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Abstract

We prove resolvent L, estimates and maximal L,-L, regularity estimates for the heat equation
with Dirichlet, Neumann and Robin boundary conditions in the half space. Each solution is
constructed by a Fourier multiplier of 2’-direction and an integral of x y-direction. We decompose
the solution such that the symbols of the Fourier multipliers are bounded and holomorphic. We
see that the operator norms are dominated by a homogeneous function of order —1 for zp-
direction. The basis are Weis’s operator-valued Fourier multiplier theorem and a boundedness
of a kernel operator.
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1 Introduction

This paper is concerned with resolvent L, estimates and maximal L,-L, regularity for the heat
equation with three types of boundary conditions in the half-space with 1 < p, ¢ < co. The boundary
conditions are Dirichlet, Neumann and Robin. The resolvent estimate is used for the generation of
analytic semigroups, and the maximal regularity is used to solve quasi-linear evolution equations
such as free boundary problems called Stefan problems. Let © C RY be a domain with three disjoint
boundaries I'p,I'y and I'r. We allow that one or two of them are empty. We keep in mind the
following linear problem:;
Ou—Au=f 1inQ x (0,00),
u=hp onI'px(0,00),
Oyu=hy on Ty x (0,00),
ou+ fo,u =hr onTpg x (0,00),

u|t:0 = UQ in Q.

Here unknowns are w, while f,hp,hy, hgr and ug are given functions, 9, = 8% v -V with the
unit outward normal vector v, and «,3 > 0. Note that the end-point case (o, 3) = (1,0) in
Robin boundary condition implies Dirichlet boundary condition and the case (o, 8) = (0, 1) implies
Neumann boundary condition. Not only this non-stationary heat equation but also the following



generalized resolvent problem are analyzed;

Au—Au=f in Q,
u=hp onlIp,
Oyu=nhy only,
au + B0,u = hr on I'g.

This resolvent equation is derived from Laplace transform of the equation (1).

In this paper we do not treat the domain with curved boundaries so that the domain is the
half-space. However the domain will be allowed more general domains like a bounded domain by
cut-off techniques and localizations. We do not use such procedures since that is common and the
analysis of the half space is the most important steps. Instead of them, we consider the problem
with non-homogeneous data, which is a key to treat non-linear problems. After a reduction to
f =0, we consider the solution operator from boundary data h to the solutions u. Although these
solutions are given by a Fourier multiplier of h(z’,0) which is independent of x y-variable, we shall
use h(z/,xzy) by using an integral. We decompose the symbols of the solution operators into new
symbols and new independent variables. Since the new symbol of the Fourier multiplier operator
are bounded and holomorphic, we are able to use Fourier multiplier theorem with the connection to
Mikhlin conditions. We confirm that the operator norm is dominated by a homogeneous function
of order —1 in zn. Therefore this shows resolvent estimates by a theorem proved in the paper
[11]. Note that the new decomposed independent variables become suitable right-hand side of the
generalized resolvent estimates. Moreover we also get maximal L,-L, regularity estimates by the
same method. There are a lot of technical ideas to get the maximal regularity in the half-space.
However we emphasize that we do not need such elaborate calculations. The basis is developed by
a book [18] covering various subjects to harmonic analysis and the maximal regularity.

As previous works, we refer the paper by Shibata et al.[16, 27]. His method is based on a
sufficient condition for L,(R, X )-boundedness of Fourier multiplier operators due to Weis [30] in
terms of R-bounded of the symbols under X is H7T space. For the Stokes equations, there are a lot
of results, e.g. for model problems with Neumann or free boundary conditions [24, 25, 27], Robin
conditions [22, 28], two-phase problems [26]. Our method has already used for the Stokes equations
with various boundary conditions [11, 12] in the half space. Recently we proved the same results
for the layer domain, which is applied for the Stokes equations with Dirichlet-Neumann boundary
condition in [13], Neumann-Neumann boundary condition in [14], and for the heat equation with
various boundary conditions in [15].

