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1 Introduction

The paper is devoted to a H?(ds)-Sobolev gradient flow for a functional defined on closed
curves. We shall announce a result ([20]) which is a joint work with P. Schrader of
Murdoch University.

In this paper, we consider a gradient flow for the modified elastic energy defined on
closed curves:

Ex(7) == E(v) + NL(v)

B() =5 / WfPds, Ly = / s,

where v : R/27Z = S' — R", n > 1, A # 0, and s and x denote the arc length
parameter and the curvature of =, respectively. The functional E is well-known as the

with

elastic energy or the Euler—Bernoulli bending energy, and L(vy) denotes the length of ~.
The critical points of E with length constraint is called elastica. One of tool of analysis
on elastica is to construct gradient flows towards clastica. In 1985, taking advantage of
the fact that the energy F can be regarded as the Dirichlet energy of the tangent vector
of the curves, J. Langer and D. A. Singer [9, 10] considered a H'-gradient flow for E,
which is a second order parabolic equation with a nonlocal term. The work by [9] was
extended into L?-gradient flows for £ and have been studied by many researchers (e.g.,
see [2, 3, 5, 8, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 25] and references therein).
The purpose of this paper is to give a new gradient trajectories to elastica.

In this paper we consider the Cauchy problem on the H?(ds)-gradient flow for the
functional &£, defined on curves in R™:

(GF) { Oy = =V Ex(7),
7(+,0) = 0()-



Here V245 E0(7y) denotes the H?(ds)-gradient of €, at v, which is defined in Section 2.
We consider initial curves in the class

T2(S',R") = {y € HA(S",R") | |Y/(w)| > 0 in 5%},

which is the set of all regular closed curves in H?(S*, R"). The main result of this paper
is stated as follows:

Theorem 1.1. Let vy € Z?(S*,R"™). Then problem (GF) possesses a unique global-in-time
solution v € C1([0,00),Z?(S',R™)). Moreover, the solution v converges to an elastica as
t — oo in the H?(ds)-topology.

For gradient flows for the modified elastic energy, it is now a standard result that the
flow has a unique global-in-time solution and that the solution converges to an elastica
along a time sequence, i.e., the solution sub-converges to an elastica as ¢ — co. The point
is how to extend sub-convergence to full limit convergence. In general, L?-gradient flow
and H'-gradient flow for the modified elastic energy converge to an elastica as t — oo
under a translation or reparametrization. On the other hand, Theorem 1.1 asserts that the
solution of (GF) converges to an elastica as t — oo without any additional modification.
This is one of the contributions of Theorem 1.1.

2 Formulation and preliminary

In this section, first we define the H?(ds)-gradient flow for the functional &.
For v € Z?(S',R™), we define the H?(ds)-inner product by

Liv) 2 ,
()i = [ > Olu(s) - Olu(s)ds, v € TSR,
0

=0

where s denote the arc length parameter of . We denote by Vpz(s&x(v) the H?(ds)-
gradient of £, at ~, which is defined by

d
d—gﬁ’A(V + &) S (Vi Ex(Y), @) m2s)  for all ¢ € H* (ST, R™).
Since
d L(v)
o0+ | = [ Vi) vds
19 e=0 0
with

Vizwas)éa(y) = 202 + 30,(K*04) — N20%,

the H?(ds)-gradient V pz(45Ex(7) is given by the solution of

De® — 20 + O = V204960 (7)



with C?-periodic boundary condition. Let G = G(s, 3) be the Green function, i.e., the
solution to

02G(s,8) — 02G(s,3) + G(s,3) = (s, 3)
which is C%-periodic, where J denotes the Dirac delta function. The precise form of G is
written as follows:

) ALO) ~lz gl =)
Glrin) = BIG)

0<uz,y<L(v),

where

V31, T V3, 1
c 0
2

A(xy,x9) = sinh s o + sinh 5 oS
+ v/3 cosh \/ixl sin % + v/3 cosh V3T %,
V30 l
pl) = 2\/§<CObh —5 —cos 5)
Then the H?(ds)-gradient of &, is derived as follows:
L(7) . 3
Vizas€n(y) = G(5,5)V 200 Er(7)(5) d3

’ L(v)
—2y(s) — /0 [2G (5, 5)7(3) + Gi(s, 5)7s(3) (3x(5)° +2 — N)] d5,

and then the H?(ds)-gradient flow for £, is written as
L(v)
Oy(s,t) = —27(s, 1) +/ [2G(s,5)7(5,t) + Gs(s, 5)73(5,1) (3k(5, 1) + 2 — X?)] ds.
0

We define the H?(ds)-Riemannian distance on Z?(S*, R?) as follows:

1
dist(a, ) := inf/ 10/ () | r2(as,) dt, v, B € T*(S', R?),
peP 0
where s, denotes the arc length parameter of p, and
P:={pec C'([0,1],Z*(S",R")) | p(0) = o, p(1) = S}.

