ON LEHMER'S PROBLEM AND RELATED PROBLEMS

TOMOHIRO YAMADA

ABSTRACT. We show that if $N\pm 1=M\varphi(N)$ with $N\ne 15,255$ composite, then $M<15.76515\log\log\log N$ and $M<16.03235\log\log\omega(N)$, together with similar results for the unitary totient function, Dedekind function, and the sum of unitary divisors.

1. Introduction

As usual, let $\varphi(N)$ denote the Euler totient function of N. Clearly, $\varphi(p) = p-1$ for any prime p.

Lehmer [13] conjectured that there exists no composite number N such that $\varphi(N)$ divides N-1 and showed that such an integer must be an odd squarefree integer with at least seven prime factors. In other words, if $\varphi(N) \mid (N-1)$ and N is composite, then N is odd and $\omega(N) = \Omega(N) \geq 7$, where $\omega(N)$ and $\Omega(N)$ respectively denote the number of distinct and not necessarily distinct prime factors of N.

For such an integer N,

- 1. Cohen and Hagis [5] showed that $\omega(N) \geq 14$ and $N > 10^{20}$,
- 2. Renze's notebook [22] shows that $\omega(N) \geq 15$ and $N > 10^{26}$,
- 3. Pinch claims that $N > 10^{30}$ at his research page [17].
- 4. Burcsi, Czirbusz, and Farkas [3] proved that if $3 \mid N$, then $\omega(N) \geq 4 \times 10^7$ and $N > 10^{3.6 \times 10^8}$.
- 5. Burek and Żmija [4] showed that $N \leq 2^{2^r} 2^{2^{r-1}}$ if $\varphi(n)$ divides N-1 and $2 < \omega(N) < r$.

Pomerance [18] showed that the number of such integers $N \leq x$ is $O(x^{1/2} \log^{3/4} x)$ and $N \leq r^{2^r}$ if $2 \leq \omega(N) \leq r$ additionally. Luca and Pomerance [14] showed that the number of such integers $N \leq x$ is at most $x^{1/2}/\log^{1/2+o(1)} x$.

For integers N such that $N-1=M\varphi(N)$ with M a large integer, stronger results are known. Hagis [10] proved that if $N-1=3\varphi(N)$, then $\omega(N)\geq 1991$ and $N>10^{8171}$. For integers $N=M\varphi(N)+1,\ M\geq 4$, Grytczuk and Wójtowicz [9] showed that $\omega(N)\geq 3049^{M/4}-1509$ if $3\mid N$ and $\omega(N)\geq 143^{M/4}-1$ otherwise.

²⁰²⁰ Mathematics Subject Classification. Primary 11A25, Secondary 11A05, 11N25. Key words and phrases. Lehmer's problem, Euler's totient function, multiplicative partition.

Subbarao [25] considered the problem analogous to Lehmer's problem involving φ^* , the unitary analogue of φ . So φ^* is defined by

(1.1)
$$\varphi^*(N) = \prod_{p^e||N} (p^e - 1),$$

where the product is over all prime powers unitarily dividing N. We call the value $\varphi^*(N)$ the unitary totient of an integer N. Subbarao conjectured that $\varphi^*(N)$ divides N-1 if and only if N is a prime power. This conjecture is still unsolved. However, Subbarao and Siva Rama Prasad [26] showed that N must have at least eleven distinct prime factors if N is not a prime power and $\varphi^*(N)$ divides N-1. Moreover, Siva Rama Prasad, Goverdhan, and Al-Aidroos [19] proved that for integers $N = M\varphi^*(N) + 1$ with $M \ge 4$,

- 1. $\omega(N) > (800000)^{M/4} 499883$ and $N > (k_1 M \beta_1^M)^{\beta_1^M}$ if 15 | N,
- 2. $\omega(N) > (597515)^{M/4} 298668$ and $N > (k_2 M \beta_2^M)^{\beta_2^M}$ if $3 \mid N, 5 \nmid N$, 3. $\omega(N) > (1889)^{M/4} 468$ and $N > (k_3 M \beta_3^M)^{\beta_3^M}$ if $3 \nmid N, 5 \mid N$, and 4. $\omega(N) > (608)^{M/4} 3$ and $N > (k_4 M \beta_4^M)^{\beta_4^M}$ otherwise,

where $(\beta_1, \beta_2, \beta_3, \beta_4) = (23.4, 23.38, 6.1, 4.9)$ and $k_i = (\log \beta_i)/3$ for j =1, 2, 3, 4.

