On generalization of duality formulas for the Arakawa-Kaneko
type zeta functions

Kyosuke Nishibiro

Abstract: Kaneko and Tsumura introduced the Arakawa-Kaneko type =zeta function
n(—k1,...,—kr;$1,...,8,) for non-negative integers ki, ..., k, and complex variables s1,...,s,. Recently,
Yamamoto showed that, by using the multiple integral expression, n(u1,...,ur;S1,...,5,) can be extended
to an analytic function of 2r variables. Also, he showed that the function n(u1,...,u,;s1,...,s,) satisfies

a duality formula. In this note, by using the a generalization of non-strict multi-indexed polylogarithm,
we define a kind of the Arakawa-Kaneko type zeta function, and show that this function satisfies a certain
duality formula. This note is based on the author’s talk at RIMS conference.

1 Introduction

In [1], Arakawa and Kaneko introduced the function

1 [e'S) Li 1 et
£(kr;s):g(k17...,kﬂs):m/o ts_l%dt

for k, = (ki,...,k;) € ZZ, and s € C with Re(s) > 0, which is called the Arakawa-Kaneko zeta function.
Here, -
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0<my<--<m, "1 T

is the multiple polylogarithm. They also showed that the function £(k,; s) can be continued analytically to
the whole plane C. As a relative of £(k,; s), in [8], Kaneko and Tsumura introduced the function

Li 1— t
i) = (b, bri) = s [ et
S

for s € C with Re(s) > 0, k, € ZL, or k, € Z, and showed that the function n(k,;s) can be continued
analytically to the whole plane C. The function 7(k,;s) is considered to be a twin sibling of the function
&(ky;s). It is shown that the values of these functions at non-positive integers can be expressed in terms of
the multi-poly-Bernoulli numbers

Lik 1 —e (kr)t le k)T tm
Dl ZB i ZC ik

and that the values of these functions at positive integers are closely related to the multiple zeta values
1
C(kp) = Clk1ye s k) = Z P T R—

for k. € Z%, with k. > 2 (for details, see [1,3]).
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Analogously, for u, = (u1,...,u,) € C" and d € {1,...,r}, Kaneko and Tsumura introduced the multi-
indexed poly-Bernoulli numbers by the generating function

s oty ——t, _ p—tr 0 mi My
Liy (1—e yee,l—e7n) _ Z B(ur),(d)tl____ tr (1)
(1 —etim—tr) ... (1 — eg—ta——tr) i m, mq! m..!’

and defined the related Arakawa-Kancko type zeta function for —k, = (—ki,...,—k,) € ZL, by

T

n(—k,;s,) = 1 /00 o ,tsT_lLiLfkT(l N etr)
THYyOT ) T 1 ’l‘
0

jllll I(s;) (1 —etrtttr) . (1 —etr)
Here, for u,,z, = (21,...,2,) € C" with |2;| <1 (j =1,...,7),
o !

" by

z : AL
. L L
UL,y ur(zl,n.,z,,.) =

li,nlr=1 lll“ (ll++lr)ur

is the multiple polylogarithm of w-type. In [3], Kaneko and Tsumura showed that the duality formula

Bfl:kv%(r) _ B}({-m);(T) (k,,n, € Zrzo)

r

)

holds, which is a generalization of that for poly-Bernoulli numbers Bﬁl_k . Recently, in [13], Yamamoto
showed that the function n(—k,;s,) can be extended to an analytic function of 2r variables n(u,;s,). Also,
in [13], he conjectured that

nky;n,.) € Z

holds for k,,n, € Z>;. Here,
Z=((k) | ke EZTthr >2 )

is the Q-linear space spanned by all multiple zeta values for admissible indices k,.. This conjecture was solved
by Brown [3], and later by Ito and Sato [7]. In particular, Ito and Sato showed that

n(kring) € Ziy otk ng+oo4n,
holds. Here, for k € Zx,
2y, :<§(kr) | kTEZTEDkT 227l€1+"'+kT:k>Q

is the Q-linear subspace of Z spanned by all multiple zeta values for admissible indices of weight k. As
an analogue of Liy (z,), Baba, Nakasuji and Sakata introduced the multiple polylogarithm Liy"*(z,) and
*, ()

multi-indexed poly-Bernoulli numbers B as follows.

