QUASICONVEXITY PRESERVING PROPERTY FOR FIRST ORDER
NONLOCAL EVOLUTION EQUATIONS

TAKASHI KAGAYA, QING LIU, AND HIROYOSHI MITAKE

ABSTRACT. This note is a companion of our earlier paper [Kagaya-Liu-Mitake, 2023] to study the
quasiconvexity preserving property of positive, spatially coercive viscosity solutions to a class of
first order evolution equations with monotone nonlocal terms. We show that if the initial value is
quasiconvex, the viscosity solution to the Cauchy problem stays quasiconvex in space for all time.
In contrast to our results in [Kagaya-Liu-Mitake, 2023], we focus only on the first order case, but
slightly change our assumptions to allow more general dependence of the operator on the nonlocal
term.

1. INTRODUCTION

This note accompanies our published paper [17] on quasiconvexity of solutions to fully nonlinear
nonlocal evolution equations, focusing only on the first order case with slight adaptations. The
equation we are concerned with is

{ut + F(u, Vu, {u(-,t) < u(z,t)}) =0 in R™ x (0, 00), (1.1)
u(-,0) = uy in R™, (1.2)

where u : R™ x [0,00) — R is a unknown function, and u; and Vu denote the time derivative
and the spatial gradient of u, respectively. Here the initial condition ug : R” — R is in UC (R"),
where UC (R") stands for the set of uniformly continuous functions on R”, F': R x R” x B — R
is a given continuous function and B represents the collection of all measurable sets in R™. More
precise assumptions on F' will be given later. Recall that in [17] we assume that F' depends on the
intersection {u(-,t) < u(x,t)} N K for a given compact set K C R™ to restrict the nonlocal effect
in a bounded region. In this work, we do not impose such a constraint on F' but include a slightly
more general assumption on the operator.

We aim to show the preservation of spatial quasiconvexity of viscosity solutions to (1.1) and (1.2).
Here, a function u € C(R™ x [0,00)) is said to be spatially quasiconvex if all sublevel sets of u(-,)
are convex in R", or equivalently,

u(Ay + (1 — Nz, t) < max{u(y,t),u(z,t)}

holds for all y,z € R™, ¢ > 0 and A € (0,1). We refer to the related results in [6], where a general
class of set evolutions with nonlocal terms is shown to preserve the convexity of the initial set. Such
nonlocal evolutions can be reformulated via the so-called level set method as geometric equations,
which in our context requires F to satisfy the homogeneity condition

F(ri,ep, A) = ¢cF(ro,p, A) foralle>0,r1,10 € R, peR" A€ B. (1.3)
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To fulfill the condition (1.3), F' needs to be independent of the unknown u. We refer to [11] for more
details about the level set formulation. For classical solutions of elliptic problems without nonlocal
terms, quasiconvexity results can be found in [8, 9].

It is natural to discuss the preservation of quasiconvexity when the nonlocal operator F' is not
geometric. For broader applications, we are particularly interested in the case when F' depends on
u. Our assumptions on the operator F' are as follows. Below, m(A) represents the n-dimensional
Lebesgue measure of A € B.

(F1) F is proper; namely, for any p € R™ and A € B,
F(T17p7A) < F(?"Q,]),A)

holds for all ro > 1.
(F2) F is locally bounded in the sense that for each R > 0, there holds

sup{|F(r,p,A)| : 7 € R,|p| < R, A € B} < .

(F3) F is continuous in R x R™ x B with the topology of B given by d(A;, A2) = m(A1AAz),
where A1 A Ay stands for the symmetric difference of A; and Ag, that is AjAAg := (A; U
Ag) \ (A1 N Ap) for all Ay, Ay € B. Moreover, for any R > 0, there exists a modulus of
continuity wg such that

F(r,p1, A1) — F(r,p2, A2) <wr (Ip1 — p2| + m(A1AAz)) (1.4)

for all » € R, p1,p2 € R™ with |p1],|p2| < R and Ay, Ay € B.
(F4) F is monotone with respect to the set argument; namely,

