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ABSTRACT. Complete asymptotic expansions associated with the mean squares, in the
discrete and continuous forms, of Dirichlet-Hurwitz-Lerch L-functions are presented
(Theorems 1 and 2), together with their outlined proofs.

1. INTRODUCTION

Throughout the paper, s = o0+it, v and v are complex variables, o and X real parameters
with @ > 0, x any Dirichlet character modulo (arbitrary) ¢ > 1, and X the complex
conjugate of xy. We frequently use the notation e(s) = €™ ¢,(s ) = ¢e(s/q) = e*s/a,
denote by ¢ the principal character modulo ¢ > 1, and write X.(I) = X(c+1) (¢, € Z)
for any Dirichlet character X.

The Dirichlet-Hurwitz-Lerch L-function L, (s, a, \) is defined by

(1.1) Ly(s.a\) =3 Xc(l)z {f‘l; DM Re(s) =0 > 1),

and its meromorphic continuation over the whole s-plane. The primed summation symbols
hereafter indicate omission of the impossible terms of the form 1/0° (if they occur). This
reduces if (¢, x) = (1,¢) to the Lerch zeta-function ¥ (s, a, A\)=e(aA)d(s, a, A), and further
if (¢,\) = (1,0) to the Hurwitz zeta-function ((s,«), while if (¢,a) = (1,0) to the
exponential zeta-function (,(s), if (a,\) = (0,0) to the (shifted) Dirichlet L-function
L,.(s), and hence if (¢, x) = (1, A) and (a, A) = (0, 0) to the Riemann zeta-function ¢(s).

A more flexible definition of the Dirichlet-Hurwitz-Lerch L-function, for any real a and
A, and for any integer ¢, asserts

(1.2) L (san= 3 Xl e;{fl* DA (Re(s) =0 > 1)..

—a<leZ

for which several results have recently been shown by Noda and the author [13]. Let I'(s)
denote the gamma function, and G, = S"9_¢ y(h)e,(h) GauB’ sum. We can show:
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Theorem -2 ([13, Theorem 5]). For any real a and X\, any integer ¢, and any primitive
character x modulo ¢ > 1, we have

Gy I(s)
qs (27‘(’)1_5

+ e_Wi(l_S)/ZL%(l — 8, =\ — c) }

L (s,a,A) = e {\a—c)}

e {X(—l)em(l_s)/QL;(l — s, )\7 —(O./ N C))

Next let By (k = 0,1,...) be the Bernoulli numbers (cf [3, p.35, 1.13.(1)]), and 7 a
complex parameter in the sector |arg 7| < m/2. Then the celebrated formulae of Euler
and Ramanujan for specific values of ((s) assert respectively that

(~1)*! (2m)?

C(2k) = 202h)] Bay, (k=1,2,...),
and for any integer k # 0,
00 -2k—1,—2mlT k1 (—=1) By; Bog o2 ,
2%k 1+ 1 9 2 2k+1 2§ P2k+2-25 ok4+1-2j
R +2 2+ (20) ;0 @2k +2— 2
L ok OO l—2k—1€—2ﬂ'l/T
= (=1)kr {g(2k+ 1) +2ZW}

I=1
Let L} (s,c,p) and Ly, (s, ,v) for any real o, B8, p and v, and any integers a and b
be the Dirichlet-Hurwitz-Lerch L-functions (defined by (1.2)), attached to any (shifted)
primitive characters x, and ¢, modulo f > 1 and g > 1 respectively. Then we can further
show:

Theorem -1 ([13, Theorem 4]). There exist various character analogues of Euler’s for-
mula for L;a(s,a,,u), as well as of Ramanujan’s formula connecting specific values of
Ly (s,a,p) and Ly, (s, B,v) with any primitive characters of (possibly) different moduli.

The observation above suggests that the following empirical ‘theorem’ seems to be true!

Theorem 0. [t is worth pursuing the functional (or arithmetical) nature of a class
of Dirichlet-Hurwitz-Lerch L-functions.