The structure of the paper is as follows. First we introduce some notations and state our main
theorems in section 2. Then, in section 3, we prepare some known results. Since the equations are
inhomogeneous, we transform the equation into homogeneous except for boundary data h. This
is as usual and is stated in section 4. In section 5, we solve the equations in the half space by
partial Fourier transforms. Three types of boundary conditions are treated similarly. The solution
formula is Fourier multiplier type concerned with e~V MIETP2N | From so called Volevich’s trick, the
solutions are given by an integral form whose integrands are Fourier multiplier operators which act
h and Oyh. In the last section 6, we prove the main theorem. We decompose the symbols while
paying attention to the desired estimates. Resolvent estimate is straightforward from the theorem
prepared in section 3 and the estimates of e™V AHE PN with complex variables. Maximal regularity
estimates are also same as resolvent estimates by the prepared sufficient condition.



2 Main theorem

We formulate the resolvent and the non-stationary problems in the half-space. Let Rf and Rév be
the half-space and its flat boundary and let )4 and (g be the corresponding time-space domain;
Rf ={z=(z1,...,zx) eRN | zx >0}, RY :={z=(2",0)=(z1,....25_1.0) € RV},

Q1 =RY x (0,00), Qo = RY x (0,00).
The resolvent problem is as follows;

Au—Au=f ian, )
ou — BOyu=h onRY.
Here Oy = % and «, 8 > 0 ((or, B) # (0,0)). The case (o, 3) = (1,0) implies Dirichlet, and the
case (a, f) = (0,1) implies Neumann.
The non-stationary problem is as follows;
8tU — AU =F in Q+, (2)
aU — BonNU = H on Q.
Given a domain D, Lebesgue and Sobolev spaces are denoted by Ly (D) and W7 (D) with norms
| “llz,(py and [| - [wym (p)- Same manner is applied in the X-valued spaces Ly(R, X) and W (R, X).
For a scalar function f, we use the following symbols;
Vf=(0uf,....0NF), Vf=(30;f |i,j=1,...,N).
Even though g = (g1,...,95) € X% for some N, we use the notations g € X and |/g|lx as
>0 llgjllx for simplicity. Namely, we use e.g. |[(f,V.f, V2f)|L,p) = > aeny Jaj<2 102 FllLy(p)-
Let F and F~! denote the Fourier transform and its inverse;
—1T- — 1 1T
NG = [ e pwn, F @)= o [ eSglnte
Although we usually consider time interval R, we regard functions on R to use Fourier trans-
form. To do so and to consider Laplace transforms as Fourier transforms, we introduce some function

spaces;
Lpore (R, X):={f:R— X |e ™ f(t) € L,(R,X), f(t)=0for t <0},

0.0 B X) == {f € Lpo~(R,X) | e‘”otagf(t) €eL,(R,X), j=1,...,m},

for some -y > 0. Let £ and ﬁ)_\l denote two-sided Laplace transform and its inverse, defined as
LN = [ e @t = Firle 1)),
—o0

£ o)) = = / T Mg = S gy +i)](0),

:% .

where A = v +i7 € C. Given s > 0 and X-valued function f, we use the following Bessel potential
spaces to treat fractional orders;

5000 (R, X) = {f : R = X | AYf := LIAPLIFIN() € Lpoy (R, X) for any v > 70}
Let ¥z :={A € C\ {0} | |Jarg A\| < m — e}. We are ready to state our main results.



Theorem 2.1 (resolvent L, estimate). Let 0 < e < /2 and 1 < g < oco. Then for any A € X,

WZ(RY) if 8 =0,

WLRN) if 8> 0,

feL,RY), he {

problem (1) admits a unique solution u € Wg(Rf) with the resolvent estimate;