F<T7p7A1) < F(Tvpv AQ)

holds for all r € R, p € R™, A1, Ay € B with A; C As.
(F5) F is stable with respect to the set argument in the sense that, for any R > 0,

sup{|F(r,p, AN B,(0)) = F(r,p,A)|: 7 €R,|p| < R,Ac B} -0 asp— oo,

where B,(0) denotes the open ball centered at 0 with radius p > 0.
(F6) There exists V € C(R) such that
sup |F(r,p,A)—=V(r)]—=0 asp—D0.
reR,AeB

We stress that the monotonicity (F4) plays an important role in our analysis, especially for the
comparison principle and therefore the uniqueness of viscosity solutions. By adapting the arguments
in [12] to nonlocal problems, we provide a comparison theorem, Theorem 2.1, for possibly unbounded
solutions satisfying growth condition (2.1). See [6, 22, 10, 23] for comparison results for monotone
evolution equations in different settings. On the other hand, in the non-monotone case, one cannot
expect the comparison principle to hold and alternative methods are needed for uniqueness of
solutions and other related properties (see [1, 4, 5, 20]).

In our main result (Theorem 1.1) below, we only consider viscosity solutions to (1.1) and (1.2)
that are uniformly positive and coercive in space, that is,

u>co inR"x[0,00), forsome ¢y >0, and (1.5)
inf u(x,t) = oo as R — oo for any T > 0. (1.6)
2> R, 0<t<T
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Under a further assumption that ug € UC (R™), we obtain the existence and uniqueness of solutions
u € C(R™ x [0,00)) of (1.1) (1.2), satisfying (1.5) and (1.6). We can also show that

lu(z,t) —u(y,t)] <wo(|]z —y|) forall xz,y € R™ and ¢t > 0, (1.7)

where wy denotes the modulus of continuity of ug. See Theorem 2.3 for details.
We impose a key concavity condition on F' via a transformed operator Gg with 0 < 8 < 1 defined
by

Gs(r,p, A)

=1 i ﬁrﬁF (7“1_5, (1- ﬂ)r_ﬁp,A> for r>0,p e R" and A € B. (1.8)
(F7) When 8 < 1 is sufficiently close to 1,
r+— Gg(r,p, A) is concave in [cp,00) x S" (1.9)
holds for any p € R™ and A € B.

Let us now state our main result.

Theorem 1.1 (Quasiconvexity preserving property). Assume (F1)—(F7). Let ug € UC (R™). Let
u € C(R™ x [0,00)) be the unique viscosity solution of (1.1) and (1.2) satisfying (1.5), (1.6) and
(1.7). Ifug is quasiconvez in R™, that is, {ug < h} is convex for all h € R, then u(-,t) is quasiconvex
in R™ for all t > 0.

Our result is applicable to first order nonlinear equations including the level set equations for
nonlocal geometric evolutions. As pointed out previously, it applies also to equations that are not
geometric. The assumptions in Theorem 1.1 allow the operator F' to depend on w. In [17], we
provide a similar result for general second order nonlocal parabolic equations under a generalized
version of (F7) (see (F7) in [17]).

In contrast to the set-theoretic arguments in [6], we apply the PDE-based approach in [17], which
is inspired by the classical convexity/concavity results on various elliptic and parabolic equations
including [21, 18, 19, 12, 2] etc. In addition, we also refer to [14, 15, 13, 16] for power convex-
ity /concavity of solutions. See [17] for a more detailed introduction on this topic and references.
Our strategy, which develops the idea in [18, 2, 13], is to show the quasiconvex envelope of a solution
is a supersolution of the equation and then use the comparison principle to conclude the proof.

For a fixed A € (0,1) and a given positive viscosity solution u of (1.1), in order to prove that the
spatially quasiconvex envelope u, », defined by

uy \(z,t) = inf { max{u(y,t),u(z,t)} :x = Ay + (1 — A)z}, for (z,t) € R" x (0,00),  (1.10)
is a viscosity supersolution, we approximate u, ) by the power convex envelope u, , given by

ug £ (z, 1) = inf{ (Au(y, )+ (1 — )\)u(z,t)q)é AY+(1 =Nz = w}

for (z,t) € R" x (0, 00),

(1.11)

as the exponent ¢ — co. The concavity condition (F5), with the choice 8 = 1 — 1/q, connects ug )
to the supersolution property of (1.1) for ¢ > 1 arbitrarily large. Then sending ¢ — oo, we can
obtain the supersolution property for u, .