2. ASYMPTOTICS FOR THE DISCRETE MEAN SQUARE

Let ¢(n) denote Euler’s totient function, p(n) Mobius’ function, and write, for any
n € 7Z, the shifted factorial of s as

(s+1)-(s+n—1 if >
(s +n) s(s+1)---(s+n—1) if n >0,

(S)TL:T: 1 Fn
@ ey om0

The chief concern in this section is the asymptotic expansions for the discrete mean square

(2.1) p) Y L (o +it,a, V)]

x(mod g)

averaged over all characters y modulo ¢ > 1.
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We give here an overview of the results related to (2.1). Atkinson [1] first established a
precise asymptotic formula for the error term F(7") of the mean square fOT 1C(1/2+4t)|*dt
in terms of an innovative dissection method applied to the product ((u)((v). Heath-
Brown [5] derived, irrelevant to [1], an asymptotic series for >° ) [Lx(1 /2)]? (at
the central point) as ¢ — 4o00. Motohashi [16] obtained, when ¢ = p is a prime, an
asymptotic formula for (p—1)7" 37 | a, [Lx(1/2+4t)[* as p — +oo with the error term
O(p~3/%), based Atkinson’s dissection method. Matsumoto and the author [10] established
a (ramified) asymptotic expansion for ¢(q)™' 32 (0a o [ Lo+ it)|* as ¢ — 400, in the
stripe 0 < o < 1, which further implies, when ¢ = p is a prime, a complete asymptotic
expansion for (p —1)7' 37 4, [Lx(0 +dt)[* as p — 400 through the set of primes, in
the same region of o above, based on Atkinson’s dissection method. They [11] derived,
taking the limit ¢ 4+ it — 1~ of the result above, a complete asymptotic expansion for
(P=1)7" 20 tmod p). x| Ex(1)]? @s p — +o0 through the set of primes. The author [7] gave
a quite transparent treatment of the same discrete mean squares by joining Atkinson’s
dissection method to the Mellin-Barnes type integrals, which appropriate to the relevant
settings. The reader is to be referred, e.g. to [9, Sect. 2| for a more detailed history.

We now proceed to state our first main result. For this, let (x) = z — [z denote the
fractional part of x € R, and define the (exceptional) set £ C C as

(2.2) E={se€C|Res=1-n/2ors=1-n (n=0,1,...)}.
Theorem 1. Let ¢,q € Z and o, X € R be arbitrary with ¢ > 1 and o > 0. Then for any
integer N >0, in the region —N +1 < 0 < N + 1 except the points o + it € E, we have

(2.3) o(g)™! Z |LXC(0+z't,a,)\)|2

x(mod q)
k k
) -
'l —o+it) }
I'(o +it)

#2077 5 (L) Re{Syfo -+ ito — it A 1)}
klq

where k runs through all positive divisors of q, and S.4 is given by

N—-1 n
Seqluivia, Ak) =Y %Q(u + n)C(v —n, %k + <—%k>)k”‘"

+20"7(q)1 (20 — 1) Re{r(20 — 1)

n=0

+ T g n(u,v;00 Ay k).

Here T, , n is the reminder expressed by the Mellin-Barnes type integral in (2.9) below,
and bounded above as

T, (0 +it;o0 —it;a, A\ k)
(){ka_N(|lf| + 1)2N+1/2—0} if —-N+1<o<N,
= O{ko=N([t] + 1)BN+1=0)/2+<1 if N < g < N +1

for any £ > 0, where the implied O-constants depend at most on o, q, N and €.
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Remark . The presence of the error bounds above is reasonable, since the n-th indexed
term in the asymptotic series is of order
< ko (|t] + 1)2n+1/2—0 if —n+1<o0<n,
ko ([t + 1)Brtl=a)/24eifn <o <n + 1.

Let 6(z) is equal to 1 or 0 according to « € Z or otherwise, and ~;(a, ) (7 =0,1,...)
the j-th generalized Euler-Stieltjes constants defined by

wls,,3) = 200 13 (0 A) (s~ 1)

centered at s = 1, where v; = 7;(0,0) = 7;(1,0) (7 = 0,1,...) are the classical Euler-
Stieltjes constant (cf. [3, p.34, 1.12.(17)]). The asymptotic expansions on the exceptional
set E (see (2.2)) can then be deduced from Theorem 1 by taking appropriate limits, e.g.,
the following formulae are valid.