We prove the following upper bounds for M.

Theorem 1. Let N_1 denote the product of prime factors p dividing N exactly once here and hereafter. If $M\varphi^*(N) = N \pm 1$, then $M < 19.44947 \log \log \log N_1$ for $N_1 \geq 23$ or $N_1 = 19$. Moreover, if $M\varphi(N) = N\pm 1$, then $M < 15.76515 \log \log \log N$ for $N \geq 19$.

Theorem 2. If $M\varphi^*(N) = N \pm 1$ and $\omega(N_1) \ge 4$, then $M < 19.77911 \log \log \omega(N_1)$. Moreover, if $M\varphi(N) = N \pm 1$ and $\omega(N) \geq 4$, then $M < 16.03235 \log \log \omega(N)$.

As Lehmer [13] observed, we see that $M\varphi(N) = N \pm 1$ and $\omega(N) \leq 3$, then N must be prime or N=15,255. Hence, if $M\varphi(N)=N\pm 1$ with $N\neq 15,255$ composite, then $M < 15.76515 \log \log \log N$ and $M < 16.03235 \log \log \omega(N)$.

Subbarao [25] also studies similar problems for Dedekind function $\psi(N) =$ $N\prod_{p^e||N}p^{e-1}(p+1)$ and the sum $\sigma^*(N)=\prod_{p^e||N}(p^e+1)$ of unitary divisors of N. Clearly, $\sigma^*(N) = N + 1$ if and only if N is a prime power. Moreover, if $\psi(N) = aN + b$ and $\gcd(b, N) = 1$ with a, b integers, then N must be squarefree and $\sigma^*(N) = \psi(N) = aN + b$.

For integers N such that $\sigma^*(N) = MN + 1$ with M > 1 and $\omega(N) = r$,

- 1. Subbarao proved that $M \geq 3$ must be odd, $r \geq 16$, and $10^{20} < N < (r 1)^{20}$ $1)^{2^{r-1}}$.
- 2. Hasanalizade [11] proved that $N > ((\log 3)M3^{M-1})^{3^M}$ and $\omega(N) > 51^{M/3} 1$.
- 3. Hasanalizade also proved that $N > ((\log 2)(AM^2 1)2^{AM^2 1}/3)^{2^{AM^2 1}}$ and $\omega(N) > 1578^{AM^2/9}/2$, where $A = 0.998 \cdots$ when 3 divides N.

Subbarao also proved that if $\psi(N) = MN + 1$ with M > 1 and $3 \mid N$, then $\omega(N) \ge 185$.

We prove the following upper bounds for M.

Theorem 3. If $\sigma^*(N) = MN \pm 1$, then $M < 18.87067 \log \log \log N_1$ for $N_1 \ge 19$. Moreover, if $\psi(N) = MN \pm 1$, then $M < 15.52051 \log \log \log N$ for $N \ge 19$.

Theorem 4. If $\sigma^*(N) = MN \pm 1$ and $\omega(N_1) \ge 4$, then $M < 19.40333 \log \log \omega(N_1)$. Moreover, if $\psi(N) = MN \pm 1$ and $\omega(N) \ge 4$, then $M < 15.72775 \log \log \omega(N)$.

Our upper bounds are eventually stronger than known bounds in the sense of being at least of triple-exponential and double-exponential order of M for N and $\omega(N)$ respectively.

2. Explicit sieve estimates

We write the summatory function of an arithmetic function f for $M_f(x) = \sum_{n \le x} f(n)$. For a set U of primes, we put

$$P_U(x) = \prod_{p \in U, p \le x} \left(1 - \frac{1}{p} \right)^{-1}, S_U(x) = \sum_{p \in U, p \le x} \frac{1}{p}, \theta_U(x) = \sum_{p \in U, p \le x} \log p,$$

and $\pi_U(x) = \sum_{p \in U, p \le x} 1$ to be the number of primes in U below x.

Given an integer a, we call a set U of primes a-self-repulsive if for any two primes p and q in U, we have $q \not\equiv a \pmod{p}$.