Definition 1.1 ([2]). For u,,z, € C" with |z;| <1 (j =1,...,r), the multiple polylogarithm Li}*(z,) and

multi-indexed poly-Bernoulli numbers B;’T(UT) are defined by

o0
Ligt(z) = ) A
u, \r) 9 (4o L)
At AL S C I )
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respectively.



Note that Liy;"*(z,) is a mr-type analogue of the non-strict multiple polylogarithm

my

" z
Lif ()= ). P TR— (Jzl < 1),

0<my <--<m, "1 r

since
Liy (2) = Lig " (2,...,2)

holds. In [2], Baba, Nakasuji and Sakata showed various relations among IB%;’T(“T). Inspired by their results,
we consider the following polylogarithm, Bernoulli numbers and Arakawa-Kaneko type n function.

Definition 1.2. For u,,z, € C" with |2;| <1 (j =1,...,r) and a, = (a1,...,a,) € ZL, with a; > 1, we
define Liy; (zr;a,) by -

> I I,
Zl "'ZT"

Liy ryr) = : 3
actari o) zg. B (it ) )
j:J ,...J,'r

Also, for k, € Z",n, € Z%y,0 € G,,a, € L5, with aj,a,-1q) > 1 and b, = (b1,...,b,) € Z%, with
b1,by—1(1) > 1, we define B, ") (0;a,;b,) by

r - —to(y—t ——ty —to iy —to(ry41——tr.
11 o5 =1ttty L, (L — e o0l e, 1 — e e ;br)
L (1 _ 67t0(1)7t6(1)+17"'7t7‘)b1 C (1 — e*ta(r)*to(r)+1*'“*tr)br
j=

4)

ZOO (k) aeoonr
— T . . .. T
- Bm7. (U7arabr) m1! mr!.

my,...,m,=0

Furthermore, for u,,s, € C" with Re(u;),Re(s;) > 0, 0 € &,,a, € ZL, with a1,a,-1(;) > 1 and b, € Z,
with by, by-1(1y) > 1 and a,(j) + b; > 1, we define n(u,;s,;0;a,;b,) by B

n(uy;s,;0;a,;by)

r r i _ ety tts +e -t _ pltom oy 41+ F1r. T
= I | - / I | ts,j_le(l_aj)(tj‘l““'*Hfr)Llur(l e T+ roos 1 — e Ten ibr) | | dt;
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The Bernoulli numbers ngk") (0;a,;b,) are one of the generalizations of B,(I:k")’(r). Also, the Arakawa-
Kaneko type 7 function n(u,;s,;o;a,;b,) are one of the generalizations of n(u,;s,) (for details, see Section
4). The aim of this paper is to show that the function n(u,;s,;o;a,;b,) satisfies a certain duality formula.
Also, we show that we can write the special values of n(u,;s,;o;a,;b,) at positive integers in terms of
multiple zeta values, and at non-positive integers in terms of Bl(l:kr)(a; a,;b,).

The paper is organized as follows. In Section 2, we review some notations and the known results. In
Section 3, we show analytic continuations of Liy (z,;a,) and n(u,;s.;o;a,;b,). Also, we show that the
function 7n(u,;s,;0;a,;b,) satisfies a certain duality formula. In Section 4, we consider some special values
of n(u,;s.;0;a,;b,).

2 Preliminaries
In this section, we recall some notations and the known results. First of all, we review the properties n(u,;s;).

As we state in Section 1, the function n(k,; s) is first defined by Kaneko and Tsumura [3]. In the article, they
gave the following conjecture, which was already proved.



Theorem 2.1 (cf. [8, p. 37]). For k,n € Z>1,
n(k;n) = n(n; k) (6)
holds.

This theorem was first proved by Yamamoto [13], who showed the more general case. He showed the
following results.

Theorem 2.2 ([13, Lemma 2.1]). For u,,z, € C" with |z;| < 1 (j = 1,...,r) and sufficiently small € € Ry,
the multiple polylogarithm of m-type

io: lel . Zl"
Lt () = T
R Iy, lr=1 lilL1 T (ll ot ZT)UT

has the integral expression

Lilllllr(zr) = J TieTiU) / H x]+ +I'r‘ —zj g — T (7)

Here, C. denotes the contour which goes from +co to ¢ along the real axis, goes round counterclockwise along
the circle around the origin of radius £ (let C(0;¢) be this circle), and then goes back to +oo along the real
axis. By (7), Liy (z,) can be continued analytically to the region (u,,z,) € C" x (C\ Rx>y)".