Corollary 1.1. Under the same settings as in Theorem 1, we have:
i) letting o — 1/2,

o(q) Z ‘Lxc(%+it,a,)\)‘2

X(mod q)
— (2 (-)0)
klq ‘ q
+¥ logq+%%+fie{g(0)—Q(O)%(%+z‘t>}+%

1 1
+ 2q_1 Z ,u(%) Re{SC,q(E + 4t 3 it \; k‘) };

klq

ii) letting o — 1,

@) Y L+t N

x(mod g)
_ D\ p2e (2. %% L (_F
— 4 o M<k>k 6(2’ q +< q>)
gt —§()) 2Rel£’(1+z’t)—|—l 1 Im(0.)
e it T £ t

2472 ZN(%> Re{S.,(1+it,1—it;o, A k) }.
klq
Here k runs through all positive divisors of q, p through all prime divisors of q, and S.4
gives an asymptotic series as in Theorem 1.

The formula in Theorem 1 does not asserts (in a strict sense) a complete asymptotic
expansion in the descending order of ¢ itself; however it gives, if ¢ = p is a prime, a (true)
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complete asymptotic expansion in the descending order of p, since S.,(u,v;a, A;1) can
be computed explicitly.

Corollary 1.2. Under the same settings as in Theorem 1, in the region —N +1 < 0 <
N + 1 except the points o + it € E, we have

(2.4) =17 Y L (o +it.a, V)|

x(mod p)
_ —20 _ 20 g _g _ 20 : 2
= (1+p77)20.0) =p (20,5 4 (=) = p (o + it )|
I'(l —o+it)
(o +1it)
+2p~*" Re{S. (0 +it, 0 — it;a, \;p) } .

+2p'7% (20 — 1) Re{g(za —1)

whose limiting case o — 1/2 asserts

29 607 ¥ i (5o

x( mod p)
_ _ a c
= (1 Yl 0) — (2 4 (- £),0)
p p

/

— 2Re{§f\(0) + Q\(@%(% + zt)} + 0 +logp —p!

2

2//(% + it,a,A)

1 1
+2pt Re{qu (5 + it; 3~ it a, /\;p) }

Here the term S.,, both in (2.4) and (2.5), gives a complete asymptotic expansion in the
descending order of p as p — +oo through the set of primes.

We now proceed to outline of the proof Theorem 1. For this, we set

I'(l—
Ru,v; A\ ) =T'(u+v—1)(u+v— 1)%7
use a (modified) Mobius’ inversion
aly 1 _ q ak ck
e S — k’s L —_ — ]_
; (+1)* 1 " 'u(k) C(s q +< q >) (o> 1),
(e+1a)=1 !

and write

F(al,...am) H;znzl I'(ap)

Bi,. B I T(Be)
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for ap, B € C (h=1,...,m;k =1,...,n). The dissection formula, for Re(u) > 1 and

Sp(q)_l Z Lxc(uvav)‘)[’?c(vvav_/\)

x( mod q)
k k
=q " Z /L(%) ku+vC(U + v, % <_%>> + feq(u, v, A)
klq

+ fhc,q(v: u; &, _>\)7
is crucial in proving Theorem 1, where f., is a variant of Euler’s double zeta-function
(see [1] for the case of ((u)((v)). This further splits into
feq(w,via, A) = ¢ p(q) R(u, v A) + geq(u, via, M),

where g, , is given by

Geq(u,v;0,A) = q 7" Z u(%) Seq(u, v; 0, A k)
klq

with S, , being expressed as the Mellin-Barnes type integral of the form

(2.6) Seq(u,vi0, N k) = L/CF(U +/s, _S)Q(—s)

27 U

X ((u + v+ s, %k + <—%>>k“+“+sds,

where the path C separates the poles of the integrand at s=1—u—vand s =—-1+m
(m=0,1,...) from those at s = —u—n (n =0,1,...).