O\l (f, Ah, \Y/2V A, V) lp,ey) i B=0,

)\ 7)\1/2v ,VQ <
||( u u, u)HLq(Rf) = C”(f? )\I/Qh? vh)”Lq(Rﬁ) if 5 >0

for some constants C = Cn g 0.3

Theorem 2.2 (maximal L,-L, estimate). Let 1 < p,q < co and 9 > 0. Then for any

W00 (R, Lg(RY)) O Loy (R, WR(RY)) if B=0,

1/2 .
HUZ (R, Lo(RY)) N Lyo o (R, WIRY)) if 8> 0,

F € Lpo~ (R, Ly(RY)), He {

problem (2) with Uy = 0 admits a unique solution U € 14/'10170770 (R, LyRY) N Lp,OWO(R,WqQ(Rf))
with the mazimal Ly-Lg regularity;
Clle™ " (F, 8,H,AY*V H, V2H)| 1,y B=0,

le ™ (9, U, AU, AY2VU, VAU )| Ny < .
! ErE LD =) Clle (B, A B, VH) | ) if 5> 0

for any v > ~o with some constants C = Cn p ¢ ~0,0.8-

3 Preliminaries
In this section we prepare some theorems which are used later. First we recall a theorem regarding
the generation of analytic semigroups.

Theorem 3.1 ([16, Theorem 3.1.8]). Let 1 < ¢ < 0o, D(A) C W2(Q) be a subspace, D(A) C Ly(€2)
be dense, A: D(A) — Ly(R2) is a linear operator satisfying || Aul| 1) < C||u||qu(Q) forallu € D(A)
and the following resolvent estimate hold; there exists 0 < ¢ < w/2 and C > 0 such that . C p(A)
and for any A € X, f € Ly(2), we have

|\, N2V, V20) |y ) < Cllflly @), wi= (A= A)"'f(€ D(A)).

Then the operator A generates (Co)-semigroup {T'(t)}¢>0 on Ly(S2), which satisfies, by letting u(t) =
T(t)ug for ug € Lq(12),

u(t) € C1((0,00), Ly($2)) N C°((0, 00), D(A)) N C°([0,00), Ly (£2)).
u'(t) = Au(t) (t > 0),
||(tu’(t),u,t1/2Vu,tV2u)||Lq(m < Clluolz, (0,
[0/ ()]l 2,0) < Clluollwzo)-
Moreover, {T(t)}1>0 can be analytically extended to a sector X /o, . and

TT(:) = TETO) = T(+5) (43 € Do), T [TEw0 ol o) =0
T/+e



Following this theorem, theorem 2.1 derives the analytic semigroup {7'(t)};>0 on Lq(RY) whose
generator A has the domain D(A) := {u € VVqQ(Rf) | au — BOyu = 0 on R)'} by setting h = 0.
This just solves the heat equations with various boundary condition since we are able to take

@, =0 ((a, 8) # (0,0)).

For non-trivial initial data, we have the following lemma.

Theorem 3.2 ([16, Lemma 3.2.1]). Let 1 < p,q < oo. Then for any ug € (X, D(A))1_1/pp(C
Bg,(pl_l/p)(Q)), u(t) = T(t)ug satisfies

2
(s V)| 1y (0,00,Ly (2)) < Clluoll g2a-1/p -

This theorem implies that it is enough to consider zero-initial data for maximal regularity
theorem.

Next, we consider some sufficient conditions to get L4 estimate and L,-L, estimate. We begin
with a Fourier multiplier theorem on the whole space. Let 3, := {z € C\ {0} | |argz| < n} U {z €
C\{0} | #—n < |argz|} for n € (0,7/2).

Theorem 3.3 ([18, Theorem 4.3.9, Proposition 4.3.10]). Let m : f]év — C be bounded and holo-
morphic for some 0 < n < 7/2 then the Fourier multiplier F~'mJF is a bounded linear operator on
Ly(RN) for any 1 < q < oo.

We prepare a theorem to prove the main theorems concerning the half space. This gives an easy
way to show a boundedness of an operator. Let us difine the operators 1" and 7', by

Tm]f(z) = /Ooo[fglm(flﬂw +yn)Fo fl(z, yn)dyn,

Ty fmla(e.t) = £ |1 sl + ) P Lol N,
— [F, L Tl Frose () (2 ),
where A = v+ i1 € X, m,my, : Rf — C are multipliers, and f : Rf — Cand g: Rf xR — C.
Theorem 3.4 ([11, Theorem 6.1]). (i) Let m satisfy the following two conditions:
(a) There exists n € (0,7/2) such that {m(-,zn),xny > 0} C Hoo(ify_l).
(b) There existn € (0,7/2) and C > 0 such that SUDg/ 5V -1 Im (&, zn)| < C’xjvl for all xn > 0.

