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Abstract

Bifurcation sets of complex polynomial mappings are considered in the context of symbolic computa-
tion. Based on a result of A. Parusiriski, a new effective method is proposed for computing bifurcation sets
of complex polynomial mappings. The keys of our approach are the concept of local cohomology and the
Grothendieck local duality on residues. The resulting method can treat the case of a family of polynomial
mappings that depend on deformation parameters.

1 Introduction

The bifurcation set plays a fundamental role in the study of topology of a polynomial mapping. After
the study of S. A. Broughton [5, 6], many researchers have studied bifurcation sets from several different
viewpoints. e.g. [1, 2, 3, 4, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 24, 25, 26, 27]. Many interesting and
deep results were obtained. However, the determination of bifurcation sets is still quite difficult problem
[16, 24, 25]. We propose in this paper a new effective method for computing them. .

In Section 2, we recall the notion of a bifurcation set and a result of A. Parusinski [13]. In Section
3, we briefly recall the concept of local cohomology and the Grothendieck local duality on residues. In
Section 4, we give a method for computing bifurcation sets. In Section 5, we show that the proposed
method can compute parameter dependency of bifurcation sets of a family of polynomial mappings.

2 Bifurcation set and Milnor number at infinity

Let f : C* — C be a complex polynomial mapping Then, there exists a finite set I'y C C s.t.

f:C"—f Yy —C Ty
is a locally trivial C* fibration. The smallest set that satisfies the condition above is called bifurcation
set, or atypical set [5, 6] of the mapping f.

Let Sing(f) be the singular set of f and let C¢ denote the image by f of Sing(f). Let By denote the
bifurcation set of f.
Example ([5]) f(z,y) =%y —=

Let J; C Klx,y] be the Jacobi ideal of f. Since Jy = (2zy — 1,2?) = (1),we have Cy = 0.

Noe consider the fiber f~!(c) of ¢ € C. Since 2%y — z = x(xy — 1), we have f~!(c) 2 C* for ¢ # 0,
and f~1(0) 2 CUC* for ¢ = 0. Therefore By = {0} which means in particular Cy # By.



Let f(x) be a polynomial in n variables = (x1,2,...,2,) of degree d. Let f(z,n) denote the
homogenization of f, ie. f(x,n) = ndf(%, %72, -+« ,Zn) where 7 is a new variable. Now consider a
homogeneous function Fi(x,n) defined by

'
Fy(z,n) = f(z,n) — tn*,

where ¢ is regarded as a parameter.
Let A be the singular locus of Fi(z,n) at infinity n =0
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Lemma Let f = fq(x)+ fa—1(x) + - -+ fo(x) be a polynomial of degree d, where fi(z) is a polynomial
of degree k. Then , the following holds.
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Example f(z,y) = 2%y +2

From f(z,y,n) = *y® + an®, Fy(z,y,n) = 2%y* + an® — tn’,

we have A={[z:y:n) €P? |ay? =2%y=n=0}={[0:1:0],[1:0:0]}
Example f(z,y) = 2*+ y* — 4y

From f(z,y,n) = & +y* — dayn?, Fi(z,y,n) =z +y* + dzyn? — tn*,

we have A= {[x:y:0] € P? | 23 =y> =0} = 0.

We assume hereafter that A is a finite set. For A = {a1.az,...,an}, with a; € A, let y1y o, denote the
Milnor number of F; at the point a;.

In 1995, A. Parusinski obtained the following result.
Theorem ([13]) Let ¢to ¢ Cy. Then the following are equivalent.

(1) to ¢ By

(2) There is a neighborhood U C C of ¢ s.t.

Pta; = HigayrJ = 1,2,...,m,Vt € U.

The result implies in particular that if the Milnor number p; o, jumps at the point tg, then, tg belongs
to bifurcation set By.
3 Local cohomology and duality

In this section we recall some basics on local cohomology and duality. Let X be a neighborhood in C™ of
the origin O. Let Ox be the sheaf on X of holomorphic functions and let Ox o be the stalk at O of the
sheaf Ox. Let @X,O be the ring of formal power series at O

Let ’H?O}((’) x) be the sheaf of local cohomology supported at O defined as
H{0y(Ox) = H"(RT'(0}(Ox)),
where Rl is a derived functor. Let ’H["O} (Ox) be algebraic local cohomology supported at O:
Hio)(Ox) = lim Batg, (Ox /m*, Ox),

where m is the maximal ideal of O.