We proceed further along the lines above, moving appropriately the path C to the
left, and eventually obtain the formula (2.8) below, which yields, upon setting (u,v) =
(o +it, o —it), various complete asymptotic expansions for the discrete mean square (2.1).
Let (o) for any o € R denote the vertical straight path from o —ico to o +ioco, and define
the (exceptional) set E C C2? as

(2.7) Ez{(um)é@g | u—l—v:2—noru:1—nor1):1—n(n:0,1,2,...)}.

We can then show the following formula. For any integer N > 0, in the region —N +1 <
Re(u) < N+ 1and —N + 1 < Re(v) < N + 1 except the points (u,v) € E, we have

(2.8) (gt Z Ly (u, 0, X\) Ly (v, 0, = A)

x(mod q)
=g v Z u(%)k““’((u + v, %k + <—%>) +q " o(q){ R(u,v; \)
klq

+ R(v,u; =N+ ¢ u(%) {Seq(u,v;0, A\ k) + Seg(v,us a0, =As k) },
klq
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where S, is expressed as

N— 1

Sealusvs 0, A k) = nz% U+n)C(U—n,7+<q>)k
+ T, qN(u vy, A k),
and T, n is given by the Mellin-Barnes type integral
1 U+ s, —s
2. T, U, V30, AL K) = —— F( ’ ) —s
(2.9) an(u vy, A k) 5 /(JN) y Cr(—5)
k k
XC<U+U+87Q——|—< ¢ >)ku+v+sd8
q q

with oy satisfying — Re(u)—N < oy < min(— Re(u)—N+1, -1, — Re(u+v)). Theorem 1
is in fact a direct consequence of (2.8) upon setting (u,v) = (o + it, 0 — it).

3. ASYMPTOTIC EXPANSIONS FOR THE CONTINUOUS MEAN SQUARE

The chief concern in this section is the asymptotic expansions for the continuous mean
square

1
(3.1) / |LXC(0 +it, o + g€, )\)‘2(15.
0

We give here an overview of the results on (3.1), mainly when (¢, x) = (1,¢), (a, \) =
(1,0), i.e. the case of the continuous mean square of ((s,14¢). Koksma-Lekkerkerker [14]
initiated the study into the direction to obtain the asymptotic bound O(logt) as t — 400
on the critical line o = 1/2. Subsequent research are made by Gallagher [4], Balasub-
ramanian [2|, Rane [17], Klush [15], Zhang [18][19]. Matsumoto and the author [11]
established, for the case above, a complete asymptotic expansion in the descending or-
der of Ims =t as t — +o00, by means of Atkinson’s dissection method. The author [6]
derived a complete asymptotic expansion when (¢, x) = (1,¢) and o = 1, i.e. for the
case of the continuous mean square of ¢(s,1+ &, ), by means of Atkinson’s dissection
method enhanced by Mellin-Barnes type integrals. The author [8] established a complete
asymptotic expansion, when (g, x) = (1,¢), for the multiple mean square of the form

1 1
/.../|¢(5,a+§1+.--+gm,A)\2d§1---d§m (m=1,2,..)
0 0

in the descending order of Im s = t as t — o0, by means of Atkinson’s dissection method,
enhanced by Mellin-Barnes type integrals. These are further manipulated with several
properties of (generalized) hypergeometric functions. The reader is to be referred, e.g. to
9, Sect. 3] for a more detailed history.

We proceed to state our second main result. We set, for any (u,v) € C2\ E (see (2.7)),

I —o)

R ,053) = I(u-t v =1) = s

Z Xe 1+a+b)xc(b)w<u+v—1 1:(],)\).

a,b=0



KATSURADA

Theorem 2. Let ¢,q € Z and o, X € R be arbitrary with ¢ > 1 and o > 0. Then for any
integer N > 0, in the region —N +1 < 0 < N +1 except the points o +it € E (see (2.2)),
we have

1
(3.2) /\LXc(a+it,a+qg,A)|2d§
0

—20

:_1(1_202#(0/{20( +(-° >)1 Y 2 P Re{R (0 + it o — it \)}

klg
2¢7% Re{S N+t o =it o, N) + Ty n(o +it, 0 —it; A)},

where Sy, n and Ty, N are given by

q—1
1 b
Syn(u,via,\) = Zxc<1+a+b>xc<b>szv(u,v; ;“,‘” ,A),

a,b=0

q—1
1 )
T, vs0, ) — Zxc<1+a+b>xc<bm<u,v; taat ,A)

a,b=0 q q
with
N-— 1 n+1 v
3.3 S X A : A
( ) N(uavaxaya g 1—1} n+1 - )¢(U+nvﬂ7+ya )7

(U)NyN+1—v ’ 6{(% + l))\} e’} nu-i—v—?

