On the energy identity for the full system of

compressible Navier—Stokes equations

Motofumi Aoki
Tohoku University

1 Introduction

This is a survey paper on [2]. The full system of compressible Navier—Stokes equations

in T with d > 2 is written as follows.

(0,p + div (pu) = 0, t>0,z €T
O(pu) + div (pu @ u) + Vp(p,d) — divS = 0, t>0, 2T 1)
9 (pQ(0)) + div (pQ(0)u) — KAO = (S : Vu) — pu(p, 0)divu, t >0, z € T
\(p,u,e)’tzo = (po, wo, b), x € T

The equations (1.1) consist of the continuity, the motion, and the thermal energy of a
fluid. p = pt,z) : Ry x T = Ry, u = (uy(t, ), -+ ,uq(t,r)) : Ry x T4 — RY and
0 = 0(t,r) : Ry x T¢ — R denote the unknown density of the fluid, the unknown
velocity vector and the unknown temperature of the fluid at the point (¢, z) € (0,7) x T
po = po(x) is the initial density, uy = (ug1(x), - ,upaq(x)) is the initial velocity vector
and 0y = 0p(z) is the initial temperature. T¢ denotes the d-dimensional torus [0, 27]¢. S

with coefficients u, A denotes the viscous stress tensor of fluid such that

S == p{Vu+ (Vu)"} + Adivul,
2

where Vu = (9,,u;), (Vu)" denotes the transpose of Vu and I denotes the identity matrix.
For the vector-valued functions u = (uy, ug, -+ ,uq) and v = (vy,ve, -+ ,v4), We also u®v
by

URU = (Uivj)lgi,jgd'



Here p = p(p,0) is a scalar function representing the pressure and satisfies a general

constitutive relation

p(p,0) == pe(p) + pin(p, 0) = pe(p) + Opa(p),

where p. means the elastic pressure and p;, means the thermal pressure. The thermal

energy contribution (@) satisfies

o = [ e (2)dz,

where ¢, : [0,00) = R and inf ¢, > 0. The coefficient & is positive such that the internal
energy flux KV is given by Fourier’s law. Here, (S : Vu) stands for a scalar product of
matrices: .

ij=1

We define an energy E(t) by

E(t) := %/]l‘d p(t, x)u?(t, v)dx + /Td p(t,x)h(p(t, x))dx + /Td p(t,x)Q(O(t, x))dx, (1.2)
where
)= [ (13)

and p.(p) is from the relation of the pressure p(p,0) = pe(p) + pun(p, 0). Moreover, pu?,
ph(p) and pQ(#) denote the kinetic energy, the elastic potential and the internal energy,
respectively.

The existence of a weak solution for (1.1) is proved by Feireisl [7]. However, it is not

clear whether the weak solution satisfies energy conservation law or not.

To study the energy conservation law for the compressible Navier-Stokes equations, we
first recall several results for the incompressible Navier—Stokes equations and the equations
of the viscosity barotropic fluid.

We first consider the incompressible Navier—Stokes equations case.

Ou— Au+ (u-V)u+ Vp =0, t>0, z€RY

divu = 0, t>0, z€RY (1.4)
Uli—o = U, r € R,
where u = (uy(t, ), ,uq(t,x)) and p = p(t,z) denote the unknown velocity vector

and the unknown pressure of the fluid at the point (t,z) € (0,7) x RY, and vy =

(upa(x),--- ,upaq(x)) is the given initial velocity vector.