The rest of the paper is organized in the following way. In Section 2 we recall the definition and
some basic properties of viscosity solutions of (1.1) and provide a comparison principle for our later

applications. Section 3 is devoted to the proof of our main result, Theorem 1.1.
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2. COMPARISON PRINCIPLE

In this section, we present a comparison principle for (1.1). We first recall the definition of
viscosity solutions to (1.1). For a set @ C R™ x [0,00), we denote by USC (Q) and LSC (Q),
respectively, the set of the upper and lower semicontinuous functions in Q.

Definition 1 (Viscosity solutions). (i) A function v € USC (R™ x (0,00)) is called a viscosity
subsolution of (1.1) if whenever there exist (xg,tg) € R™ x (0,00) and ¢ € C*(R™ x (0,00)) such
that u — ¢ attains a local mazimum at (xo,1o),

et(wo,to) + F'(u(zo, o), V(zo, to), {u(- to) < u(wo,to)}) < 0.

(ii) A function u € LSC (R™ x (0,00)) is called a viscosity supersolution of (1.1) if whenever there
exist (xg,tg) € R™ x (0,00) and ¢ € C2(R™ x (0,00)) such that w— ¢ attains a minimum at (xo,to),

¢t(wo,to) + F'(u(zo,t0), Vie(zo, to), {u(- to) < u(wo,to)}) > 0.

(iii) A function v € C(R™ x (0,00)) is called a viscosity solution of (1.1) if it is both a viscosity
subsolution and a viscosity supersolution.

One can use semijets instead of the test functions to rewrite the definition of viscosity solutions.
See [7] for details. In the sequel, we are always concerned with viscosity solutions in this paper, and
the term “viscosity” is omitted henceforth.

Theorem 2.1 (Comparison principle). Assume that (F1)—(F6) hold. Let u € USC (R™ x [0,00))
and v € LSC (R™ x [0,00)) be, respectively, a subsolution and a supersolution to (1.1). Assume in
addition that for any T > 0, there exists Lt > 0 such that

u(z,t) < Lp(lx| +1), v(z,t) > —Lp(lz|+1) for all (z,t) € R" x [0,T]. (2.1)
If there exists a modulus of continuity wy such that
u(z,0) —v(y,0) <wo(lx —y|) forall x,y € R, (2.2)
then w < v holds in R™ x [0, 00).

This comparison principle for the first order case is similar to [17, Theorem 3.1]. The main
difference is that we additionally impose (F5) so that we can allow F' to depend on the level sets of
u without any restrictions. The following result is an adaptation of [12, Proposition 2.3].

Proposition 2.2 (Growth estimate). Assume that (F2) holds. Let u € USC (R™ x [0,00)) and
v € LSC (R™ x [0,00)) be, respectively, a subsolution and a supersolution to (1.1). For any fized
T > 0, assume that (2.1) holds for some Ly > 0. Then for any L > Ly large, there exists M > 0
such that

u(z,t) —v(y,t) < Llz—y|+ M1 +1t) foralx,yeR" andt € [0,T).
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Proof. Note that (2.2) yields the existence of Cp > 0 such that

u(z,0) —v(y,0) < Co(lx —y|+1) forall z,y € R"™. (2.3)
Take L > max{Ly,Cp}. Our goal is to show that
u(z,t) —v(y,t) —Y(x,y) — M(1+t) <0 forz,y e R", te€0,7T) (2.4)

for M > 0 sufficiently large, where ¥ (z,y) = L(|z — y|* + 1)%.
Suppose that (2.4) fails to hold for any arbitrarily large M > 0. Then, we may assume that
M > Cp, and there exist &, € R™,t € [0,T) such that

Set, for €, A > 0 small and R > 0 large,

(t —s)? A

where gg € C%(R") is a nonnegative function such that gg(z) = 0 for |z| < R, gr(z)/|z| — 1 as
|| — oo, and |Vgr(z)| is bounded uniformly in x € R™ and R > 0. It follows from (2.5) that
U_(&,t,9,) > 0 if we take R > |2|,|§| and A > 0 small depending only on M.