34 T /7/;/‘7(7)\ -
B4 Tnlwvin g, N ==y 2 et L, Ty e

dn.
1=0

Note that the last expression converges absolutely for Re(u) > —N+1 and Re(v) < N+1.
This further asserts

(35) TN(U, vx, Y, >\)

_ N i (D' 2 —utv)pa(W)ys i e{(z+ 1A}
— (1—v)n (g + DIt (g 4y o 1)EN R
+(—1)K2—u+v U N-K o= e{(z + 1)} yutv—K=2 an
(1 —U — (SL’—I—Z u+v 1 o (y+n)u+N—K )

which gives upon (u,v) = (o +it, o —it) the asymptotic expansion in the descending order
ofIms =t ast — +o0.

We proceed to outline the proof of Theorem 2. The dissection formula, for Re(u) > 1
and Re(v) > 1

Ly (u, 00, \) L (v, o, = X)

:q_u_vz (k)k“+“C(u+v %k+< C:>)+fXC(uvoz)\)+fX(uuoz —-\)

klq
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is crucial in proving Theorem 2, where f,. (or fy ) is a variant of Euler’s double zeta-
function (see [1] for the case of ((u)((v)). This further splits into

Tre(w,v30,N) = ¢ Ry (U, 03 A) + gy (w0, v5 0, N,

where

q—1
1+ +b
O (1050,0) = 77" Y xe(1+a+b)X(b)g (u,v; y =, ; A)

a,b=0

with

1 u+s,—s
glu,v;x,y,\) = — F( )1/)(—8,37, AN C(u+ v+ s,y)ds,
211 I u

where C is the same contour as in (2.6).

We suppose now that Re(u) > 1 and Re(v) < 1, under which the path C can be taken
as a straight line C = (o) with o satisfying — Re(u) < 09 < min(—1,1 — Re(u 4+ v)). It
suffices, for the treatment of the continuous mean square (3.1), to evaluate the integral

q—1

! e I l+a a+b
| sctwviatag nde =4 3 x4 a+ Db e 2,
0 .60 q q
say, where the relation, for any complex s # 1,
1 yl—s
| ety e =
0 — s

(cf. [8, Lemma 2]) is used to integrate the Mellin-Barnes type expression of g(u, v;z,y, ).
This gives

1 o l1—u—v—s
iz ) = o [ (U es e L s
(00)

271 (0 l—u—v—s

Note further that the Mellin-Barnes formula, for 0 < Re(z) < Re(w),

1 1 (z—l—r,w,l—l—r,—r

- T
z,w+ 147 )e dr

w—z:27rz' (o)

holds with a constant p satisfying max(— Re z, —1) < p < 0 (cf. [6, Lemma 3]). This upon
z =u+ s and w = 1 — v is substituted into the denominator factor 1/(1 —u — v — s)
above to transform the s-integral expression of ¢ as

. ) o 1 u + T, 1-— v, 1 + Ty =T\ nir 1—v+r
g ) =5 [ (T T ) e e e

with po satisfying max(— Re(u), —0¢, —1) < pg < 0. Moving the path (pg) to the right
appropriately, we obtain

glu,v;2,y,A) = Sy(u,v; 2,9, A) + T (u, v3 2,9, A)
with the expression in (3.3) and

Wy e{@ DA} <u+N,1. y )
(I—v)vi & (@ +y+ DV AN+ 2= 0 4y + 1)