Then T[m)] is a bounded linear operator on Ly(RY) for every 1 < ¢ < oo.
(ii) Let vo > 0 and let my satisfy the following two conditions:
(¢) There exists n € (0,7/2 — €) such that for each xny > 0 and v > 7o,

f)flv > (1,&) = my(¢,xn) € C

is bounded and holomorphic. .
(d) There existn € (0,7/2 —¢€) and C > 0 such that sup{|mx(¢',zn)| | (1.&') € Zflv} < Cayt for
all v > o and zy > 0.
Then Ty[m)] satisfies )
le™ Tygll, @, Loy < Clle™ ™ gllL, @ Lo®))

for every v > vo and 1 < p,q < cc.



4 Reduction to the problem only with boundary data

In this section we show that it is enough to consider the case f = 0 or F' = 0 by subtracting
solutions of inhomogeneous data.

4.1 Whole space

We start considering with the whole space problem
M—Au=f  inRY, (3)
U — AU = F in RY x (0, o0) (4)
subject to the initial condition U(x,0) = 0. The following theorem is prepared.

Theorem 4.1. Let 1 < p,q < 00,0 <e <7/2 and v > 0.
(1) For any A € X¢, f € Ly(RYN), problem (3) admits a unique solution u € Wg(RN) that satisfies
the following estimates:

(A, A2V, v2U)HLQ(RN) < COngellfllz,@ny-
(2) For any F € Ly, (R, Ly(RY)), problem (4) admits a unique solution

1
Ue Wp,Oﬁo

(R, LQGRN)) n Ll)vo,’yo (R? W¢12 (RN>>)
that satisfies the estimate:

le™ " (8,U,~U, A}/QVU> V2U)||L,,(1R,Lq(1RN)) < CN,P»Q»’YOHe_’YtFHLp(R,Lq(RN))}
for any v > .

The proof is given in appendix.

4.2 Half space
For f € Ly(RY), let f° be odd extension to RY, given by

—f(a',—zn) for xy <O0.

() = {f($) for zny > 0,

We have f° € L,(RY). The function v := }'_1()\—}—2;\[:1 5?)_1}'(]”0) belongs to W2(RY) and solves
heat equation (A — A)v = f° in RY. We see U|R(1)\f = 0 as follows;

/ 1 iz’ -& > l — 0 /
0= oy [ e | [ e Ar@ue | e

o

1

) N
Feblow-ol(®) = oy | 0+ 2 ALY ey
S



9] 00 ‘ N
= N / / e—’LnyN()\ + Z sz)_l[‘rx’fo](gl, yN)dyN dgN
j=1

Cm)Y s \ Voo

1 o0 [eS) iynen nEn N ~ /
- N/ /0 (e7HweN — et ><A+;€?> UF FIE yn)dyn | dex

1 > * —YNEN WNEN S 2\—1 /
QW)N/O /_Oo<e —e )(/\"‘;ﬁj) dén | [For FUE yn)dyn

—~

o

since &y > (e7WNEN — cWNEN) () 4 Zjvzl 532)_1 is the odd function. Similarly, V|1Ré\’ = 0 hold for
non-stationary problems with zero-initial value.
Moreover we see, for v > vy > 0,

(A0, AY2V0, V20) || mvy < ClLFONlL, @y < 2C(| £l 2, ey
le M@V, 4V, A2V, VPV eong vy < Clle ™ FOl o py vy < 20| Fll 1, L, (YY)

Setting u = v+ w in (1), and U = V + W in (2) with Uy = 0, respectively, we would like to find
the solutions w and W of

Aw—Aw =10 in Rﬂ\_],
{aw — BONw = h + BONv =: h on Ry (5)
and
{/\W — AW =0 . @y, ©)
aW — BONW = H + BONV =: H on Q.