The classical theory of Fréchet Schwartz and dual Fréchet Schwartz locally convex topological vector
spaces implies that the pairings

Hioy(Ox) x Ox0 — C, Hjiy(Ox) x Ox o — C

are perfect. Namely, H},, (Ox) and Ox o are mutually dual and ’H,fb (Ox) and (’jX)O are mutually dual.
Note that the pairings are defined by the Grothendieck local residues. Here we identified Ox, o with
the set of germs of holomorphic n-forms Q% , and @Xp with % 5.

Let I C Ox be an ideal s.t V(I) = {O} and let [ = IOx o
We define Hy and H; by

H]:{UEIH?O}(O)()|IO':O}, HjZ{UEH[TLO](Ox)|jU=O}.

Since V(1) = {O}, Hy and H; are finite dimensional vector spaces and they are isomorphic: Hy = H;.

A complex analytic version of the Grothendieck local duality yields the following [19, 20].
Theorem Let I C Ox be an ideal s.t. V/(I) = {O}. Then, the following pairing are non-degenerate.

H]XOX)O/I—)(C, HfX@X)O/IA—>(C.

The non-degeneracy immediately implies the following.
Corollary dim¢(Ox,0/I) = dimc(H;}) holds.

Let g(z) € Clx] = Clz1,®2,...,z,] be a polynomial, s.t. g(0) = 0 and let J, = (8—‘1%, 8%%,--- ,8%%>
denote the Jacobi ideal in the polynomial ring C|x].

Assume that, there is a neighborhood X of the origin O € C" s.t. V(J,) N X = {O}.

Let
Hy, ={¢ € H]5y(Ox) [ p =0,Vp € Jy}
Then, we have the following. [19, 20, 22]
Proposition Let p(g) be the Milnor number of g at the origin. Then, the following holds.

p(g) = dime(Hy, ).

Proof Let Ox 0Jg be the Jacobi ideal of ¢ in the ring Ox o of convergent power series at the origin.
It is easy to see that

{6 € Moy (Ox) | P = 0,Yp € J,} = { € Hjpy (Ox) | htp = 0,5h € Ox.0,}.

Since the Milnor number x(g) of g at the origin is defined as p(g) = dime(Ox,0/(Ox,0Jy)), we have the
result.

In [22, 23], an algorithm for computing a basis of the vector space Hy of local cohomology classes is
described.

4 Algorithm

Let t = (t1,t0, -+ ,t¢) and let I; C K[t][x1,xo, ..., x,] be a family of ideals in the polynomial ring, where
x = (x1,22,...,T,) are variables and t = (¢1,t2,..., ) are regarded as parameters. Let V(I;) denote the
zero loci in C" = {& = (x1,22,...,2,) | z; € C,i = 1,2,...,n} depending on parameters t1,to,...,ts.

We assume that there is a neighborhood X C C" s.t. V(I;) N X = {O}, the origin.
Let Hj, denote the set of algebraic local cohomology classes that are annihilated by the ideal I;, where
t are regarded as parameters. Structure of H;, depends on parameters.



In [11], the authors of the present paper gave an algorithm for computing a basis of the vector spaces
H7y,. More precisely, the algorithm compute parameter dependency of the space Hj,.

By using this algorithm ALCohomology the Milnor numbers ji; o; of Fi(x,7) at the point a; € P"
are computable.

We give some examples for illustration.

Example(S. A. Broughton [2]) f(x,y) = 2%y —x
Fy(z,y,n) = a*y —an® —t’, A={[0:1:0]}.
Let © = uy,n = hy. Then F; = y3g;(u, h), where g;(u, h) = u? — uh® — th3.

Local cohomology H;, = {t | %w = %w = 0} are given as
1

(i) the caset # 0, H;, = Span{| ulh . [ wh? I}

.. 1 1 1 1
(ii) the case t =0, H;, = Span{| uh I, wh? 1 u2h 1+ 2| uh 1}

Accordingly, py = 2 for t # 0, and po = 3 for t = 0. Therefore the bifurcation set By is equal to {0}.
Example f(z,y) = 2%y*> + 2
Fy(z,y,m) = 2%y +an® —tn?, A={[0:1:0],[1:0:0]}.