Studies of 1-self-repulsive sets of primes have been begun by Golomb [8], who observed that if N is an integer such that $gcd(N, \varphi(N)) = 1$ and U be the set of prime factors of N, then, U must be 1-self-repulsive. Indeed, we can easily see that if $gcd(N, \varphi^*(N)) = 1$ and U be the set of prime factors of N, then, U must be 1-self-repulsive.

More generally, letting $\varphi_a(N) = \prod_{p^e||N} (p-a)p^{e-1}$, we can easily see that if $\gcd(N, \varphi_a(N)) = 1$, then N is squarefree, $\gcd(N, a) = 1$, and the set of prime factors of N must be a-self-repulsive.

Using Brun-Selberg upper bound sieve, Meijer [15], who used the term Gsequence to mean 1-self-repulsive set, proved that there exist some absolute constants c_1 and c_2 such that, if U is a 1-self-repulsive set of primes, then

(2.1)
$$\pi_U(x)P_U(x) \le \frac{c_1 x}{\log x}$$

and

$$(2.2) P_U(x) < c_2 \log \log x$$

for $x \geq 3$.

Our purpose of this section is to prove the following explicit estimate for \pm -self-repulsive sets.

Theorem 5. Let U be an ± 1 -self-repulsive set of primes. Then, for $x > e^{73}$, we have

(2.3)
$$\pi_U(x) < \frac{8e^{\gamma}x \left(1 + \frac{1}{\log x}\right) \left(1 + \frac{1}{2\log^3 x}\right)}{P_U(x)\log x \left(1 - \frac{\log\log x - 8\gamma}{\log x}\right)^2 \left(1 - \frac{\log\log x}{\log x}\right)}.$$

We use the following notations:

- 1. Let x be a positive number and A be a set of integers contained in an interval of length at most x.
- 2. For each prime p, let Ω_p be a set of residue classes modulo p and $\rho(p)$ denote the number of residue classes in Ω_p .
- 3. $Z(A, w, \Omega)$ denote the number of integers in A that do not belong to Ω_p for any prime p < w.
- 4. $F = G + O^*(H)$ means that $|F G| \leq H$
- 5. gcd(n, U) = 1 means that no prime in U divides n.
- 6. Let g(m) be the multiplicative function supported only on the squarefree integers m defined by $g(p) = \rho(p)/(p \rho(p))$ for each prime p and

$$M_g(z) = \sum_{n \le z} g(n).$$

In particular, if U is self-repulsive, then we take $\Omega_p = \{0, 1 \pmod{p}\}$ for primes p in U, $\Omega_p = \{0 \pmod{p}\}$ for primes p outside U, and A to be the set of positive integers below x to obtain

(2.4)
$$\pi_U(x) \le Z(A, w, \Omega) + w$$

for any real w.

Instead of Brun-Selberg sieve, we use the large sieve method as in [7], [27], and [28]. As mentioned in the Introduction, Theorem 7.14 of [12] immediately gives the following estimate:

Lemma 6. Assume that $\rho(p) < p$ for any prime p. Then, for any $w \ge 1$ we have

(2.5)
$$Z(A, w, \Omega) \le \frac{x + w^2}{M_g(w)}.$$

So that, our concern is to obtain a lower estimate for $M_g(x)$ with $\rho(n) = \rho_U(n)$ the multiplicative function supported on squarefree integers defined by $\rho(p) = 2$ for primes p in U and $\rho(p) = 1$ for primes p outside U. Our argument is based on the solution of Exercise 1.27 of [16]. Here we only give the digest of a proof for each lemma.

Lemma 7. For a multiplicative function f(n) over positive integers, let $M_{f,U}(x) = \sum_{n \le x, \gcd(n,U)=1} f(n)$. In particular, we have $M_f(x) = M_{f,1}(x) = \sum_{n \le x} f(n)$. If

f(n) always takes nonnegative value, then

(2.6)
$$M_{f,U}(x) \ge \frac{M_f(x)}{\prod_{p \in U} \sum_{e>0} f(p^e)}.$$

Proof. Let U_0 be the set of primes in U below x. Now the lemma can be proved by induction of the number of primes in U_0 .

Lemma 8. For $y \geq 60$,

(2.7)
$$\sum_{m \le y} \frac{\tau(y)}{y} > \frac{\log^2 y}{2} + 2\gamma \log y + 0.4.$$

Proof. Theorem 1.2 of [1] gives that for all $w \geq 9995$,

(2.8)
$$\sum_{n \le w} \tau(n) = w \log w + (2\gamma - 1)w + \Delta(w)$$

with $|\Delta(w)| \le 0.764w^{1/3} \log w$.