By [7, Theorem 1.9.5], since H?(ds) is a strong Riemannian metric, the distance function
defines a metric on Z?(S',R") whose topology coincides with the H?-topology.

Lemma 2.1 ([1], Lemma 4.2). Let BY%(vy) be the open ball with radius r > 0 with respect
to the H*(ds)-Riemannian distance.

(i) Given v € Z%(S*,R") there exist r > 0 and C' > 0 such that
dist(71,72) < Cllm — el ne

for all 1,72 € BIsH ().



(ii) Given BIst(~y) C Z%(S*,R") there exists C > 0 such that
71 = 2llwz < Cdist(y1, 72)

for all v1,7v, € Bf«mt(%)

It is known that the metric space (Z?(S',R™),dist) possesses the completeness. The
completeness plays an important role in the proof of Theorem 1.1.

Proposition 2.1 ([1], Theorem 4.3). The space (Z?(S',R™),dist) is a complete metric
space.

3 Proof of Theorem 1.1

We start with the existence of local-in-time solutions of problem (GF). The H?(ds)-
gradient flow for £, can be regarded as an ODE in H?(S*,R"). In fact, the H?(ds)-

gradient flow is written as

=: F(v),
where

5 = / 06, 0)] de, 5= / 1996 0)] de.

Thus the existence of local-in-time solutions of (GF) is proved by the generalized Picard—
Lindeléf Theorem (e.g., see [26, Theorem 3.A]). In fact, we can verify:

Lemma 3.1. Let yg € Z*(S*, R") and b = § mingeg: [Y)(u)]. Then there exists a positive
constant C' depending on o such that

IF(Y)la2 < C,  ||IDF,||(m2) < C,

for all v € H*(SY,R") with |7 — Yo|lgz < b/Cs, where Cs denotes the Sobolev constant
1
of the imbedding H*(S) C C'2(S").
Then we have:

Proposition 3.1. Let vy € Z*(S',R"). Then there exists T > 0 such that problem (GF)
possesses a unique solution in C*([0,T),Z*(S*, R")).

On the proof of the existence of global-in-time solutions, the following lemma plays
an important role:



Lemma 3.2. Assume that v € C'((a,b),Z*(S*,R™)) satisfies

b
(3.) [ 100y i < .

Then limyy, y(t) exists in (Z*(ST, R™), dist).

Proof. Fix a monotone increasing sequence {t;} C (a,b) such that t; — b as j — oo
arbitrarily. We claim that {v(¢;)} is Cauchy in (Z*(S',R™),dist). Suppose not, there
exists € > 0 such that for all N € N we find j > k > N satisfying dist(y(¢;), v(tx)) > €
Since

dist(1(t;), (1)) < / 10 () 22y

this clearly contradicts the assumption (3.1). Then, it follows from Proposition 2.1 that
v(t;) converges to some 7, as j — oo in (Z*(S',R"),dist). We note that the limit -, is
unique. In fact, if we find a sequence {¢;} C (a,b) such that y(t;) — 7, as j — oo in
(Z2(S*,R"), dist), taking {f;} to be the ordered union of {t;} and {¢;}, we have , = .
Since {t;} C (a,b) is arbitrary, we obtain the conclusion. O

Then we have:

Proposition 3.2. Let v, € Z?(S',R"). Then problem (GF) possesses a unique global-in-
time solution v € C(]0,00), Z*(S*,R™)).

Proof. Suppose that T.x < 0o. Since v satisfies the H?(ds)-gradient flow for £, we have

Ex(1()) — Ex(r0) = / 2 et / 1V 520 & (1) s

and then .
/ 19 b2y (V7)) [y 7 < E(30).
0

This together with Holder’s inequality implies that

Tmax ,111113‘)(
(3.2) / 1077 22 A / IV 20 ExCH ) 209 & < v/ T/ €3 (0)-
0 0

Combining (3.2) with Lemma 3.2, we find a curve 7, € Z?(S',R") such that
Y(t) = v as t 1 Tmax in  (Z?(S*,R™),dist).

