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Abstract

Let p be a prime number and K be a field with embedding into R and Q,. We
propose an algorithm that generates continued fraction expansions converging in
Qp and is expected to simultaneously converge in both R and Q,,. This algorithm
produces finite continued fraction expansions for rational numbers. In cases where
p=2,3 and K is a quadratic field, based on numerical experiments, we conjecture
that the continued fraction expansions generated by this algorithm converge in both
R and @Q,. Furthermore, we anticipate that these expansions eventually exhibit
periodicity or finiteness.

1 Introduction

Mahler[4] initiated the first attempt at p-adic continued fractions. Schneider [10] and
Ruban [8] independently proposed different algorithins during the same period, both con-
tributing significantly to the field of continued fraction expansion algorithms for Q, (see
for example [7]).

Let J be a representative system modulo p. It is well known that every u € Q, can
be written as

u=> cap®, co€J,

nez

where ¢ = 0 for k < v,(u). We define

lu)) = Z e, u]) = Z cnp".

n€Zl<g n€l<o

For the standard representative J = {0,1,...,p—1}, we denote |-} and [-]/ by [-], and
[-], respectively.

Ruban’s continued fraction algorithm is applied to o € Q, as outlined below. Starting
with ap = «, we define sequences {a,} and {a,} as follows:

1

Ap = Laanv Opyp1 = o,
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Let K be a field that has an embedding into R and @, respectively. Assume o4
gives an embedding into R and o, gives an embedding into Q,. In ([9]), we defined an
algorithm aiming to achieve simultaneous rational approximations in both R and Q, for
elements of K. This algorithm is a modification of the p-adic continued fraction algorithm
presented in [2] and [5]. Let v € K. We denote g () by an (or alternatively, (a)s)
and o,(a) by ay, (or alternatively, (a)qy). If K is a real quadratic field for the case of
p = 2, the continued fraction expansions for the elements in K generated by this algorithm
converge in both R and Q, and become eventually periodic. In this note, we propose an
algorithm that can be expected to yield simpler simultaneous approximations compared
to this algorithm. Let o € K. Starting with ay = «, we define sequences {b,(«)} and
{a,} as follows:

1

a, — by(@)’ (1.1)

bn(@r) = enl(enatn) @y lp: g1 =

1 if (a,)e0 > 0, ) ) .
where €, := if (@) _ ". The algorithm halts if a,, —b,, = 0, resulting in a1, . . .
—1 otherwise

not being defined.

)
Example 1.1. We give the continued fraction expansion of 3 for some prime numbers

by the algorithm.
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Let a € K. Throughout the following sections, let b, and «,, be generated using the
algorithm (1.1).
2 Fundamental properties

In this chapter, we give fundamental properties for the algorithm (1.1).
From the definition (1.1), it is difficult to observe the following lemma.

Lemma 2.1. Leta € K. Then, for alln € Z~q, we have v,((ow)py) < 0 and vy((am)p)) =
Up(bn(a)).

Following lemma gives a sufficient condition for the convergence of continued fractions.

Lemma 2.2 ([6]). Let by, by, ... € Z[;—lj] be an infinite sequence such that

'Up(bnbn-H) < O>

for allm > 0. Then, the continued fraction [by; by, .. .| is convergent to a p-adic number.



From Lemma 2.1 and 2.2, we see that [bp(a);b1(c),...] is convergent to a p-adic
number. The equality cv ) = [bo(@); bi(a), .. .| can be obtained by the standard argument.

As is well known, in the regular continued fraction expansion in real numbers, rational
numbers have finite continued fraction expansions. However, the situation is different in
p-adic continued fraction expansions (see [3] and [7]). As seen below in the algorithm
(1.1), rational numbers have finite expansions.

Theorem 2.3. Let o € Q. Then, {a,} is a finite sequence.

Proof. We assume that {a,} is an infinite sequence. Let n € Z~q. From Lemma 2.1, we
can set

N,
oy = 5, with (Ny, Dy) =1, Dy > 0 and pf N, Dy, (2.1)
np'"

b (a) = C—,n, with p 1 ¢y,
P

where N,,, D,,, and ¢, are integers.

From Lemma 2.1, we have i,, > 0. From the fact that o, ; = m, we have
Npi1(N, — ¢, Dy) = p D, 1 D,,. (2.2)
From (2.1) and (2.2), we have
| Nosa| = Dl (2.3)

pin+z’n+1 |Dn+l| — |Nn _ CnDn|-
From (1.1), we see that N,c,D,, > 0. Therefore, from (2.4), we have

Nn CnDn

pin +in+1 pln +’in+1

- { N, |cn|Dn}
< max —— T
pzn+zn+1 pzn+ln+1

Ny,
<max{| 3 |,Dn}.

Hence, considering (2.3), we have

N, N,
max{| gﬂl,DnH} < max{| n|,Dn}.

|Dn+l| =

Thus, we have
max {|N,11], 3Dp+1} < max {|NV,,|, 3D, }.

Therefore, the sequence max {|N,|,3D,,} is strictly decreasing, which is a contradic-
tion. O



3 Numerical experiments

We demonstrate in Table 1 that for 1 < n < 200, the continued fraction expansion of
V/n, obtained using Algorithm (1.1) with p = 2 satisfies the condition /n = 2"V,
where m,k € Z>(, and k is not the square of an integer. Additionally, (\/E)@) € Q
and (V)@ = 1 mod 8. We show in Table 2 that for 1 < n < 200, the length of the
periodic part of the continued fraction expansion of y/n, obtained using Algorithm (1.1)
with p = 3 satisfies the condition /n = 3"k, where m, k € Z>p, and k is not the square
of an integer and £k =1 mod 3. In both tables, the column labeled with oo shows the
convergent value in real numbers of its continued fraction expansion. Interestingly, for
some numbers, the convergent value in real numbers does not match the original number
but corresponds to its conjugate. We note that for periodic continued fraction expansions,
their convergence in the complex number field can be determined (see [1]).