By (2.1), we see that W, attains a positive maximum in (R? x [0,7))? at (¢, t,ye, sc) for R >0
and M > 0 large and for € > 0 small. In fact, x. and y. are bounded uniformly with respect to .
Moreover, we have t,s. — to for some ¢y € [0,7) as ¢ — 0. In view of the upper semicontinuity of
u and lower semicontinuity of v as well as (2.3), we deduce that ty # 0 and thus t.,s. > 0 for all
e > 0 small.

Since uw and v are, respectively, a subsolution and a supersolution of (1.1), we obtain
le

—s A
= + M + —2 + F(u(ws7t8)~,pl7 {u('7t8) < ’LL(LUE,tE)}) S 07
€ (T —t.)

te = Se + F(U(ys,sg),pg, {’U(',tg) < U(ysyta‘)}) >0,

Ve(z,t,y,s) =u(x,t) —v(y,s) —Y(z,y) — L(gr(®) + gr(y)) —

where
1
P1 = L(|$s - ys|2 + 1>_2 ($E - ys) + ngR(*TE)v

p2 = L(|ze — ye|2 + 1)_%(356 —Ye) — LVgRr(ye).
Since the boundedness of p1, ps, X1, X2 depends only on L, taking the difference between the viscos-
ity inequalities above and applying (F2), we have C, > 0 such that M < Cf,, which is a contradiction
to the arbitrariness of M > 0. O

Let us now prove Theorem 2.1.

Proof of Theorem 2.1. Assume by contradiction that supgn o, r)(u—v) =: 6 > 0. Then, there exists
A > 0 such that
36
sup u(z,t) —v(z,t) — 5—p > —.
(,t)€R x[0,T) 4
There exists (z1,t1) € R™ x [0,7) such that u(zy,t1) — v(x1,t1) — A/(T — t1) > 6/2. Noting that
supgn (u(-,0) — v(-,0)) <0, we have t; > 0.
Define A
x—y A
é(wvyat) = U($,t) - U(y7t) - |€—4| - Oé(|(L'|2 + |y|2) e

T—1
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for e,a > 0, A > 0. It is then clear that there exists ag > 0 small such that

9
sup (I)(xvyvt) >
(,y,t) ER2" X [0,T) 4

for all 0 < a < ap and € > 0 small. The growth condition (2.1) implies that ® attains a maximum

at some (Tc o, Yearlea) € R™ X [0,T). We write (7,7,1) for (Tc.a,Ye.ast-a) by abuse of notations.

It follows that
[z —gl*

- _ - o A A
o3l +19P) < u@ D) = v(5, 1) — ul@r,t) + ey, ) + 20l +

T—t, T-—1t

In view of Proposition 2.2, we have
E=g1 e e - o
o tallEl+ gl < L(g - gl+ 1) + Mt +1)

A A

—U(-Tlvtl)+U(x17t1)+2a|$1|2+T_tl T_E

It follows that .
[z — 9
o4
for some C > 0 which is independent of €, o, which implies that

— LIz — gl + o>+ [§*) < C

a(|Z] +1y]) >0asa —0foranye >0, and sup |[Z—gy|—0 ase—0.
O<a<ap

Hence, there exists €9 > 0 such that wo(|Z — g|) < /4 uniformly for all 0 < € < gg and 0 < o < ay),
where wyq is the modulus of continuity appearing in (2.2).
On the other hand, we have
- - -~ 0
u(E, D)~ 0(@. ) > BE5.0) > o
It follows that > 0 for any 0 < o < o and 0 < € < gg. In what follows, we fix 0 < £ < gg small
enough so that £ > 0. We discuss two cases:
Case 1. liminf |Z — g| > 0,
a—0
Case 2. liminf |z — g| =0, i.e., Joy — 0 such that lim |z —gy| = 0.
a—0 a;—0

Let us consider Case 1 first. Noticing that ®(x,z,t) < ®(Z,§,t) for all z € R?, we have

= ~id
- s - R P - .
(e, )~ (@, D) < v, B) — o35 — 2 IE 4 2afe — a2 + 1) (26)
Note that, for any p > 0 large,
= ~l4 = ~l4
lim inf (—M +2a max |z]? —a(|z]* + |§|2)) < liminf (— i 4y| + 2ap2) <0,
a—0 € z€B,(0) a—0 €

which implies that for all + € B,(0) and « > 0 small, depending on p,

= o4

T — 8 _

_| €4y| + 2a|z)? — o(|Z]? + |§]?) < 0.