Now the lemma follows using partial summation and the approximate value $2\gamma - 1 + \int_1^\infty \Delta(t) t^{-2} dt = \gamma^2 - 2\gamma_1 = 0.478809 \cdots$ (see Lemma 1 of [23]), where $\gamma_1 = -0.072815 \cdots$ is the first Stieltjes constant.

We note that in Corollary 2.2 of [1] and Lemma 3.3 of [20], the constant term B_0 is erroneously given as $\gamma^2 - \gamma_1$, which should be $\gamma^2 - 2\gamma_1$ as in [23].

Now we would like to show the following lower bound for $M_q(y)$.

Lemma 9. For $y > e^{30}$, we have

(2.9)
$$M_g(y) > P_U(y)e^{-\gamma} \left(\frac{\log y}{2} + 2\gamma + \frac{0.1}{\log y} \right).$$

Proof. We put $\Omega_U(n)$ be the number of prime factors in U of n counted with multiplicity, $\tau_U(n)$ be the number of divisors of n composed of primes in U, and $\operatorname{rad}(n) = \prod_{p|n} p$ be the product of distinct prime divisors of n.

We put V to be the set of integers composed only of primes in U. Then, we see that

(2.10)
$$\sum_{n \leq y} g(n) = \sum_{n \leq y} \mu^{2}(n) \prod_{\substack{p \mid n, p \in U}} \frac{2}{p-2} \prod_{\substack{p \mid n, p \notin U}} \frac{1}{p-1}$$

$$\geq \sum_{\text{rad } k \leq y} \frac{2^{\Omega_{U}(k)}}{k}$$

$$\geq \sum_{k \leq y} \frac{\tau_{U}(k)}{k} = \sum_{m \leq y} \left(\frac{1}{m} \sum_{\substack{d \leq y/m, d \in V}} \frac{1}{d}\right),$$

where we observe that $2^{\Omega_U(k)} \ge \tau_U(k)$. Now the lemma follows using Lemma 7 and Theorem 7 of [24].

Now we shall prove Theorem 5. Lemma 6 immediately gives

(2.11)
$$Z(A, y, \Omega) \le \frac{x + y^2}{M_g(y)} < \frac{e^{\gamma}(x + y^2)}{P_U(y) \left(\frac{\log y}{2} + 2\gamma + \frac{0.12}{\log y}\right)}.$$

With the aid of Theorem 5.9 of [6], we have

(2.12)
$$\frac{P_U(x)}{P_U(y)} \le \prod_{y \le p \le x} \frac{p}{p-1} < \frac{\log x}{\log y} \left(1 + \frac{1}{5\log^3 y}\right)^2$$

(but Ramaré's zero density estimate in [21], on which Dusart's estimates in [6] are based, is objected by [2]. Corollary 11.2 in [2] can instead be used to obtain Dusart's estimates), and therefore

$$(2.13) Z(A, y, \Omega) < \frac{e^{\gamma}(x + y^2) \log x}{P_U(x)(\frac{\log^2 y}{2} + 2\gamma \log y + 0.12)} \left(1 + \frac{1}{5 \log^3 y}\right)^2.$$

Taking $y = \sqrt{x/\log x}$ (we note that $y > e^{30}$ since we have assumed that $x > e^{73}$), we have

(2.14)
$$Z(A, y, \Omega) < \frac{8e^{\gamma}x \left(1 + \frac{1}{\log x}\right) \left(1 + \frac{0.49}{\log^3 x}\right)}{P_U(x) \log x \left(1 - \frac{\log \log x - 8\gamma}{\log x}\right)^2 \left(1 - \frac{\log \log x}{\log x}\right)}.$$

Now Theorem 5 immediately follows from (2.4).

3. Proofs of Theorems

Here we only give the proof of Theorem 1. We put U to be the set of prime factors p of N such that p^2 does not divide N, so that $N_1 = \prod_{p \in U} p$. As we noted in the last section, U must be 1-self-repulsive if $M\varphi^*(N) = N \pm 1$ and (-1)-self-repulsive if $N = M\sigma^*(N) \pm 1$.