The global existence of weak solutions in L>(0,7; L?) N L*(0,T; H') was proved by
Leray [13] for the whole space and Hopf [9] for arbitrary bounded domains. They proved

that weak solutions satisfy the energy inequality

t
()13 +2/0 IVu(t)||5ds < [Juoll3- (1.5)

The weak solution above is called Leray—Hopf weak solution. In the case of three or
higher dimensions, however, it is a famous open problem whether Leray—Hopf’s solution
is unique or not. By assuming additional conditions, partial results are known. The
uniqueness provided
w € LP(0,T; LY, §+g<1, 2<p<oo, d<qg<oo, (1.6)
was proved by Prodi [17] for whole space and by Serrin [18] for arbitrary domain. La-
dyzhenskaya [12] showed the regularity in the above class. The conditions (1.6) are nowa-
days called the Serrin class (or Ladyzhenskaya—Prodi-Serrin class) (see also Serrin [19]).
Masuda [15], Sohr [21], Giga [8] and Kozono—Sohr [11] generalized to the critical case
2/p+d/qg=1
Compared with uniqueness, we can find more general conditions for the energy conser-

vation law. Shinbrot [20] gave the following condition.

1 3

we LP0,T;L7), —-+-=1 3<q<A4,
P 4q
9 o (1.7)
or wé€lLPO,T;LY), —-+-=1, ¢>4.
P q

The most important case is characterized by p = ¢ = 4, and let us explain how to
derive the L*(0,T; L*) integrability. To this end, we multiply the equation (1.4) by u and
integrate time and space variables. Since u € L*(0,T; L*), we can estimate the nonlinear

term (u - V)u,

< ||U’H%4(O,T;L4)HUHL2(O,T;H1)7

T
‘ / (u- V)u,u)ds
0
which can justify
t
/ ((u-Vu,uyds =0,
0

where (-,-) denotes L? inner product. Therefore we formally obtain

t
lu()Ilz +2/ IVull3ds = |luollz.  a.e.t € (0,7),
0



for almost any ¢t € (0,7). In the rigorous proof, we take a mollification of u. Later
Taniuchi [22] also studies a sufficient condition for energy conservation law on the general

dimensional case. The most general results are those in

2,2 1 2
IPP(0,T; Bia' ), —+-<1, 1<p<q<oe,
p q

s4s.3 0 ] 2
or LP(0,T;Bg" *), —+-2>1, 0<p<3,1<q<oo,
P q
by Cheskidov-Luo [5]. Here, By , denotes the inhomogeneous Besov spaces.
We next consider the barotropic compressible Navier—Stokes equations case. The motion

of viscosity barotropic fluid is described by the following.

Op + div (pu) = 0, t>0, €T
O(pu) + div (pu ® u) + Vp(p) —divS = 0, t>0, zeT (1.8)
(p,u)|,_, = (po,uo), z € T

Lions [14] first showed the existence of weak solutions for (1.8) on the bounded do-
main. However, it is also unknown whether the weak solutions of (1.8) satisfy the energy
conservation law.

We mention previous studies on energy conservation laws for the compressible Navier—
Stokes equations. Yu [23] proved the energy identity for the isentropic Navier—Stokes
equations if the velocity u belongs to LP(0,T; L4(T?)) with 2/p +2/q < 5/6 and q > 6.
Here, the isentropic Navier—Stokes equations are one of the barotropic fluids such that

the pressure p(p) satisfies

d

p(p) = p’y’ V> 5
Akramov-Debiec-Skipper-Wiedemann [1] showed the energy identity for (1.8) when
u € B ((0,T)xT*)NL*(0,T; Wh2), p, pu € BY (0, T) x T?) with a+28 > 1, 2a+3 >
1,0 < a,B <1 and the pressure is continuous with respect to the density. Furthermore,

Nguyen—Nguyen—Tang [16] considered energy conservation law if weak solutions satisfy

2 2
we PO, T; LY, —+-=1, q>4,
p q

0<a<p<c<oo, pel®0,T;BL_(T%), p(-) e C*((0,00)),
for some constants ¢, co.