Table 1: Continued fraction expansion of \/n with n > 0 and p = 2

v/n | continued fraction expansion 00
VIT | [1;5/8,—1/2,~7/4,3/2,—1/2] 17
V33 | [1;9/16,—1/4,—5/4,7/4,—1/2, —1/4] V330
VA4l | [1;3/4,—1/2,-3/8,—5/4,—1/2,—1/2,-5/4,13/8] Vil
V57 | [1;5/4,—1/2,-3/4,—7/8,5/4,3/4,—1/2,—-3/2,21/16, —3/2, —1/2, —5 /4] V575
V65 | [1,17/32,—1/8,—1/4,—1/2,—3/4,3/2,1/2,1/2,-1/2,—1/2] V654
\/@ [O; 1/2’ _5/4’ _3/2>m] \/@oo
VT3 | [1;7/4,-7/4,1/4,1/2,5/8,3/4,31/16, —157/128,31/16, —5/4, —3/2,
3/16,7/4,—1/2,-1/2,1/2,13/8,—15/8,3/2,—1/2, ~3/16, —7/4,1/2,1/2
—1/2,-13/8,15/8,—3/2,1/2] VT3
[1;1/4,-1/2,-3/2,3/2,~1/2,-3/2,5/4,3/2,—5/8,—1/2,—1/2,1/2,3/4,
—5/4] V894
[1;19/16,—1/2,—15/8,—3/2, —1/4,—3/2,1/8,7/4] —V/97,

[1;3/4,—3/4,—3/2,1/2,7/4,—9/8,7/4,1/2,1/2]
[1;—13/8,1/2,39/32,1/4,3/2, —1/4, —3/2,—3/2,—1/2, —3/2,7/4, —7/4, 3/2
1/2,3/2, =774, 7/4]

[1;33/64, —1/16, —1/4, —1/4, —3/4,3/2,1/4,1/2, —1/2, —1/2]
0;1/2,-9/8,—1/2,—1/2,-3/2,1/4,1/2]
[1;7/4,-3/2,23/16,—3/2,—1/2,—1/2, —5/4,1/2,13/8,5/4, —1/2, —1/2,5/4
. 13/8,-3/2,3/2,1/2,29/16, —11/8,3/2]

8

8

g

w Ll DN = o
~ [\38QDOJ ot

g

145 | [1;13/8,—17/4,7/16,29/16,9/8,5/4, —1/2,5,—9/8, —1/2,—3/4,1/2,3/2] 145,
V153 | [1;1/4,—5/4,-3/4,3/4,1/2,1/2,5/16,1/2,1/2, —5/4,—1/2,1/2,5/4, —1/2,

—1/2,-5/16,—-1/2,-1/2,5/4,1/2,—-1/2] 153,
V161 | [1;21/16,—1/8,-9/8, —1/2,—3/2,1/4,5/4,1/2,5/4, —7/4] V161,
164 | [0;1/2,-3/2,—3/2,1/2,5/4,—13/8,5/4,1/2] 164,
VITT | [1;7/8,—1/2,—1/4,-3/2,3/2,1/2,3/2,-3/2,7/4, —1/4,—1/2] V1T
185 | [1;5/4,—3/2,5/4,3/2,21/32, —1/2, ~1/2,1/2,1/4,1/2,3/2, —1/4, —11/8,

—5/8,—1/2,—1/2,-5/8,5/8,1/2,1/2,5/8] 185,
193 | [1;59/32, —1/4,—1/4,-3/2,1/4,3/2,1/4,1/2,-5/4,—3/2,1/2,5/4,

1/2,7/4,-3/4] —/193,




Table 2: Continued fraction expansion of \/n with n > 0 and p = 3
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We show in Table 3 that for prime 3 < p < 100, the smallest value of n with 1 < n
for which the periodic continued fraction expansion of y/n using Algorithm (1.1) cannot

be detected within 2000 steps.



Table 3: Smallest n with undetectable periodic CF of \/n in 2000 steps

prime number | n || prime number | n
) 11 47 2
7 8 53 )

11 5 59 3
13 3 61 5
17 2 67 6
19 ) 71 2
23 3 73 2
29 ) 79 2
31 2 83 3
37 3 89 2
41 2 97 2
43 6

From these numerical experiments, we give a following conjecture.
Conjecture 3.1.

1. Let K be a quadratic field that has an embedding into R and Qo respectively. Let
a € K\Q and {a,} be the sequence obtained by applying Algorithm (1.1) with p = 2
to a. Then, {a,} becomes eventually periodic. The continued fraction expansion
converges to a or its conjugate in R.

2. Let K be a quadratic field that has an embedding into R and Qs respectively. Let
a € K\Q and {a,} be the sequence obtained by applying Algorithm (1.1) with p = 3
to a. Then, {a,} becomes eventually periodic. The continued fraction expansion
converges to a or its conjugate in R.

3. Let K be a quadratic field that has an embedding into R and Q, with p > 3 re-
spectively. Then, there exists a € K\Q such that {a,,} does not become eventually
periodic, where {ay,} be the sequence obtained by applying Algorithm (1.1).
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