Then we deduce from Proposition 3.1 that the solution v : S* x [0, Tjpax) — R™ can be
extended. This clearly contradicts the definition of T, .. O

We turn to the proof of full limit convergence of global-in-time solutions to elastica.
If one can verify that

(33) / Hat")/(T) HHQ(dS) dr < o0,
0
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then Lemma 3.2 implies the full limit convergence of solutions of (GF). By the gradient
structure of the H?(ds)-gradient flow, as in the proof of Proposition 3.2, it is easy to show
that

(3.4) /0 ||at7(7_)||%{2(ds) dr = /0 ||VH2(ds)5A(7(T)||%12(ds) dr < Ex() < oo.

However, the L?-integrability does not imply the full limit convergence. One of tool to
extend the L?-integrability into the L'-integrability (3.3) is Lojasiewicz—Simon’s gradient
inequality. Although the Lojasiewicz—Simon gradient inequality for the L2-gradient flow
for E or &£, has been proved (e.g., see [4, 15]), Lojasiewicz—Simon’s gradient inequality
for the H?(ds)-gradient flow for £y is one of contributions of the paper ([20]).

Theorem 3.1. Let o € Z?(S*, R") be a stationary point of Ex. Then there exist constants
Z € (0,00), 6 € (0,1], and 0 € [5,1) such that if v € Z*(S*,R") with ||y — o g2 < & then

IV tr2(asyEx(V) | 2asy > Z|Ex(7) — Ex(o)|’.

We prove Theorem 3.1 along the strategy given by [6]. More precisely, we will verify
that

(i) analyticity of &y,
(i) d?&y is a Fredholm operator with the index 0.

Similarly to [4] we can verify condition (i). However, a difficulty arises from condition (ii).
Indeed, if o € Ker(d?£y), then any reparametrization of ¢ also belongs to the space
Ker(d?£,). For, problem (GF) and functional £, are invariant under any reparametriza-
tion. Therefore, in order to prove Theorem 3.1, first we fix a suitable parametrization.

Let H,,,(S",R") := {a € H'(S",R") | [; adu = 0} and define
©:7(SYR") = HL, (S R"), ®(v):= |yl — L(7).

Then Q) := ®~1(0) is the subset of Z?(S', R™) consisting of curves which are parametrized
proportional to arc length. For the restricted functional £,|€2 we have:

Proposition 3.3. Let ¢ € Q be a stationary point of £x. Then there exist constants
Z € (0,00), 6 € (0,1], and 6 € [1,1) such that if o € Q with ||a —<||g2 < & then

ld(Ex ) (@) 7.0 = ZIEx(a) = Ex(S)I"-

Since any v € () is parametrized by a fixed parameter, we can eliminate the difficulty
on condition (ii). Then Proposition 3.3 can be proved along the strategy given by [6].
Combining the Lojasiewicz—Simon gradient inequality in Proposition 3.3 with the estimate

(3.5) [dEXI) (@)l 7a0x < dEX()][r2r < ClV 1245 EX (V) 12(as)



for any stationary point 7 of £y in Z*(S*, R") and its arc length proportional reparametriza-
tion «, we obtain Theorem 3.1.

Finally, employing Theorem 3.1, we prove full limit convergence of solutions of (GF)
to elastica. First we prove the subconvergence of the solution to an elastica v,. Then,
applying Theorem 3.1, we obtain Lojasiewicz—Simon gradient inequality with respect
to the stationary point ~,. However, in order to apply the Lojasiewicz—Simon gradient
inequality to the global-in-time solution of (GF), we have to verify that the global-in-time
solution belongs to the H2-neighborhood of =, for sufficiently large ¢ > 0. To this aim,
we prepare the following Palais—Smale type condition for &,|€.

Proposition 3.4. Let {o;}; C Q be a sequence of curves such that Ex(ay) and ||oy|| 2

are bounded, and ||dEx(a;)|| — 0 as j — oo. Then {«;}; has a subsequence converging
in H?.

Then we have:

Theorem 3.2. Let v be a global-in-time solution to problem (GF). Then there exists a
stationary point v, € H?*(S',R™) such that

Y(t) = Yoo in H* as t— cc.