Our purpose of this paper that we show the energy conservation law for the equations
(1.1) with (1.7). Let us introduce a weak solution of (1.1) based on an idea of Feireisl [7].



d
Definition (Weak solution). Q C R¢, d > 2, is bounded domain. Let 7' > 0 and ~ > 7
A measurable function (p,u, ) on (0,7) x Q is called a weak solution of (1.1) on (0,7") if

2d
1. p,u, 0 satisfy f > —
p, u, 6 satisty for r 152

p € Lo(0,T; L), u € L2(0,T; W2, pu € L0, T; L 11), S € L*(0, T; L?),
pe(p) € LH0,T; LY), pQ(0) € L>(0,T; LY) N L2(0,T; L* N L"), K(0) € L'(0,T; LY),
log 0 € L*(0,T; L?).

2. p, u satisfy the equation of continuity in the distribution sense, i.e.
t
[ 0.0:2)) + (o, V@7 = (o(2), 2(0) ~ (. Do)
0
for any test function ® € D([0,T) x Q) with ® > 0.

3. p, u satisfy the momentum equation in the distribution sense, i.e.

/0 {{pu, 0,6) + (pu 4, V) + (p(p. 0), div é) }dr — / (S, Ve)dr
— (pu(t), 6(1)) — (oo, H(0)).

for any test function ¢ € D([0,T) x Q).

4. p, u, 0 satisty the internal equation in the distribution sense, i.e.
t
| 140Q(0).0:0) + (600}, V) - (Q(0). A }ar
0

= (p()QO) (1), ¥(t)) — {PoQ(bo), ¥ (0)) — /0 {{(S, Vu),¥) — (00pp div u, ) }dr,
for any test function ¢ € D([0,T") x Q).
5. p, pu and pQ(0) satisfy the initial conditions
(olt, ), n()) s (pon(a)),

tﬂ?)U(t, :C), Tl(@) - <p0u07 7](37))7 t—0,
(p(t, 2)Q0)(t,2),n(x))  — (poQ(bo),n(x)),

for any test function n € D(Q).

In this paper, we study sufficient conditions of energy conservation law for (1.1).



Theorem 1.1. (A-Twabuchi, [2]) Let d = 2,3, Q = T Suppose that T < oo, (p,u, ) is
a weak solution of (1.1) on (0,T). Assume that

0<c<p<cy<oo, u€lL®0,T;L%, p-)eC(0,0)) (1.9)
for some constants c1,co. In the case when d = 3, we additionally assume that

ue LP(0,T;LY), =1, 3<qg<4,

3
; (1.10)
q

or we€ LP(0,T;LY), +-=1, q>4.

Then the energy (1.2) conserves, i.e., E(t) = E(0) for all0 <t < T.

It is also possible to apply the condition (1.10) to the barotropic compressible Navier—
Stokes equations (1.8).

Corollary 1.2. (A-Twabuchi, [2]) Let d = 2,3, Q = T?. Suppose that T < oo, (p,u) is a
weak solution of (1.8) on (0,T), and

0<c <p<c<oo, wel®0,T;L%, p(-)eC((0,00))

for some constants ¢y, co. In the case when d = 3, we additionally assume (1.10). Then

the energy equality holds.

l/qrd p(t,a:)uz(t,m)der/ p(t, x)h(p(t, z))dx

2 Td

t t
+ u/ |Vu(t, z) + (Vu)' (¢, z) Pdzdr + )\/ / |div u(t, z)|*dzdT
0 JTd o Jtd

1

=3 [ mlrie)is + [ ol)h(o)ds

for all 0 <t < T, where

Remarks.

1. ((1.10) in d = 2). In the case when d = 2, we have by the Gagliardo-Nirenberg’s
inequality and the Holder’s inequality that
1—-2

2
[ull e o,ri00) < Cllull oty pip2y 1l L2 7w1.2),

when 2/p+2/q = 1 and 2 < ¢ < co. We do not need the additional assumption (1.10).



2. (Best choice of indices in (1.10) in d = 3). In the case when d = 3, the condition
u € L*(0,7;L*) is the best in (1.10), and the other cases follow from the following

inequalities of Gagliardo—Nirenberg type and Hélder interpolation.