(1) computation at a3 =[0:1:0]
Let © = uy,n = hy. Then F; = y*gs(u, h), gi(u, h) = u® + uh3 — th*

Local cohomology H;, = {% | %%w = %%1/1 = 0} are given as

1 1
uh2 ]7[ uh3 ]}

.. 1 1 1 1 1 1 1
(ll) the caset=07 HJgo = Span{[ uh ][ uh2 ]7[ uh3 ]7[ U2h ]+2[ uh4 ]7[ u2h2 ]+2[ uh5 ]}

(i) the caset # 0, H;, = Span{| ulh . [

Accordingly, pt1 4, = 3 for t # 0, and o 4, = 5 for t = 0.
(2) computation at az = [1: 0 : 0], We see that pi,q, = 2 for all ¢
Therefore, we have By = {0}.

Example (A. Dimca [8]) f(x,y,2) = 2%y +vy*2 + 2

Fy(x,y,z,m) =22y + vz +an? —t®, A={[0:0:1:0]}.
Let * = uz,y = vz,n = hz. Then. Fy = 23g;(u,v, h) with g;(u,v,h) = v?v + v? + uh? — th3.

Local cohomology H;, = {1 | %w = %’g{) 99t )y = 0} are given as

= Bh
- 1 1 1 1 1
HJgt = Span{[ wvh ]7[ woh? ]7[ w2vh ]7[ wSvh ]_ §[ wv?h, ]7
1 1 1 3 1 1
[ utvh J =l u?v?h J+ 3l u2vh? J+1 wvh? I
Hj,, depend on t. Whereas Milnor numbers does not depend on ¢. Therefore, we have By = 0.

Remark: In 2004, A. Bodin obtained an algorithm for computing bifurcation sets. The method proposed
in this section is different from the algorithm presented in [3].

5 Bifurcation sets and deformations

The proposed method can treat a family of polynomial map depending on deformation parameters.
Namely, the algorithm ALCohomology can compute parameter dependency of bifurcation sets. We
give some examples.



Example (A. Bodin [2]) f = (z — s®> + 1)(z%y + 1), where s is a deformation parameter.
Fla,y,m) = 2%y — (s + Dayn + an® — (s2 + L)n*
Fy(x,y,m) = 2%y — (s* + V)aPyn + 2 — (s> + Un* — tn*
A={[0:1:0]}.

Now let © = uy,y = y,n = hy. Then
F;, = y*g;(u, h) where g;(u, h) = u® — (s> + Du?h +uh® — (s> + 1+ t)h*.

Compute bases of parametric local cohomology H, by using ALCohomology. We regard s and ¢
as parameters. The output consists of four cases.

(i) s2+1=0,t =0,
(i) s +1=0,t #0
(iii) s2 + 1+t =0,52+1#0,t #0,
(iv) (2 +Dt(s>+1+1t)#0
For each cases, local cohomology are given as follows.
(i) s> +1=0,t =0, dimg (H,, ) =7

Hy, =Span{[ 0 L0 s Ll gy Loy Lo )
[ opt 1= 30 1L ps 1= 3 ar2 1)-
(i) s* +1 =0, t #0, dimg (H,, ) =6
Hy, =Span{[ L0 o 1L oy WL ys LD oo |
[ pa 1= 30 144 as 1)
(ili) 2 + 1+t =0, s> +1#0, t #0, dimgx(Hj, ) =6
Hy,, = Span{[ o 1 o 1L ap bl s b e 1= 30 ape )
B s 1= 82 s 1= 00 oy LR g, 1)

(iv) (s* +141)(s* + 1)t #0, dimg (Hy,,) =5
H,,,: omitted
Therefore bifurcation sets:are given as follows.
If s+1=0, By={0}
Ifs+1+#0, Bf ={—s*>—1}

The following example is due to M. Tibar.
Example (M. Tibar [26]) f(x,y,2) = 2%y + 2 + 2? + 523, where s is a deformation parameter.
The singular set at infinity consists of one point: A= {[0:1:0:0]}.
Compute bases of parametric local cohomology H,,, by using ALCohomology.
The output consists of 5 cases. Here we give the conditions and Milnor numbers.
(i) s=0,t =0, dimg(H,,)=5
(ii) s=0,t #0, dimg(H,,,)=4
(iii) t = 0,5 # 0, dimg(Hy, ) =5



(iv) 27s%t —4 =0, dimg(H,,,) =5
(v) (27s% — 4)st # 0, dimg (H;,,) =4
It is easy to see that bifurcation sets are given as follows.
If s=0, By ={0}
4
vl
Notice that the bifurcation sets depend on deformation parameter s.

Ifs;éO, BfZ{O
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