By (2.6), for such a we thus have u(z.t) —u(z.t) < v(z,t) —v(y,t) for all z € B,(0), which implies
Val,t] N By(0) C Uy[Z,%] N B,(0), where we take

UalZ,t] == {u(, 1) <u(z, 1)}, Val[F,t] = {v(,1) <v(g,1)}.
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It follows from (F1) and (F4) that, for all p € R",
1), . Valgs 80 By(0)) < F(u(@. 1), p. Ualz., 11 B (0). 2.7)
Moreover, noticing that po := 4| — §|?( — 7)/* is bounded away from 0 uniformly in «, we have
p1i=po+2ay #0, p2:=po—2azF#0 (2.8)
for all @ > 0 small. Applying (F5) with R = |pg| + 1, we have I,,(p), I,(p) — 0 as p — oo, where

Lu(p) = sup [F(u(Z,t),p1,Ua[T,1]) = F(u(Z,1),p1,Ua[Z,t] N B,(0))],

a€(0,a0

I’U(ﬂ) = sup |F<’U<g,t~>,p2,va[g,t~]) _F<U(g7£)7p27va[g7ﬂ me<0))|
a€e(0,a0)

Since u and v, respectively, are a viscosity subsolution and supersolution to (1.1), by the Crandall-
Ishii lemma [7] we get

h+ F(u(z,1), p1. Ua[,1]) <0, (2.9)

k+ F(0(3,1).p2, Valg,1]) 2 0, '
where h,k € R satisfy h — k = \/(T —t)?> > \/T?. Taking the difference of both inequalities, we
have

h—k < F(o(,1), p2, Valg, 1] 0 B,(0)) = F(u(Z, 1), p1, Ua[Z,t] 0 B,(0)) + Lu(p) + Lu(p),
which, by (2.7) and (F3), yields
h —k < wr(|p1 — p2|) + Lu(p) + Lu(p)

with R = |pg| + 1. Sending o« — 0 and p — oo, we deduce h — k < 0, which is a contradiction.

Let us turn to Case 2. In this case, we have as a; — 0, po = 4|7 — §|*(Z — 7)/e* — 0 and thus
p1,p2 — 0, where p1, ps are given as in (2.8) above. Then we can adopt the definition of subsolutions
and supersolutions again to get (2.9) with h — k = \/(T — #)2. Letting a; — 0 and applying (F1)
and (F6) we are led to

A A o~ -
72 < T =h—k<V(v(g,t)—V(u(z,t)) <0,

which is obviously a contradiction. O

Assuming that ug is uniformly continuous and there exists a subsolution satisfying (I) below, we
can prove the existence of a unique viscosity solution that satisfies (1.5), (1.6) and (1.7).

(I) There exists a function ¢ € C(R™ x [0,00)) such that
(i) ¢(-,t) e UC(R™) for any t > 0,
(i) wo > (-,0) in R".
(iii) ¢ > ¢p in R™ x [0, 00) for some cg > 0.
(iv) ¢ is coercive in space, that is,

inf  ¢(x,t) > 00 as R— oo for any T > 0.
|o|>R, t<T

(v) ¢ is a viscosity subsolution of (1.1).

Theorem 2.3 (Existence). Assume that (F1)—(F6) hold. Let ug € UC (R™). Assume in addition
that (I) holds. Then there exists a unique solution u of (1.1) and (1.2) that satisfies (1.5), (1.6)
and (1.7).
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We omit the detailed proof here, since it is based on the stability result [22, (P2)] and the standard
Perron’s method (see [7, 11] for instance) adapted to (1.1). The uniform continuity (1.7) can also be

shown by comparing the solution with its spatial translations; see similar arguments in the proofs
of [12, Corollary 2.11] and [11, Theorem 3.5.1].