R R 1 3 1 1 1
[ullLao,r;Le) < ||u||L2(?)(7pT;3/1,2)HUHi;p(o?%;Lq)a b g =1, 1 < 7 < 3

1-2 p 2 2 1
lellzao.zicny < llull pocto ooy 1l £ o 20y s T7 =0 =

1

4
The figure implies the relation of the sufficient conditions of (1.10) for LPL? :=
LP(0,T; L7) spaces:

L’L7N

Serrin

O

3. (Comparison with the known result of incompressible case). Compared with the
previous studies on incompressible fluids, our result corresponds to that of Shinbrot
20].

4. (Comparison with Nguyen-Nguyen—Tang [16]). We have obtained the energy iden-
tity without the positive regularity assumption for the density and the pressure by
Nguyen—Nguyen—Tang [16], where they suppose p € L>(0,T; BQ% +) When d = 2 and
p € L>(0,T; Bi ) when d = 3. Moreover we only need p € C'(0,00), while they
impose p € 02(5,700).

5. (Comparison with Akramov-Debiec—Skipper-Wiedemann [1]). Akramov-Debiec—
Skipper—-Wiedemann [1] showed the energy identity for the compressible Navier—
Stokes equations such that u € B ((0, T)xT*)NL2(0, T; W2), p, pu € By ((0,T)x



T3), 0 <c <p <o <oowitha+28>12a+8>10< a8 <1 and
p € C([c1,2]). Our theorem does not require the positive regularity assumption in

the Besov space, while we assume p € C'([cy, ¢3)).

We finally mention the energy equality for compressible Navier—Stokes equations de-
scribing the motion of the ideal gas. Taking the pressure as p(p, ) = pf and the internal
energy Q(f) =6 in (1.1), we write the motion of the ideal gas as follows.

(0,p + div (pu) = 0, t>0,zeT
O(pu) + div (pu @ u) + V(ph) — divS = 0, t>0,x €T

(1.11)
Oy (p0) + div (pou) — A0 = (S : Vu) — pOdivu, ¢ >0, x € T

\(p,u,Q)‘t:O = (po, uo, bp), r e T

We can prove a similar result under the assumption for (1.11) as in Theorem 1.1;

Corollary 1.3. (A-Iwabuchi, [2]) Let d = 2,3 and Q = T?. Suppose that T < oo, (p,u,0)
is a weak solution of (1.11) on (0,T). Assume that

0<e<p<ey<oo, we L®(0,T;LY),

for some constants c1,co. In the case when d = 3 we additionally assume (1.10). Then

the energy equality holds, i.e.,

%/Td p(t, o) (t, x)dx + /Td p(t,2)0(t, x)dz = %/Td polx)ud(x)ds + /Td po(2)00 () dz

forallO <t <T.

We mention the existing results of the Cauchy problem for (1.11) and discuss the dif-
ference between the class of the Cauchy problem and the class of energy conservation
law. There are many results of the Cauchy problem of (1.11) in the scaling critical space
(po—1,up,6p) € (Bp% s B; i +%, B; f +%) Chikami-Danchin [6] discussed the unique solvabil-
ity in the case when 1 < p < d, and Chen-Miao—Zhang [4] proved the ill-posedness result
in the case when p > d. In the two-dimensional case, Iwabuchi and Ogawa [10] proved the
ill-posedness for the initial data (pg, ug,0o) € (Bp%,q, B;;+%, B;§+%) with 1 < p < oo and
1 < g < 0. Recently, the author and Iwabuchi [3] proved the ill-posedness for the initial
data (po, uo,00) € (Bi,. BY,, By1) in three-dimensional case. The relation between the
class of the Cauchy problem and the class of energy conservation law seems conflicting.

It is known that the following inclusion relations hold:

C([0,7); By,) € L=(0,T; L>), C([0,T); By,) C L>(0,T; L%), d=2,3.