Assume that N is a positive integer satisfying $M\varphi^*(N) = N \pm 1$ for some integer $M \geq 2$. Let x_1 be the largest prime factor of N_1 . We note that $P_U(x_1) = \prod_{p \in U} p/(p-1) = N_1/\varphi(N_1)$ and $\theta_U(x_1) = \sum_{p \in U} \log p = \log N_1$.

We begin by proving that $N_1/\varphi(N_1) < 15.68996 \log \log \log N_1$. Let $x_0 = e^{73}$. We discuss three cases: (i) $x_1 \leq x_0$, (ii) $x_1 > x_0$, $\theta_U(x_1) \geq x_1/\log \log x_1$, and (iii) $x_1 > x_0$, $\theta_U(x_1) < x_1/\log \log x_1$. In the case (iii), we put x_2 be the largest number x such that $\theta_U(x) \geq x/\log \log x$ and $x_3 = \theta_U(x_1)$. Then we settle four subcases. (a) $x_3 > x_2$ and $x_2 \leq x_0$, (b) $x_3 > x_2 > x_0$, (c) $x_3 \leq x_2 \leq x_0$, and (d) $x_3 \leq x_2$ and $x_2 > x_0$.

3.1. Case (i). putting p_1 to be the largest prime such that $\prod_{p \leq p_1} p \leq N_1$, the Corollary of Theorem 8 in [24] gives that

(3.1)
$$\frac{N_1}{\varphi(N_1)} \le P(p_1) < \frac{e^{\gamma}}{2} \left(\log p_1 + \frac{1}{\log p_1} \right) < 15.15486 \log \log p_1,$$

where the last inequality follows from the fact that $p_1 \leq x_1 \leq x_0$. If $p_1 > 500000$, then Theorem 1 of [2] gives that $p_1 < 1.0268\theta(p_1) < 1.0268\log N_1$ and we obtain $N_1/\varphi(N_1) < 15.56102\log\log\log N_1$, which is more than we desired. If $p_1 < 500000$ and $N_1 > 3704$, then we have $P(p_1) < 11.68731 < 15.68996\log\log\log N_1$. If $N_1 = 19$ or $23 \leq N_1 \leq 3703$, then we can confirm $N_1/\varphi(N_1) < 7.34789\log\log\log N_1$ by calculation.

3.2. General remarks for Cases (ii) and (iii). Assume that $x_1 > x_0$. As we have seen in the last section, U must be 1-self-repulsive. Let x be a real number such that $x_0 \le x \le x_1$ and $\theta_U(x) \ge x/\log\log x$. Observing that $\pi_U(x) \ge \theta_U(x)/\log x > x/(\log x \log\log x)$, Theorem 5 immediately gives that

$$(3.2) P_U(x) < \frac{8e^{\gamma} \left(1 + \frac{1}{\log x}\right) \left(1 + \frac{1}{2\log^3 x}\right)}{\left(1 - \frac{\log\log x - 8\gamma}{\log x}\right)^2 \left(1 - \frac{\log\log x}{\log x}\right)} \log\log x.$$

Hence, (3.2) gives that

(3.3)
$$P_U(x) < 8e^{\gamma} \delta(\log x) \log \log \theta_U(x),$$

where

(3.4)
$$\delta(t) = \frac{\left(1 + \frac{1}{t}\right)\left(1 + \frac{1}{2t^3}\right)}{\left(1 - \frac{\log t - 8\gamma}{t}\right)^2 \left(1 - \frac{\log t}{t}\right)\left(1 - \frac{1.01011\log\log t}{t\log t}\right)}.$$

For t > 73, we can see that

(3.5)
$$\delta(t) < 1 + \frac{3\log t - 7.75695}{t} + \frac{(3\log t - 7.75695)^2}{2(1 - 0.07007)t^2} < 1 + \frac{3\log t - 7.55957}{t}.$$

3.3. Case (ii). Taking $x = x_1$, we have $P_U(x_1) = N_1/\varphi^*(N_1)$ and $\theta_U(x_1) = \log N_1$ as we noted above. Hence, (3.3) together with (3.5) yield that

(3.6)
$$\frac{N_1}{\varphi^*(N_1)} < 8e^{\gamma} \left(1 + \frac{3\log\log x_1 - 7.55957}{\log x_1} \right) \log\log\log N_1 < 15.28538 \log\log\log N_1.$$

