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1 Introduction

This is a brief survey of the joint work [2] with Kenta Oishi, Waseda Univeristy.
Let us consider a two-phase free boundary problem for inhomogeneous incompressible
viscous fluids in the N-dimensional Euclidean space RY for N > 3. Define

R]:: = {f = (€I7£N) : 5, = (617 R 7£N—1) S RN_lvj:gN > 0}

An inhomogeneous incompressible viscous fluid occupies RY at time ¢ = 0, and the fluid
is denoted by fluid,. On the other hand, another inhomogeneous incompressible viscous
fluid occupies RY at ¢t = 0, and the fluid is denoted by fluid_. The two fluids are thus
initially separated from one another by the flat interface

RY ={¢=(¢,&n): € =(&,.... & 1) ERV L ey =0}

Let £ € RY. Suppose that pl(€) are given functions and p* are positive constants.
The initial densities of fluidy are given by p9.(¢) + p’. We suppose that ps = pu+(s) >0
are smooth functions on s > 0 and that the viscosity coefficients of fluid. are given
by u+(pL(€) + p) at t = 0. Furthermore, the initial velocities of fluidy are given by
ul (&) = (W0, (€),...,ul, (&), where MT stands for the transpose of M.

Our unknowns will be a transformation ©(-,¢) : RN 3 £ = 2 = O(£,t) € RY, densities
p= = p+(x,t), pressures q+ = q=(x,t), and velocities

ve = va(r,t) = (ns(e,t), ... one(z,1)T
satisfying the following two-phase free boundary problem:

00 =vi00, O(0)=¢ ¢eRY, (1.1)
Q.(t) = O(RY, 1), T(t)=0O(Ry,1), (1.2)



atpiJrvi-V,oi:O ZL‘GQi(t,
divvy = 0, xe€ Qi(t
p+(0ve + vy - Vvy) = Div(us(p£)D
(14 (p+)D(v4) = q:Dnpg) = (p-(p-)D(v
Vy =V, TE F( )a
Vj:(€7 O) = ug:(g)v 5 € Rga
p(€.0) = pL(e) +pi, €€RE,
where 0, = 0/0t and vi 0 © = (v 0 0)(£,t) = ve(O(&,1),1).
Here np) is the unit normal vector on I'(¢) pointing from Q_(¢) into €2, (¢) and I is the
N x N identity matrix. For u = (ui(z),...,un(x))T, D(u) is the doubled deformation

rate tensor, i.e.,

Vi) — qu) T € Qi(t),

) (1.3)
) (1.4)
( (1.5)
=) —q-Dnpyy, zel(), (1.6)
(1.7)
(1.8)
(1.9)

alul c. 0Nu1
D(u) =Vu+ (Vu)", Vu= : : 5

81uN e 8NuN
where 0; = 0/0z; for j =1,...,N. Let M = (M;;(x))1<i j<n be a matrix-valued function,
and let
f=Ff@), g=(g),....on)", h=(h(2).....~h(2))"
One then defines
Vi=(0uf,....onf)T, Af= Zéﬂf divg = Zajgj,

7j=1

Ag:(Agla-"aAgN)> g:{aiakgk:Za]7k:1a"'>N}>

N
g-Vf=> g0f g Vh=(g Vhy,...,g Vhy)',

In particular,
Div(p4(p)D(vy) — q.1)
= i (pL)(Avy + Vdivvy) + ¢ (p1)D(ve)Vpr — Var  in Q4 (2).

Two-phase free boundary problems for inhomogeneous incompressible viscous fluids
were studied by Tanaka [4], Xu and Zhang [5] in an Lo setting for both space and time.
Those papers proved global existence theorems for small initial data. On the other hand,
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Saito, Shibata, and Zhang [3] proved a local existence theorem on general unbounded
domains for large initial data in an L,-in-time and L,-in-space setting. Our work in this
article is a continuation of [3] and gives a global existence theorem of (1.1)—(1.9) for small

initial data with suitable p, q.

2 Formulation in Lagrangian coordinates

This section transforms (1.1)—(1.9) into a system in Lagrangian coordinates.
Let us(&,t) = v (O(&,1),1) for (§,t) € RY x Ry, where R, = (0,00). The solution ©
to (1.1) is then given by
t
06 =+ [ ules)ds (€0 ERY xRy,
0

It follows from (1.1) and (1.3) that 0;[p+(©(&, t),t)] = 0, and thus integrating this equation
over [0, ¢] with respect to time variable shows

p(O(&,),t) = p=(©(£,0),0), (§t) € RY x Ry
Combining this with ©(&,0) = ¢ in (1.1) and p+(&,0) = p%(€) + p4 in (1.9), we obtain
pr(O(&,),t) = pL(€) + L, (&) € RE x Ry

From the above observation, our new unknowns in Lagrangian coordinates will be the
Lagrangian velocities uy(&,t) = v (O(&, 1), t) and pressures p4 (&, 1) = q+(O(&,1),t) for
(£,t) € RY x Ry. Let us define