8



By Corollary 1.3, p € L>=(0,T; L>), u € L>(0,T; L?), (d =2), u € L>=(0,T; L?), (d = 3)
are sufficient conditions that the ideal gas satisfies the energy conservation law. On the
other hand, Iwabuchi-Ogawa [10] and the author and Iwabuchi [3] proved the ill-posedness
of the Cauchy problem for (1.11) in p € C([0,T); B},) and u € C([0,T); BY,). There
is indeed no relation between L' and Bd_i However, except for this point, these results
imply that the equations (1.11) have different aspects under similar conditions: a positive
result that the equations (1.11) satisfy the energy conservation law and a negative result
that the Cauchy problem of (1.11) is ill-posed.

2 Preliminaries

To prove Theorem 1.1, we introduce a mollifier in spatial variables and a lemma.

Definition. Let € C§°(R?) be such that 7 is radially symmetric and

suppn C B1(0), 0<n<1, / n(x)de = 1.
R4

For £ > 0 we set
ne(z) = e_dn(g_lx), reTe,

and define u.(x) by
wle) = (e w)(w)i= [ ne— puly)dy, @ €T
T

Lemma 2.1. ([16]) Let d > 2,1 < p,q < 0.

1. There exists C > 0 such that for every e > 0 and every f € LP(0,T; LY(T%))

1lliroiraoy < C | flluvorien,
IV fellLro,ripe) < Cg_l_%HfHLP(O,T;Lq)'
2. There exists C' > 0 such that for every e > 0 and every f € LP(0,T; LY(T?))
IV fellro.rney < Ce | fllro.r0)-
Moreover, if p,q < oo, then
limsup e[|V fe|| zr 0,700y = 0, (2.12)

e—0

provided that f € LP(0,T; L4(T%)).



3. For every g € L*>®(0,T; L) with infg > 0, there exists C > 0 such that for every
feLr0,T;L9) and every € > 0

f _
‘ v/l < CeY\fllzooizsacray-
9e |l Lr(0,1;L9(T4))
Moreover, if p,q < oo, then
limsup e VE =0, (2.13)
=0 9e |l Lp(0,1;L9(T4))

provided that [ € LP(0,T; L9) N L>(0,T; L>®), g € L>(0,T; L*) and inf g > 0.

zeTe
Lemma 2.2. ([2]) Let d > 2, p,p1,q,q1 € [1,00), p2,q2 € (1,00, 1/p = 1/p1 + s, 1/q =
1/q1 + 1/qs. Then there exists C' > 0 such that for every f € LPY(0,T;Wh9) and
g € LP2(0,T; L%=)

1(f9)e = fegellro.rszay < Cell fll e o.0;wr a9l o2 0,7 L.02)-
Moreover,
lim sup e~ |(£9)- = fegellro.rizny =0, (2.14)
provided that [ € LP*(0,T; Wh4) and g € LP2(0,T; L%).

3 Proof of Theorem 1.1

We can also show Corollary 1.2 in the same way as Theorem 1.1 and omit details.
For simplicity, we may consider only the case when u € L*(0,T; L*) (see Remark below
Corollary 1.2).

We first consider the continuity equation and the momentum equation. For z € T, let
test function be the mollifier 7.(x — -). Multiplying the test function by the continuity

equation and the momentum equation and differentiating by t gives
Ope + div (pu). =0,
O(pu). + div (pu @ u). + Vp(p,0). — divS. =0,

(3.15)

for all (t,z) € (0,T) x T?. The multiplication by p-*(pu). of the second equation of (3.15)

0= / t {<5)T(pu)5, (pp“jf> + <div (pu @ )., (p;’;)f>

+ <vp(p, 9., <p“>€> _ <div S.. <p“>€>}d7 (3.16)

£

yields

=:(A)+ (B)+ (C)+ (D).

10



We here extract the important terms by the lemma below.