3. QUASICONVEXITY PRESERVING

This section is devoted to proving our main result, Theorem 1.1. Fix arbitrarily A € (0,1). For
u € C(R™ x [0,00)), let u, ) be given by (1.10). Our goal is to show that

uga(x,t) = u(z,t) for all (z,t) € R" x [0,00). (3.1)

Theorem 1.1 follows immediately, since u is quasiconvex in space if and only if (3.1) holds for all
A € (0,1). By the definition of u, y, it is clear that u, y» < u in R™ x [0, 00). It thus suffices to prove
the reverse inequality. To this end, we use the power convex envelope function ugy (¢ > 1) given
by (1.11) to approximate u, . In fact, we have

g\ — Uy locally uniformly in R™ x [0, 00). (3.2)

See [17, Proposition 4.1] for a more precise statement and proof of this convergence result.

We next show a key ingredient to prove (3.1), which stems from the idea in [2] to prove convexity
of solutions to fully nonlinear equations by using its convex envelope. Such an idea is later developed
in [13] to show a power-type convexity or concavity with a finite exponent. We here makes a further
step, studying the limit case as the exponent tends to cc.

Lemma 3.1. Assume that (F1)—(F7) hold. Let w € C(R™ x [0,00)) be a supersolution of (1.1)
satisfying (1.5) and (1.6). Let A € (0,1) and u, ) be the function defined by (1.10). Then u, ) is a
supersolution of (1.1).

Proof. For simplicity of notation, we write w, = u, ) and wy = ugx. Let us first show that
wy € LSC(R™ x [0,00)). For an arbitrary (zo.t9) € R" x [0,00), let (z;,t;) be a sequence satisfying

(zj,tj) = (zo,t0), wi(zj,t;) = liminf w,(z,t) as j — oo.
(m,t)%(zo,to)

Due to the coercivity (1.6), there exist y;,z; € R” such that
zj=Myj + (1= Nzj,  wilzy, ;) = min{u(y;, ;), u(z;, ;) }- (3.3)

Since x; is a bounded sequence, if either of the sequences y;, z; is unbounded, so does the other.
Thus we can choose a subsequence such that |y;|, |z;| — oo, for which by (1.6) again we have

u(y;,t;) — 00, u(zj,t;) =00 asj— oo.

It follows from (3.3) that w,(xj,t;) — oo as j — oo, which is a contradiction to the fact that w, < u
in R™ x [0, 00). Therefore, it is sufficient to assume that y; and z; are bounded sequences. Choosing
subsequences ¥; and z; converging to yo and zp in R" respectively, we can take the limit of (3.3) to
obtain

liminf w,(z,t) = min{u(yo, o), u(20,%0)} > wi(xo,to).
(m,t)%(xo,to)

Hence, w, € LSC(R™ x [0,00)). The lower semicontinuity of w, can be proved similarly.

Let us next proceed to show that w, satisfies the supersolution property. Suppose that there
exist (zg,t9) € R™ x (0,00) and p € C?(R™ x (0,00)) such that w, — ¢ attains a strict minimum at
(z0,t0). Without loss of generality we may assume ¢ > 0 in R" x (0, 00).
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In light of (3.2), there exists a sequence, indexed by ¢, of (z4,t4) € R x (0, 00) such that wy — ¢
attains a strict minimum at (z,.t,) and

(wq,tq) = (0, t0),  wq(zg,ty) = wi(zo,t0) as ¢ — oo.

Due to (1.6), there exist y4, 2, € R" such that

1
Tg = Ayqg+ (1= N)zg,  wq(xg,tg) = (Au(yg, tg)? + (1 — Nu(zg, tg)?)7 . (3.4)
Shifting ¢ so that ¢(xg,t,) = we(zq,t,) and letting v := u? and ¢ := ¢?, we see that
(y,z t) = Av(y7t> + (1 - /\)U('Z7t> - 1/)(>‘y + (1 - A)Z,t)

takes a minimum at (yg, 24,tq) € R™ x R™ x (0, 00).
Using the Crandall-Ishii lemma [7], we have (hq,74), (kq, (5) € R x R™ such that