RY =RYURY

and let (€,t) € RN x R,. One sets

{U+(§,t), (Svt) GR—ij\-f XR+a
u= u(gvt) =
u_ f,t), (Svt) S RJX X R+a
o . p+(§7t)a (57 t) S R—',J\-[ X R+>
PR _{ (&1, (€0 eRY xR,
and also . © N N
. /)+€7 €€R+a . o /)*-1-7 SGR-H
70 = le) = {pi(@, cery, 7797 {p*_, ¢eRY.
Furthermore,



where 14 is the indicator function of A C RY, i.e., 14(6) = 1 for £ € A and 14(§) =0
for £ ¢ A. It then holds that

,U/(O'O(f) + o, f) = {

Notice that o and p(o) are piecewise constants.
Let f = f(€) be a function defined on R". Then [f] stands for the jump of the quantity
f across the flat interface £y =0, i.e.,

[71= 171(€) = lim (f(€,€n) = F(€,—6w)).

EnJ0

where £ = (&,...,6y-1) € RV 7L
Let us now substitute the new unknowns (u,p) into (1.4)—(1.8). We then achieve the
following set of equations:

(Ou — o~ Div(u(o)D(u) — pI) = 0 'F(u)

in RN X R+,
in RN X R+,

on R ' x R,

(2.1)

[ul =0 on RV x Ry,
L U|t:0 = Uy in RN,
where ey = (0,...,0,1)T and
0=up(§) =
u’ (¢), ¢cRY

Here the right members F(u), G(u), G(u), and H(u) stand for nonlinear terms, see [2] for

their exact formulas.



3 Global solvability in Lagrangian coordinates
System (2.1) leads us to the following linearized problem:
(Ou— o' Div(u(o)D(u) —pI) =0 'f in RY xR,
divu=g=divg in RY xR,

[(11(0)D(u) — pey] = [A]  on R¥™' x R, (3.1)
[ul =0 on RM™' x Ry,
\ uli—o = up in RV.

To state a main result for (3.1), we introduce the notation. Let N be the set of all
positive integers. For a = (ay,...,ay)" and b= (by,...,by)T, we set
N

(a,b) = Zajbj, an = a—ey(ey,a).

j=1

Let p € [1,00], ¢ € (1,00), n € N, and s € R;. Let G be an open set in RY. Then
L,(G), H}(G), and B, ,(G) are the standard Lebesgue space, Sobolev space, and Besov
space on G, respectively. Their respective norms are denoted by || - |[z,(c), || - [|zz(c), and

| - I35, (c)- The homogemeous Sobolev space H 4 (G) is given by
HYNG) = {t € Lyioo(G) : Vu € Ly(G)N}.

q

Define for f = f(z) = (fi(x),..., fv(x))" and g = g( = (1(2), ..., gn(2))"

<f,g>az/<f<> e =3 /fj 2)g5(a

The space J,(RY) of solenoidal vector fields is then defined as
J,RY) = {f € Ly(R™)V : (f, Vp)gn = 0 for any ¢ € HL(RV)},

where ¢ = q/(q —1).

Let X be a Banach space. Then XM M > 2, is the M-product space of X, while
the norm of X* is denoted by || - ||x instead of || - ||xm for the sake of simplicity. Let
Ly(Ry, X) and H (R, X) be the X-valued Lebesgue space on Ry and the X-valued
Sobolev space on Ry, respectively. Their respective norms are denoted by || - ||1,®.,x)
and [ - [[gyr, x). Furthermore, we set

oH'(Ry, X) = {f € H(R:,X) : flimo = 0 in X}

endowed with the norm || - [l,m®, x) == [l - [[m &, .x)- Let [-,-]o be the complex interpo-
lation functor for 6 € (0,1). Define

H)PRy, X) = [Ly(Ry, X), HY(Ry, X)) 2.
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Let w(t) be a function of time ¢ and
1/p

om0 = ([ (wlsns) )

where p € (1,00). For the right members f, g, g, and h of (3.1), we introduce || - || 5, , (w())
as follows:

I, 9,8, W)l 5, oy = [wOFN L w, r,@xyyy + WO L@, @)
+ ||w(t)atg||Lp(R+,Lq(RN)N) + ||w(t)h||Lp(R+,H(}(RN)N)
+ Hw(t>hHH;/Q(R%Lq(RN)N)'

Then we have the following theorem for (3.1).

Theorem 3.1. Suppose N > 3. Let p,q1,q, € (1,00) satisfy

N 1
2< @i <N, q < g <0, p(———>>1
2(]1 2
and 5 1 2 1
2————#0, 1—=——#0 fori=1,2. (3.2)
b 4 b 4

Let ug, f, g, g, and h satisfy the following conditions:
(a) (OF € Mreqq /2007 Lo(Bors Ly (RN)N);
(b) t)g € mre{ql/Q,qg} LP(R+? H}(RN))ﬂ

(
{t)

(©) %8 € Nrctar/2.0) oH! Ry, L, (RM)N) with [(g,en)] = 0 on R¥N™t x Ry, while
(0)018 M eqqy 2007 Lo(Ror, L (RM)M);

(t)

(d) (0 € Myeqqrj2qm (Ho (R4 L(RV)N) 0 Ly(Roy, H(RV)V));

(€) up € By, PRMN N B, P(RV)N 0 J,, o (RV);

(f) [(11(0)D(ug)en )ian] = [(Blizo)an] in B! /(RN if 1 —2/p — 1/g5 > 0;
(2) [uo] =0 in By )"V =(RN-1) if 2 —2/p — 1/, > 0.