Lemma 3.1. The equality (3.16) is equivalent to

t 2 t
L / / 87{<pu)€}d:1;d7'+ / / 0, (poh(p2))dwdr
2 s JTd Pe s JTd
t

. (3.17)
- / {pin(p,0)}e, divue)dr +/ (S: : Vuydr + R.(t,s) =0,
where h is defined by (1.3), and the error term R.(t,s) satisfies
lim sup |R.(t,s)] =0 for allt.
e—=0 s€(0,t)
Proof. We write that
t
(4) = / <37<pu)€, (pu>a> o
’ § (3.18)

P
1 t 2 1 t 2
:_/ / 8T{%}da:dr + —/ <an€7 (ou), >dT.
2 s JTd Pe 2 s Pe
By integration by parts and the mollified continuity equation,
t
(B) = — / <(pu R U)e, V(ppu)a >d7‘
t
- / <(pu ®u). — u: X (pu)e, V(ppu)E >d7'

£

n % /: <div {(peue) — (pu)-}, (’;—?3>d7 - %/t <an€, sz;)? >d7‘

)+ (8- [ (or0r 125 .

€

We notice that the last term above line is canceled with the last term in (3.18). We prove
that (B1), (Bs) tends to 0 as £ — 0. By Holder’s inequality,

t U .
|(By)| = / <(,0u RU)e — U (pu)E,V(p ) >d7"
SHV(W)E 1(pu o u)e — ue @ (pu)e|| 4 4.
Pe  |lLa(0,1;04) L3(0.I5L3)

By the assumption v € L*(0,T; L*), we can apply the inequality of Lemma 2.1 3 and the
convergence in Lemma 2.2, and obtain

HV (pu).
pe

S 05_1 HUHL‘I(O,T;L4)7
L4(0,T;L*)

limsup e 4| (pu @ u). — u. @ (pu).|| =0,

4 ) 4
o L3(0,T;L3)

11



which yields

limsup sup [(B;)| = 0.
e—=0  s€(0,t)

We also show the convergence for (By). Therefore we extract the important part of
(A) + (B) with the error estimate that

=)= [ [ {8 anir| <o

We turn to consider (C') and write

=/ S R e Y N AR oS}

Pe €

lim sup
=0 s€(0,t)

We extract the second term and the third term of (3.17) from (C}), (Cy), respectively.
We first estimate (C4) and write

o= | t <V<pe<p>>€, %>dT

Pe

= [ o = o 22+ (T2 () b

= (C11) + (Cr2).

Using the fundamental theorem of calculus, integration by parts and the mollification of

the continuity equation, we can see that (C}2) becomes the second term of (3.17):

(Ch2) = / y O-(peh(pe)) dxdr.

We next show that (Cp;) converges to 0. We approximate (pu). by p.u. and apply
integration by parts, and then have that

€l <] [ (F{ o). o}, LI
+

| ({0~ puton v yar

<[v{ 6.t~ i} (pwe = peue

Pe

(3.19)

Lo°(0,T;L°) LY(0,T;LY)

+1[(Pe(p))e — pe(pE)HLZ(O,T;LZ) |div Ua||L2(o7T;L2)-
In this paper, we especially deal with the second term of the right-hand side of (3.19).
It suffices to show that

[(Pe(p))e — pelpe)llL2(0,;02) — 0. (3.20)

12



By ¢1 < p < ¢y from the assumption (1.9), the mean value theorem and 7. having the

unit mass, we have

(Belp))e(ra) = pelp)(r ) €2 sup [ / (ptra—y) - p(ﬂﬂf))%(y)dy‘-

By p € L>(0,7; L>) C L*(0,7T; L?) and the continuity of the translation in L*(0,7’; L?),

we have

lim sup || (pe(p))e — pelpe) ||L2(0,T;L2)

e—0
T 2
<timswp sup W [ s o =) = o5 ) et ) =0
e—=0  c€ler,er] 0 y€e€B:(0)
which proves (3.20). We also show the convergence of the first term of the right-hand side
of (3.19), then we obtain

limsup sup [(Cy4)| = 0.
e—=0  s€(0,t)