Ahg 4+ (1= Nkq = ti(2q,tq), 19 = G = Vb(zg, Tg), (3.5)

and, by the assumption that u is a supersolution of (1.1),
hq 4+ Gglag, ng. {v(-, tg) < v(yg,tq)}) >
kq + Gp(bg; Cg, {0, q) < o(zg,tg)}) =

where aq = v(yq,tq), bg = v(2q,tq), B =1 — % and Gp is the transformed operator given by (1.8).
Let us divide our argument into the following two cases:

e Case 1. Vip(xo,tg) # 0,
e Case 2. Vi(o,t9) =0, and VZp(xg,tg) = 0.
We write & = Vi(z,,t,) for simplicity of notation.
In Case 1, by (3.5), we have Vi)(xg,t,) = 1y = (4 # 0 when ¢ > 1 is sufficiently large. Multiplying
the first inequality in (3.6) by A and the second by 1 — A and then adding them up, by (3.5) we are

e (4 ta) + AGis(ags & Walzo, to]}) + (1 = NG (by. €. Wl o))
> A (Gglag, &g, Wilzo, to]) — Galag, &g, Ulyg: tq]))
+ (1 =) (Gp(bg, &g Wilzo, to]) — G(bg: &g, Ulzg, t4))) ,
where we denote, for any (z,t) € R™ x (0, 00),
Wiz, t] := {wi(-,t) < wy(x,t)},
Ulz.t] .= {u(-,t) <wu(z,t)} = {v(,t) <v(x,t)}.

0,
o (3.6)

Noticing that Aag + (1 — X\)by = wy(z4,t4)? and applying (F7), we then get
Yi(2g,tg) + Gp (wq(Tq,tq)?, Vi (2g, tg), Walzo, to])
> M(Gplag, &g Wilmo, to]) — Gglag, &4, Ulyg. t4]))
+ (1= A) (Gp(bg, &, Wilwo, to]) — Ga(bg, §g: Ulzg, L)) -
Rewriting this relation in terms of the operator F, we are led to
u(yq,tq)q_l

f
Pt(Tq; ) + F(wq(wg, 1q), Vip(2q, tq), Wilwo, Lo]) > )\ﬁp(xmtq)q_l 2 xqvtq)q_l

where Cy = Cip(z4,t4)'7%/q, and

Dy 4= F(u(yQ7tq)7 VSO(qu,tq),W*[ivo,to]) - F(u(yqvtq)> V‘P(mqvtq)v U[yqvtq])a
Da g = F(u(zq,tq), Vp(mg,tq), Wilzo, to]) — F(u(zq,tq), Vp(mg,tq), Ulzg, tg])-
9



The assumption that u > ¢g yields
M(Ygrtg) T+ (1= Nu(zg, t)9™ My, t) T+ (1 = Nu(zg, t)47?

(g, tq)77 1 wq(xq,tq)071
< Au(yg, tg)? + (1 = Nu(zq, tq)? _ wq(xq,tq)? _ wy(Tq,tq)

B cowg(Tq, tq) Tt cowg(q,tq)1™1 co

which implies

Mu(yq. tq) T+ (1= A tg) T

sup{ ulya: tg)™+ _)lu(zq, ) } < 00. (3.8)
g>1 @(xqvtq)q

Let us proceed to estimate Dj 4, D4 in (3.7). Note that by (3.4)

lim sup u(yg, tq) < limsup wg(xg,tq) = wi(xo, to).
q—0o0 q— 00

Also, it is easily seen that

w*(-,t0> = u*y,\(',tg) < ’u(-,to) < liminf, u(-,tq) in R™.

g—00
Since (1.6) implies that Ulyg, t4] are bounded uniformly in ¢, by [17, Lemma 2.2] we have
m(Ulyq, tq] \ Wi[zo,t0]) = 0 as g — oo.
Noticing that (F4) yields
F(ulyg, tq), Vip(aq, tq), Wilzo, to]) = F(ulyg, tq), Vip(ag, tq), Wilxo, to] N Uy, t4)),
in view of (1.4) in (F3), we deduce that

