloleml0ple + SEFlolle [ ouw(s) s,
-7

where K := sup,|V’(p)|. On the other hand, using

1
V(pr)0epdup < —(0ep)* + V (pr)?(02p)?,

V' (pr)pOepdspr <

NN

(8tp)2 + V,(pT)QPQ(a:L‘pT)Q’

we estimate

. et
/ Oup0s(V(pr)p)dsda
R

t—1
1 t t
<3 / 10up(s)|[2ds + / (Ko + K1 |19 ()12 02 (5) | 2ads
t
LK / 19520 [ 0upr (5)2ads.

Thus, substituting (2.10) and (2.11) into (2.9), we have

1 ) 0
O §||p(t)||L2 +a

-7

(2.11)

eeeuaxz(t,e)nizde) (14 B — 0)l|up(t) 2

t
(T = B)0sp Ol + 8 [ 0(s)ads +ac [

t—1

0
e 0,2(t,0) 320

—T

, i , (2.12)
< SVAIOl 0.0 + SOl [ 1ol ads

ot -t
+ 26

t—T1

(Ko + Killpr(s)[l2)*[102p(5) | 72ds + 28KF /

t—1

() 1200 107 () 1 2.

Integrating (2.12) with respect to ¢ over [r,t], and using the fact that ||p(t)||r~ < N(t) and



llpr(t)||Lee < N(t) for any t > 0, we obtain

1 B
S0l [ Panett. 0t + (O 8~ ) [ ouple) s

T (a7 = ) / 102pr (5)]12ds + 3 / [ 10uo)|adods
. 0 T T S—T (213)
+a€// e)|0,2(s,0)||22dbds

< oIk +a / 10, 2(, 0) 226 + 26K / / 02p(0)|32dods + R

for t > 7, where

1 t
:5\/FN(t)/T 10z p(s \\L2ds+—fN // 19ep(0)|[72dods
+2BKLN(1)(2K0 + K1V (1)) / | ocp(o) adeds

t s
+28K2N(1)? / / 18095 (o) |2adods.

Here we used the notation that N (t) = sup_ <.« ||p(s)| ze. Furthermore, (2.13) gives

DO | =

0
Slo(t) 22 +a / 0z (t, O)22d + (L + B — o — 287K2) [ |9up(s)|2adls

~ Bv) / 90+ (3)][22ds + 3 / | ool dods
(2.14)
—I—oza// 0|0, 2(s,0)||2.d0ds

<

N | =

(71172 +a/ e 9u2(r, 3)\|deﬁ+26TKo/ 102 (5) [72ds + R,

and

1 + K2 t s
R < SVANG) [ 10uptads + VN [ [ Jopto) adods

t t
2N (U)K + KN (D) [ 10000 +28K3N 0 [ opr(9)ads.

Since the dissipation terms in (2.14),

(2.15)

«, B and e should be chosen as

(14 B —a—2B87KZ >0, ae " — Br > 0.
Then we take
E = — Oé:z 6: v
T’ 27

4(ev +2KET)’
and these parameters satisfy

> 0.

(1+B)1/—a—257K3><;l+5)1/>0, ae”® — Br >

v
4e



Namely the estimate (2.14) is rewritten as

eI + ¥ / /9, 9>\|L2d9+( +/3) / 102p(s)22ds
t 2 [ Woue s 5 [ [ Gt iadods 2 [ [ 06,00 v

< Sl + 5 [ peatr oo + 5 [ onpto)luds + .
(2.16)

We estimate the remainder terms. Substituting (2.15) into (2.16), we see that N(T") should

satisfy
VAN 7. KirN(T) (2Ko + KiN(T) < 7,
KNI <Y, KRN v (2.17)
L7 — 4’ - 4(61/ + 2K27)

to get the desired estimate. The assumption (2.1) gives /7N (T) < &y, K27 N(T)? < K252, and
KlTN(T) (QK() + KlN(T)) S Kl(l + K150)(50,

K#(ev 4 2K21)VTN(T) < (2 + ev) K2dp.

Thus, taking dy such that
Y @2+ en)K2 < %, (2.18)

K52 < T

dp < K1(1+ K160)dp < %

1%
4)

then (2.17) is satisfied and we obtain

I3+ [ ouatt oo+ 1 (14— ) [ 1ouptolas

t t

v 2 v 2
v » ds + ——2 dod
+ 46/7— Ha p (S)HL2 8+ 4(6V+2K37')/T /S‘_T”atp(o-)”L2 oas

v t 0
+‘/ / 01710,z (5, 0)||2 dbds
T Jr -7

0 N v 1 T
<l 4 [ ot 030+ 5 (14 50 ) [ 10sp(0) s

J =T

v T
o [ 10

(2.19)

for t > 1.
On the other hand, to derive the energy estimate for 0 < t < 7, we treat (2.8) with a = v/2
f =0 and e =1/7, and this gives

O {p2 - V/_O 66/7(8xz)2d0} + 0, {2V (p;) — V(0)) p* — 2vpdyp}

0
+1(02p)” + %(&cm)Q + ; / 17 (0,2)2d0 — 2V (£p7)prpOzp = 0



for some ¢ € (0,1). Then, integrating this equation with respect to (¢,z) over [0,¢] x R and
using the fact that

t
/0 (V' (@pr)prp)(s)l|72ds < EN(t)? sup. (V! (epr)pr)(5)]172
1%
< KITN(t)? sup ”pO(G)HQLQSZ sup Hpo(G)HQma

—7<6 —7<

which given by (2.1) and (2.18), we obtain

0
o) +v [ e 0r(t.0) 20

v [ 2 v [ 2 vt 0/7 2
5 [ Noplads + 2 [ o ads + L [ [ joa(s.0) Faanas
0 -7

< po(0) 2 + v / /7|0, po(0) |22 + 2 / 1V (0 )pr0) ()| 2ads

—T

(2.20)

0 1 3 -
< IO 40 [ o @+ s @)1 < (340) B

—T 2 —7<

for0<t<r.
Consequently, applying (2.20) with ¢ = 7 to (2.19), we derive

] |
s+ [ oustt 00+ 1 (14— ) [ lonpte) e
+1/t||a @2 ds+;/t/ 10hp(o) [2adods
Ie : zPT L2 4(6V—+—2}(8T) ) tP\0 )| 2d00s

t 0 o
+;/ / /70,2 (s, 0|2 d8ds < Col2

Go = (1+2—1e> (§+>

Furthermore, combining (2.20) and this estimate, we arrive at the desired estimate (2.3) and
complete the proof. O

for 7 < t, where
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