As for (Cy), we write

@)= [ (Tt PN (Va0 b

The second term on the right-hand side is nothing but the third term of (3.17), and we
show the first term above converges to 0 as ¢ — 0. By Holder’s inequality, Lemma 2.1
(1), and the assumption of p € L*(0,T; L™), we get

/st <V{pm(p, 0)}-, M>df

Pe

(pu>€ — Pele

< |IV{per(p, 0) }ell200,7:22) p

L2(0,T5L2)
< CE_IHpth(p7 9)HL2(0,T;L2)||(PU)5 - PeueHm(o,T;L?)-
It follows from p € L>(0,T; L>), u € L*(0,T; W?) and Lemma 2.2 that

limsupe ™|

e—0

(pu)e — petie||r20,m;L2) = 0.

Therefore, we conclude

limsup sup |(C) — /St /Td (Gt(pah(pg)) — {pwn(p,0)}cdiv ue) dxdr| = 0.

e—=0  s€(0,t)

Finally, we consider (D). Since S. € L*(0,T;W"?), we can prove the convergence of

(D) in the same way of (Cy) and then conclude

o) [ (5 Vi) par

13

limsup sup = 0.

e—=0  s€(0,t)




Therefore we complete the proof of (3.17) with the error estimate. O

We prove Theorem 1.1 with the help of Lemma 3.1. We consider the thermal equation
by choosing a test function as a constant function. It follows from the definition of the
weak solution and 9,1 = 9,1 = 0 that

/T PRWO)(t x)dr = /T PQO)(s, x)dr + /:{(S:Vu}—(pth(p,ﬁ),divu)}dr (3.21)

By adding (3.17) to (3.21), we obtain

%/Td{(pa } (t,x d:c+/dpah(pe)(t,:c)da:+/poQ(9)(t,$)d$
1
"2

/{ 2 } )+ / Peltlpe) (s, w)d + / PQ(O)(s, 2)da

t
+ [ ({pwm(p, 0 }5,d1VU€>dT—/ (pen(p, 0), divu)dr

(3.22)

/S (S : Vug)dr + /:(S : Vu)dr — R.(t, s).

We start by taking the limit as s — 0 for each € > 0. The weak continuity of pu gives the
pointwise convergence of (pu). to pu, and the Lebesgue dominated convergence theorem

implies that

1 2 1 :
_/ (pu)€ (S, :l:)diE = (p0u0)€ (:E)d:l?, as s — 0 for each £ > 0.
2 Jra pe 2 Jra (po)e

Similarly, we also have from the weak continuity of p that
/ peh(pe)(s,x)de — | (po)eh((po)e)(x)dx, as s — 0 for each € > 0.
Td Td

The convergence of the third term pQ(0)(s, z) as s — 0 follows from the weak continuity of
pQ(0) due to the definition of the weak solutions. As for the integrals, the well-definedness
is assured by the definition of the weak solution and it is possible to take the limit as
s — 0 due to the integrability, and we will apply Lemma 3.1 to the error term R.(t,s).
Finally, we take the limit as ¢ — 0. The integrability of pu?, ph(p), pm(p,0), divu, S, Vu
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and an elemental property of the mollifier imply that

1 2 1
—/ (pu): (r,2)dr — = | pu®(r,z)dx, forT=0,t,
2 Td pe 2 Td
/ ph(pe) (T, x)dx — / ph(p)(t,z)dz, for T =0,t,
Td Td
¢ ¢
[ oo 0))edivedr — [ (olp.0).divayar -0,
0 0

t t
/ (Se: Vu)dr — / (S: Vu)dr — 0,
0 0

as € — 0, which proves the energy equality in Theorem 1.1. |
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