Dy 4> —wr (m(U[ymtq] \ W[, tO]))

for g > 1 sufficiently large, where R = |Vp(xo,to)| + 1. Similarly, we have

Dy 4> —wr (m(U[zq,tq] \ W*[xo,to])>

with m(U|[zq, tq] \ Wi[z0. to]) — 0 as ¢ — co. Hence, thanks to (3.8), sending ¢ — 0 and then ¢ — oo
in (3.7), we get
ei(x0,t0) + F(wi(wo, to), Veo(zo, to), {txr (-, t0) < uan(wo,t0)}) = 0.
Let us next turn to Case 2. If Vp(z4,t,) # 0 along a subsequence, then passing to the limit of
(3.7) as € — 0 and ¢ — oo via the subsequence, by (F6) we get the desired relation
et(To,to) + V(wx(zo,t0)) > 0. (3.9)

It remains to consider the case when V(z4,t,) = 0 for all ¢ > 1 large. Adopting the definition
of supersolutions, we have

hg + G(v(ygs tq). 0, {v (-, 1)

< v(yg:tq)})
kq + Gﬁ(v(zth)?O? {U(WtEI) <v t

0,
(2g:t9)}) >0,

Vv

which by (F6) yields
(1= BYhg + 0(yqs tg) V (v(yg: 1) ™7) >0, (1= B)kg + v(2g,tg)*V (v(24,84)' ) > 0.
It follows from (F'7) that
1 _
E(Ahq + (L= A)kq) + wq(zq,tq)? 1V(wq(xqstq)) >0

10



which, together with the relation wg(zq.t4) = ¢(xq,1,), yields,

1 _

6@(%»%)1 I(Ahg + (1 = Akg) + V(wg(zg,19)) = 0
Noticing that, due to (3.5),

1 _ 1 _
Pt(Tq,tq) = E(’Q(ffq’tq)l Ypi(wg,tq) = a@($q>tq)1 1(Ahg + (1= N)ky),

we obtain
(pt(x(btq) + V(wq(m(p tq)) Z 0. (310)
In view of (3.8), letting ¢ — oo in (3.10), we again end up with (3.9). d

Proof of Theorem 1.1. By the quasiconvexity of ug, we have u, »(-,0) = up in R™. Moreover, since
co < uyxy < wholds in R™ x [0, 00), u,, x obviously satisfies the growth condition (2.1). Note that u,
also satisfies (1.6). Indeed, for any R > 0 and (z,t) € R" x [0,00) with |z] > R, if Ay+ (1—-N)z ==z
for y,z € R™, then either |y| > R or |z| > R holds and therefore
max{u(y,t),u(z,t)} > inf wu(-,1).
(o). u(0) = | nf )
By (1.10) we thus have u, x(z,t) > infgn\ o) u(,t) for all (z,t) € R™ x [0, 00) fulfilling |z| > R.
We can immediately use the coercivity of u in space to obtain the coercivity of u, .
The relation (3.1) is then an immediate consequence of Lemma 3.1 and the comparison principle,

Theorem 2.1. Noticing that (3.1) implies the quasiconvexity of u in space, we complete the proof
of Theorem 1.1. O

We conclude the note with a concrete example:
ug + V(u) + [Vul (W(u) + Q({u(-,t) < u(z,t)})) =0, inR" x (0,00),

where V, W € C%(R) are given bounded nondecreasing functions and @ is a finite measure in R"
that is absolutely continuous with respect to m. Then there exists Mg > 0 such that Q(A) < Mg
for all A € B. This equation in general does not satisfy the geometricity condition (1.3). The
operator F'is

Fr,p, A) = V() + [pIW () + [plQ(A).
We easily see that (F1)—(F6) hold in this case. Let us verify that F satisfies (F7) under further
assumptions on V,W. Indeed, the operator G as in (1.8) is

Ga(r,p, A) = PVt )+ [plW () + [plQ(A).

1
1-5
It is clear that, for 0 < 8 < 1 close to 1, the condition (1.9) holds provided that r ~ 8V (r1=#)
and r +— W (r'=#) is concave in [cp, o0).

Moreover, it is possible to construct ¢ satisfying (I) if V(cp) < 0 and ug € UC(R™) satisfies

i it Y0 S0 uo(z) > o
R—co[z|>R || z€R®
for some ¢y > 0. In fact, we can take ¢(x,t) := max{m|z| — Ct — M, co} with m > 0 small, M > 0
large so that ug > ¢ in R™, and
C =sup{V(r) + mW(r)} + mMg.
reR

We omit the detailed verification here.
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