Proof. Let

L(v(t))
a(t) == P(y(1)) - m / A(t) ds,

where P(~(t)) is the arc length proportional reparametrization of (t). From parametriza-
tion and translation invariance of the energy we have

NL(a) < Ex(a) = E(7) < Ex().

Moreover, using the Poincaré-Wirtinger inequality, we see that ||ca(t)||z2 is also bounded.
From (3.3) there exists a monotone divergent sequence {t;} such that

Hsz(dS)g)\(")/(t))||H2(d8) — 0 as ] — Q.
This together with (3.5) implies that
|dEX(au(t)))|| 2y = 0 as  j — oo.

From now on we abbreviate «(t;) to a;. Since {o;} satisfies the assumption in Proposi-
tion 3.4, there exists a subsequence, still denote {a;}, converging in H? to a stationary
point as. Now by Theorem 3.1 there are constants Z > 0, § € (0,1], and 6 € [3,1) such
that if z € Z*(S*, R") with ||z — asollrz < 0 then

(3.6) IV br2(a5)Ex () | r2(a5) = Z1Ex(2) — Exltao)|’.



Since the H?(ds)-Riemannian distance and the standard H? metric are equivalent, there
exist 6 > 0, r > 0 such that

B (a.) € B (ay) € B (o).

For any i € N such that o; € Bgﬂ(aoo) we let 3;(t) be the H?(ds)-gradient flow with
initial data f3;(¢;) = ;. Then due to the uniqueness of the flow, for all ¢t > t;, 5;(t) is a
fixed (i.e. time independent) reparametrization and translation of v(t), namely

L(v(ts:))
Bilt) = () 0wl — m / A(t,) ds,

where

1 /“ ,
wy(U) := —— v'(v)] dv.
Using the isometry property we have
(3.7) IV m2(as)EX(Bi (8)) | 2 (as) = [V 20a9)EX(V(E)) || 122 as) -

It follows that the trajectories 3;(t) and v(t) have the same H?(ds)-length. Let T; > 0 be
the maximum time such that

18;(0)|| g2 < & forall t e [t;,T;).

Define
1-6

H(t) = (Ex(v(t)) — Ex(acc))
Then H(t) is positive and monotonically decreasing because £y(a) = Ex(y). Since the
Lojasiewicz—Simon gradient inequality (3.6) holds for f;(t) with t € [t;,T;), we observe
from E,(B;(t)) = Ex(y(t)) and (3.7) that

H(1) = ~(1 - B)(Ex7 1) - Ex(a) "2

= (1 0)(Ex((2) — Ex(ae0)) IV rr2(a)Ex (V) 22
> (1= 0)Z[|V 25 Ex(Y ()| 112 () -

Integrating the inequality over [t;, T;) we get
T;
(=02 [ Vo0 (O)llwea de < H(t) ~ H(T).
t;

Now if we fix a j € N such that [|aj — uolz> < 0 and let W := Uis; [t Ti), we have

(3.8) /W||VH2(ds)g)\(A/(t))||H2(d8)dtS%.

In fact, there exists N € N such that ||Sy(t) — ||z < 0 for all t > ty. If not, then for
each i € N there exists T; > 0 such that ;(7;) is on the boundary of the ball B?Q(ozoo),

8



and there exists a subsequence, still denoted {¢;}, such that the intersection (5 ;[t;, T7) is
empty. By the choice of § > 0, Lemma 2.1 applies and there is a C' > 0, depending only
on s and r, such that

0 = ||Bi(T3) — ol 2 < 11Bilts) — cussllr2 + 1Bi(ts) — Bi(T) | 2
< la(ti) — aoollmz + Cdist(Bi(t:), Bi(T3))

T;
< latt) — aslln + € [ 100 .
t;

where we have used (3.7). However, then the integral fW IV m2(a)EX(V()) || 2 (as) dt cannot
be finite, contradicting (3.8). Thus there exists N € N such that Oy(t) € B?Q(aoo) for
all t > tn and therefore .
/ 106y ()] r2(as) dt < o0,
tN
that is, the H?(ds)-length of ~(¢) is finite. Hence it follows from Lemma 3.2 that the flow
converges in the H?(ds)-distance, and therefore also in H?, where we used Lemma 2.1. [
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