(36) TN(%U?JT»?J: )\) =
=l
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where o F} denotes Gauf” hypergeometric function (cf. [3, p.59, 2.1.1(12)]). This is further
transformed, through Euler’s formula for F} (cf. [3, p.59, 2.1.3.(10)]), to imply (3.4).
The asymptotic expansion in (3.5) for 7y is obtained by substituting the formula, coming
from a repeated use of a contiguity relation of o} (cf. [3, p.103, 2.8.(37)]),

(w)n u+ N, 1 L (D)RN2 — u— 0) (W) v »

(1—v)N+12F1(N+2—v;Z> :; (1—v)ns (1-2)

()52 —u—v)g(u)y_xk u+N—K,1
(1—v)np N+2—-vw ’Z>

with Z = y/(x+y+1) into each term of the series expression of Ty in (3.6) to yield (3.5).

_I_

(1- Z)—KQFl(

REFERENCES

[1] F. V. Atkinson, The mean-value of the Riemann zeta function, Acta Math. 81, 353-376.

[2] R. Balasubramanian, A note on Hurwitz’s zeta-function, Ann. Acad. Sci. Fenn. Ser. A T Math. 4
(1979), 41-44.

[3] A. Eldélyi (ed.), W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions,
Vol. I, McGraw-Hill, New York, 1953.

[4] P. X. Gallagher, Local mean value and density estimates for Dirichlet L-functions, Indag. Math. 37
(1975), 259-264.

[5] D. R. Heath-Brown, An asymptotic series for the mean value of Dirichlet L-functions, Com-
ment. Math. Helv. 56 (1981), 148-161.

[6] M. Katsurada, An application of Mellin-Barnes’ type integrals to the mean square of Lerch zeta-
functions, Collect. Math. 48 (1997), 137-153.

[7] M. Katsurada, An application of Mellin-Barnes type of integrals to the mean square of L-functions,
Liet. Mat. Rink. 38 (1998), 98-112.

[8] M. Katsurada, An application of Mellin-Barnes type integrals to the mean square of Lerch zeta-
functions II, Collect. Math. 56 (2005), 57-83.

[9] M. Katsurada, Complete asymptotic expansions associated with various zeta-functions, in “Various
Aspects of Multiple Zeta Functions — in honor of Professor Kohji Matsumoto’s 60th birthday,”
Adv. Stud. in Pure Math. 84, pp. 205-262, Math. Soc. Japan, 2020.

[10] M. Katsurada and K. Matsumoto, Asymptotic expansions of the mean values of Dirichlet L-functions,
Math. Z. 208 (1991), 23-39.

[11] M. Katsurada and K. Matsumoto, The mean values of Dirichlet L-functions at integer points and
class numbers of cyclotomic fields, Nagoya Math. J. 134, 151-172.

[12] M. Katsurada and K. Matsumoto, Explicit formulas and asymptotic expansions for certain mean
square of Hurwitz zeta-functions I, Math. Scand. 78 (1996), 161-177.

[13] M. Katsurada and T. Noda, Asymptotics for a class of holomorphic Dirichlet- Hurwitz-Lerch Fisen-
stein series and Ramanujan’s formula for ((2k + 1), preprint.

[14] J. F. Koksma and C. G. Lekkerkeker, A mean value theorem for ((s,w), Indag. Math. 14 (1952),
446-452.

[15] D. Klush, Asymptotic equalities for the Lipschitz-Lerch zeta-function, Arch. Math. (Basel) 49 (1987),
38-43.

[16] Y. Motohashi, A note on the mean value of the zeta and L-functions I, Proc. Japan Acad., Ser. A
(1985), 222-224.

[17) V. V. Rane, On Hurwitz zeta-function, Math. Ann. 264 (1983), 147-151.

[18] W.-P. Zhang, On the Hurwitz zeta-function, Illinois J. Math. 35 (1991), 569-576.

[19] W.-P. Zhang, On the mean square value of the Hurwitz zeta-function, ibid. 38 (1994), 71-78.

DEPARTMENT OF MATHEMATICS, FAcuLTYy OF EcoNomics, KEIO UNIVERSITY, 4—1-1 HIYOSHI,
KOUHOKU-KU, YOKOHAMA 223-8521, JAPAN
Email address: katsurad@z3.keio. jp; katsurad@hc.cc.keio.ac.jp