Then (3.1) admits a unique solution u with some pressure p, and there holds for ¢ = ¢

or q = q2

||<t>1/2u||Lp(R+,Lq(RN)N) + ||<t>atu||Lp(R+,Lq(RN)N)

IVl . gy + 1OV, o e,

<C ||u0||32;§/P(RN) + ||u0||33;§/p(RN) + ||u0||Lq1/2(RN)



b Y (108 W0 10 )|

r€{q1/2,q2}

where C' = C(N,p, q1,q2) s a positive constant.
To state a global existence theorem for (2.1), we introduce function spaces. Define
Znpq = Hy (R, Ly(R™)™) 0 LRy, Hy(R™)™).
Let § be a positive number and (t) = v/t + 1. We set
Z3pa ={WE Znpy: ()70 € L(Ry, LyRM)N), (t)°u € L,(Ry, HZ(RV)™)}
with the norm
5 B
lallzg,, = O 0L, &, L,avyvy + 1O AL, m, 2@y )y

Furthermore, the auxiliary function space A?.V,qu is defined by

Ay = {0 (B0 € Ly(Ry, L(RV)Y),

(t)'Vu € Ly(Ry, Hy(RV)MN),

(1°Vu € HY(Ro, L,(RY)V))
with the semi-norm
5 5
hall.ag,,,, = I8 0l @, eemm) + 1OV, @ gy
+ ||<t>6vu”H;/2(R+’Lq(RN)N><N)'

Let us now introduce an assumption of p, q.

Assumption 3.2. Suppose N > 3. Let p,qi,q € (1,00) satisfy

N 1
2<q1 <N <qy < o0, pZ—E > 1.
1

For p, ¢1, and ¢ satisfying Assumption 3.2, we define

12 1/2 1 1
KN@:‘II#D - ZNJ’JH N ZN,p,qz N AN,pm N AN,p,qz7
[l = 3o (Il + ).
q€{q1,92} i

In addition, we set for oy > 0 and the initial velocity ug

KN,p,m,qzuo(éO) = {U. € KN,p,Q17Q2 : HuHKNA,p,ql,qz < 507

[u] =0 on R¥! uf—g = u in RV},

Combining our linear theory, Theorem 3.1, with the contraction mapping principle

shows the following global existence theorem for (2.1).



Theorem 3.3. Suppose that Assumption 3.2 and (3.2) hold. Then there exist constants
do,€1,62 € (0,1) such that (2.1) admits a unique solution W € Ky 41.q0:u0 (00) with some
pressure p for any

oo € Hy (RY)n HL (RY) (3.3)
and for any
g € Bglf;/p(RN)N N Bg;g/p(RN)N N Jql/Q(RN) (3.4)

satisfying the smallness conditions:

2 2

2 lloolly i < 2 oll, ) + 3 uoll 2y <
i=1 =1

and the compatibility conditions (a) and (b) :
(a) [((oo + o)D(ug)en)wn] =0 on RN if 1 —2/p—1/qa > 0,
(b) [ug] =0 on RN"1 4f2—2/p—1/q, > 0.

4 Global solvability for the original system

This section shows a global existence theorem for (1.1)—(1.9). Following [1], we introduce
definition of solutions to (1.1)—(1.9).

Definition 4.1. We call (0, p+,v+,q+) a global-in-time solution to (1.1)—(1.9) if the
following assertions hold for some p,q € (1,00), p} € H(RY), and ul € B P(RY)N.

(1) Let Qi(t) = O(RY,t) for t > 0. Then O(-,t) is a C*-diffeomorphism from RY onto
Q4 (t) and from RY onto Q_(t) for each t > 0.

(2) ©® = O(¢, 1) is a solution to (1.1) in the classical sense.

(3) px = px(a,t) is given by pi(x,t) = p(O; (x)) + pi for x € Qi(t) and t > 0, where
O;! is the inverse mapping of O(-,t) : RN — Q(t) with Q(t) = Q4 (t) U Q_(t).

(4) (2.1) admits a solution (u,p), and (v, q+) are given by

vi(z,t) =u(O;(2),1), qi(z,t) =pO; (),t), x€Qu(t),t>0.

The following theorem then holds.

Theorem 4.2. Suppose that Assumption 3.2 and (3.2) holds. Furthermore, we assume

2 N
-+ — <1
P G



Let €1, g9 be the positive numbers given by Theorem 3.3, and let oy, ugy satisfy (3.3), (3.4),
respectively, together with the smallness conditions and the compatibility conditions stated
in Theorem 3.3. Then there ezists a global-in-time solution (©, p+, vy, q+) to (1.1)—(1.9),
and also

Hvi(w”Bg;z/P(Qi(t)) - O(flﬂ) ast — 00

for q=q or q = q.
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