Here we have (h, H) = (h, H) when 8 = 0, and
I(A}/2h, VAL, @) < (AR, VRl Lyeyy + BlI(A 2oy, VOoNo)| L, @)
< ||(A?h, VI L,yy + CllFll L, ey
||€_7t(A#/2H»VH)HLP(RLC,(M)) < [le"(AY2H, VH) L, @®L,@Y) + CHe_’YtFHLp(RLq(]Rf_’))

when 5 > 0.
In this section we conclude that f = 0 and F' = 0 are enough to consider in theorems 2.1 and
2.2.

5 Solution formulas from boundary data

We give the solution of the resolvent problem (1) with f =0 and A\ € ¥; by Fourier multipliers for
each boundary condition. We apply partial Fourier transform with respect to tangential direction
x' € RN~1 5o that we use the notations

(¢, 2n) =Fpv(E,on) ;:/ e (e o) de,

RN-1

7



1 iz’ - / !

for functions v, w : Rf — C. We use A := ,/Zév:_ll §]2 and B := v\ + A2 with positive real parts.
By partial Fourier transform, we have the following second order ordinary differential equations;
(B2 = 9%)i=0 inxzy >0,
aﬁ—ﬁaNﬁ:ﬁ on xy = 0.

Fer Yw(@ zn) =

The solution is of the form

e—BxN

a+BBh'

Let o s(\, &, 7N) = (a+BB) te BN which derives the solution formula u(x) = [fg1¢a7gfm/ h](x).
In the next step, we use the Volevich trick a(¢,0) = — fooo ona(€,yn)dyn for a suitable decaying
function a. We obtain the solution formula;

,&(5/, .’EN) ==

u(z) = — {/0 Fo' [(Ona,s(N € on + yn)Furh] (2, yn)dyn

+ /O Fo [ba s € an + yn) For(Oh)] (f”’yN)dyN} |

Since Laplace-transformed non-stationary heat equations (2) with ' = 0 on R are the resolvent
problem (1), we have the following formula;

U(I‘,t) = _E)_\l {/O ]:é_/l [<0N¢a,ﬁ()\>§/7$N + yN))]:J:’EH] (x*yN~)\)dyN

+/0 Fo [bas(N € 2n +yn) Fur L(ONH)] (%yN,)\)dyN}-

6 Proof of resolvent estimates and maximal regularity estimates

In the previous section, we obtained the solution formula. We use the following identity;

N-1
B2 \l/2 ibm
— M+ E e =25 = A2 Z 13 B itm).
m=1

m=1

We consider two cases; one is 8 = 0, and the other is § > 0. We decompose the solution so that
the independent variables become the right-hand side of the estimates;
For the case 8 = 0, we consider as follows;

ute) =~ { [ 7 (200000 €t + ) F (- A o)y

b [T F N 0000 o + ) Fr (X205 0)] (o)
0

N-1
/ Mi&nB 2 a0\, &, 2N + yn)Fur (OmOnh)] (xayN)dyN} :

m=1

8



For the case # > 0, we consider as follows;

u(w) = - { / Fot [N2B 2056050y +yn)Fw N20)| (2, yn)dyn
0
N-1 L0
-y / For' [i&n B 20N G0 s\ & an + yn) Far (Omh)] (, yn)dyn
m=1 0

+/ J’:{/l [Ga,8(N, &, N + yn) Fur (OnD)] ($7yN)dyN}-
0
Let Sy(\, &, xN) be any of symbols;

B720n¢a 0N, € xN) or,
M/2B72¢, o(\, €, zN) or,
i€mB 2 pa o\ & TN) or,
N2B720N¢as(\ € xN)  or,
ime_QaNqba,ﬁ()\, & xy)  or,
(ba,ﬁo\; ‘f/a 1'N)-

Su()‘a £I7 TN) =

We are able to prove that all of the symbols are bounded in the sense that

sup LA+ INY21el + 1€el €0 )1Sul + (A2 + (€D Sul + [03:Sul }
(A EHeED xEN T
0,0'=1,..,.N—1