3.4. Cases (iii-a) and (iii-b). Since $x_3 > x_2$, partial summation gives

(3.7)
$$S_{U}(x_{1}) - S_{U}(x_{2}) = \frac{\theta_{U}(x_{2})}{x_{2} \log x_{2}} - \frac{\theta_{U}(x_{1})}{x_{1} \log x_{1}} + \int_{x_{2}}^{x_{1}} \frac{\theta_{U}(t)(1 + \log t)}{t^{2} \log^{2} t} dt < \log \log \log x_{3} - \log \log \log x_{2} + \frac{1}{\log x_{2} \log \log x_{2}} + \frac{1}{\log x_{2}},$$

where we see that $\theta_U(t) \leq x_3$ for $t \leq x_1$, and therefore

(3.8)
$$\frac{P_U(x_1)}{P_U(x_2)} < \frac{\log \log x_3}{\log \log x_2} \exp\left(\frac{1.233076}{\log x_0}\right).$$

In the case (a), then, with the aid of the Corollary of Theorem 8 in [24] and we can obtain $N_1/\varphi(N_1) = P_U(x_1) < 15.41303 \log \log \log N_1$, which is more than desired. In the other case (b), then, taking $x = x_2$ in (3.3), we can obtain $N_1/\varphi(N_1) = P_U(x_1) < 15.54576 \log \log \log N_1$ with the aid of (3.5) as desired.

3.5. Cases (iii-c) and (iii-d). If $x_3 < x_2$, then we have

(3.9)
$$S_U(x_1) - S_U(x_2) < \frac{1}{\log x_2 \log \log x_2} + x_3 \int_{x_2}^{x_1} \frac{1 + \log t}{t^2 \log^2 t} dt < \frac{1}{\log x_2 \log \log x_2} + \frac{1}{\log x_2}.$$

In the case (c), we proceed like in the case (a) to obtain $N_1/\varphi(N_1) = P_U(x_1) < 15.63054 \log \log \log N_1$. In the case (d), we proceed like in the case (b) to obtain $N_1/\varphi(N_1) = P_U(x_1) < 15.76514 \log \log \log N_1$.

3.6. Conclusion. Hence, we have $N_1/\varphi(N_1) < 15.76514 \log \log \log N_1$ in any case and conclude that

(3.10)
$$M \le \frac{N+1}{\varphi^*(N)} \le \frac{1}{N} + \frac{N_1}{\varphi(N_1)} \prod_{p^2 \mid N} \frac{p^2}{p^2 - 1} < 19.44947 \log \log \log N_1.$$

Moreover, if $M\varphi(N) = N \pm 1$, then $N = N_1$ and therefore $M = (N \pm 1)/\varphi(N) < 15.76515 \log \log \log N$, which completes the proof of Theorem 1.

We can prove Theorem 3 in a quite similar way with $x_0 = e^{95}$ instead of e^{73} .

3.7. **Proofs of Theorems 2 and 4.** Proofs of other Theorems are similar to proofs of Theorems 1 and 3 but needs some modification. Let $x_0 = e^{72}$ and $r = \omega(N_1) \geq 4$. We discuss three cases: (i) $x_1 \leq x_0$, (ii) $x_1 > x_0$, $\pi_U(x_1) \geq x_1/(\log x_1 \log \log x_1)$, and (iii) $x_1 > x_0$, $\pi_U(x_1) > x_1/(\log x_1 \log \log x_1)$. Moreover, in the case (iii), we put x_2 be the largest number x such that $\pi_U(x) \geq x/(\log x \log \log x)$ and settle four subcases. (a) $r \log r > x_2$ and $x_2 \leq x_0$, (b) $r \log r > x_2 > x_0$, (c) $r \log r \leq x_2 \leq x_0$, and (d) $r \log r \leq x_2$ and $x_2 > x_0$.

Then we can prove Theorem 2. Moreover, we can prove Theorem 4 in a quite similar way with $x_0 = e^{93}$ instead of e^{72} .

References

- [1] D. Berkane, O. Bordellès, and O. Ramaré, Explicit upper bounds for the remainder terms in the divisor problem, *Math. Comp.* **81** (2012), 1025–1051.
- [2] Samuel Broadbent, Habiba Kadiri, Allysa Lumley, Nathan Ng, and Kirsten Wilk, Sharper bounds for the Chebyshev function $\theta(x)$, Math. Comp. **90** (2021), 2281–2315.

- [3] P. Burcsi, S. Czirbusz, and G. Farkas, Computational investigation of Lehmer's totient problem, *Annales Univ. Sci. Budapest. Sect. Comput.* **35** (2011), 43–49.
- [4] Dominik Burek and Błażej Żmija, A new upper bound for numbers with the Lehmer property and its application to repunit numbers, *Int. J. Number Theory* **15** (2016), 1463–1468.
- [5] G. L. Cohen and P. Hagis Jr., On the number of prime factors of n if $\varphi(n) \mid (n-1)$, Nieuw Arch. Wisk. (3) **28** (1980), 177–185.
- [6] Pierre Dusart, Explicit estimates of some functions over primes, Ramanujan J. 45 (2018), 227–251.
- [7] S. Adam Fletcher, Pace P. Nielsen and Pascal Ochem, Sieve methods for odd perfect numbers, Math. Comp. 81 (2012), 1753–1776.
- [8] Solomon W. Golomb, Sets of primes with intermediate density, Math. Scand. 3 (1955), 264-274.
- [9] Aleksander Grytczuk and Marek Wójtowicz, On a Lehmer problem concerning Euler's totient function, *Proc. Japan Acad. Ser. A Math. Sci.* **79** (2003), 136–138.
- [10] Peter Hagis Jr., On the equation $M\phi(n) = n 1$, Nieuw Arch. Wisk. (4) 6 (1988), 255–261.
- [11] Elchin Hasanalizade, On the equation $\sigma^*(n) = 1 + mn$, Integers 23 (2023), #A31.
- [12] H. Iwaniec and Kowalski, Analytic Number Theory, American Mathematical Society, Providence, RI, 2004.
- [13] D. H. Lehmer, On Euler's totient function, Bull. Amer. Math. Soc. 38 (1932), 745–751.
- [14] Florian Luca and Carl Pomerance, On composite integers n for which $\varphi(n) \mid n-1$, Bol. Soc. Mat. Mexicana (3) 17 (2011), 13–21.
- [15] H. Meijer, Sets of primes with intermediate density, Math. Scand. 34 (1974), 37–43.
- [16] D. P. Parent, Exercises de théorie des nombres, BORDAS, Paris, 1978, English translation, Exercises in Number Theory, Springer-Verlag New York, 1984.
- [17] Richard G.E. Pinch, Mathematics research page, http://www.chalcedon.demon.co.uk/rgep/rcam.html
- [18] Carl Pomerance, On composites n for which $\varphi(n) \mid (n-1)$, II, Pacific J. Math. **69** (1977), 177–186.
- [19] V. Siva Rama Prasad, C. Goverdhan, and Hussain Abdulkader Al-Aidroos, On Lehmer's totient problem and its unitary Analogue, Proc. Jangjoen Math. Soc. 13 (2010), 279–288.
- [20] Olivier Ramaré, On Šnirel'man's constant, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), 645–706.
- [21] O. Ramaré, An explicit density estimate for Dirichlet L-series, Math. Comp. 85 (2016), 325–356.
- [22] John Renze, Computational evidence for Lehmer's totient conjecture, https://library.wolfram.com/infocenter/MathSource/5483/
- [23] H. Riesel and R. C. Vaughan, On sums of primes, Ark. Mat. 21 (1983), 45–74.
- [24] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94.
- [25] M. V. Subbarao, A companion to a Lehmer problem, Publ. Math. Debrecen 52 (1998), 683–698.
- [26] M. V. Subbarao and V. Siva Rama Prasad, Some analogues of a Lehmer problem on the totient function, Rocky Mountain J. Math. 15 (1985), 609–620.
- [27] Tomohiro Yamada, Quasiperfect numbers with the same exponent, Integers 19 (2019), #A35.
- [28] Tomohiro Yamada, On the divisibility of odd perfect numbers, quasiperfect numbers and amicable numbers by a high power of a prime, *Integers* **20** (2020), #A91.

Institute for Promotion of Higher Education, Kobe University, 657-0011, 1-2-1, Tsurukabuto, Nada, Kobe, Hyogo, Japan

 $Email\ address:$ tyamada1093@gmail.com