-1
< Czxy

for any 0 < e < 7/2 and 0 < < min{w/4,c} because of the estimates

(7)

Lemma 6.1 ([11, Lemma 6.3]). Let 0 < ¢ < 7/2, 0 < n < min{n/4,¢/2} and m = 0,1,2,3.
Then for any (N, &,zn) € e X 27]7\[_1 x (0,00), letting A = /SN 1e2 B = VA+ A2 and

J=1 55’
A= Zjvz_ll €12, we have
cA<ReA<|A| <A,
c(INY2 + A) <Re B < |B| < |A[Y? + 4,
cla+ B(AY2 + A)) < |la+ BB| < a+ BNV + A),
|a]r<[1€—BzN| < C(|)\|1/2+A>me—c(|x|l/2+ﬁ)m < C’(|>\|1/2+A)_1+mw]_v1

with positive constants ¢ and C, which are independent of N\, &',z .

The inequality (7) corresponds to the estimates Au, N20u, 0p0pu, \Y20Nu, 90Nnu and I

respectively.

We also see that the new symbol S, multiplied \, £ and Oy, are holomorphic in (7,¢’) € ify )

Therefore we are able to use theorem 3.4.



WZ(RY) if g =0,
WHRY) if 8> 0,
problem (1) with f =0 admits a solution u € W(?(Rf) with the resolvent estimate;

Theorem 6.2. Let 0 < e < 7/2 and 1 < g < co. Then for any A € ¢, h € {

Ol A2Th, V2R y) i 5 =0,

1/2 2
(v, AN, Vo) | ey < {C||()\1/2h,Vh)||L ®Y) if >0
q\ Nt

for some constant C = Cn 4.- o3

This theorem and the estimates in section 4 derive the existence part of theorem 2.1. The
uniqueness is proved by a duality argument. For any ¢ € Cgo(Rf ), take v € VVg(Rf ) by

{ —Av =19 ian,

av — BInv =0 onRY.

Let u be a solution of (1). We see

/ updx :/ u(Av — Av)dx
RY RY

-,

= 0.

(Au — Au)vdz + (vONu — uaNU)hR{)V (integration by parts)
N
+

By fundamental lemma of calculus of variations, this shows u = 0, which implies the solution is
unique.
For the non-stationary problem, we have, by theorem 3.4 again,

Theorem 6.3. Let 1 < p,q < oo and vg > 0. Then for any
e {W,l,{oj% (R, Ly(RY)) N Lyoo (R, WE(RY)) if 5 =0,
Hyng (R, Lg(RY)) 1 Ly (R, W (RY)) i 8> 0,

problem (2) with F' =0 and time interval R admits a unique solution U such that

Ue Wpl,Oﬁo (R’ Lq(RJJ\:)) N Lp,Ono (R, I/Vq2 (Rﬂ))

with the mazimal Ly-Lg regularity;

le™" (U, U, AY2VU, V2U) | . )

_ 1/2 .
) {CHe (OH, APV H, VA H)| gy 3B =0
= _ 2 .
Clle " (AY?H, VH)| 1, @z, if 8> 0.

for any v > ~vo with some constant C = CN p,g.70,0,8-

10



Appendix A Proof of Theorem 4.1; estimate for the whole space

Proof. Let A = ,/Zle £2,B:= VA + A2 We have u = F~'B7>F f. Functions AB?, A/2AB2,
A?B~? correspond to the symbols of left-hand sides, which are holomorphic and bounded by
Lemma 6.1. Therefore we can use Theorem 3.3. This proves the first estimate. For the non-
. P _ p-lpr-1p-2 _ oyt -1 —2 —t
stationary problem, the solution is U = L,"F "B *FLF = 67’.7-"(7_,5)%@7%)B Fltao)—(me) (e NE),
The symbol (7, €) + AB~2 is holomorphic and bounded. Therefore we have ||e‘”tf)tU||Lp(R7Lq(RN)) <

Clle™ F|lL, =y by [16, Proposition 4.2.1] and [18, Proposition 4.3.10]. The others are same.
O
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