Theorem 2.3 ([13, Definition 2.3, Theorem 2.5]). For u,,s, € C" with Re(s;) > 0, the function

Liy (1 —eftotir 1 —elr)
i Sy R ’ dty - dt, 8
n(urise) = Hl“sj)/ (1_et1+ ) (1 — etr) 1 (8)
is defined and has the integral expression
T —1,s;—1
o A w1 - sy) x] ty
n(uy;sy) = Jl;[l (2mi)? emi(u;+s;) /(C o H e@i a4 ottt dajjdt 9)

By (9), n(u,;s,) can be continued analytically to the region (u,,s,) € C*>". Furthermore, n(u,;s,) satisfies
the duality formula
n(ar;s;) = n(sriuy). (10)
To give the analytic continuation of n(u,;s,), the following lemma is essential. For sufficiently small
g €Rsg, put D. ={a € C|—e <Im(a) <e,—c < Re(a)}.
Lemma 2.4 ([13, Lemma 2.4|). For z,t € D, and sufficiently small ¢ € R,

1 1
ez%ezt

_ 11
er +et -1 (11)

is bounded.
Remark 2.5. Kawasaki and Ohno gave a combinatorial proof of Theorem 2.1 (for details, see[9]).
For the values of n(u,;s,) at positive integers, Ito showed the following theorem.

Theorem 2.6 ([0, Theorem C.12], [7, Theorem 4.3]). For k,,n, € Z>; and d € {1,...,7}, we have

N(krinr) € Zpoy oottty 4oertem, -



To show Theorem 2.6, we review some properties of the hyperlogarithm. Note that, though we use the
same terminology “hyperlogarithm”, the following definition and results obtained by Ito are generalizations
of known results.

Definition 2.7 (cf. [11]). Let ag € R, a,11 be a variable with ay < @41 and a4, ..., a, be variables with
a; € C\ (ao,any1) for each point, a; # ag and ay, # an41. For them, the hyperlogarithm is defined by

T dt
I(ao;ala"'van;an-i-l) = H :
a tj —aj

o<t1 < <tn<anti j=1

We can show the following lemma by definition.

Lemma 2.8. [7, Lemma 4.4]| Let the notation be the same as above. For ¢ € R~ q, we have
I(ap; a1, ..., an;any1) = I(cag;can, . .., Can; Cany1).
Also, for ag < z,a1,...,a, € C\ (ap,x) with a1 # ag,a, # x and b € C\ (ag, z], we have

1
/ —bI(aO;ah...,an;y)dy:I(ao;al,...7an,b;x).
ag y—

Note that, for k. € Z%, and z, € C" with |z;| <1 (j =1,...,r), we have

k1—1 kr—1
——
Liy (z,) = (—1)"1(0;27°1,0,...,0,...,2.,0,...,0; 1). (12)

To obtain Theorem 2.6, the following lemmas are essential.

Lemma 2.9 ([7, Lemma 4.5], cf. [4, Theorem 2.1], [5, Lemma 2.2], [12, Lemma 3.3.30]). For a9 € R,
g1 = ant1(x) With ap < apt1(z) and a1 = a1(x),...,an = an(x) with aj(z) € C\ (ao, ant+1(x)) for each
point x, a; # ag, an # an+1, we have

n
%I(ag; A1y ey QpQpy1) = Z(ej(a) —ei—1(a)I(aosar,...,q5,...,0n; Ans1).
j=1

Here, for j =0,...,n and a = (a1,...,a,),

(@) = 0 (aj11 = a;),
’ % (aj1 # aj),

and (ar,...,q5,...,0n) = (Q1,...,05-1,8j41,..,0p).

By Lemma 2.9, we can transform hyperlogarithms. For example, consider transforming the hyperloga-
rithm
I0; x5 27 1),

Since 5 ) ) )
—I(0;x5 a7 1) = I(0;1; — -
6I2 ( 7'r2 71‘1 9 ) To — 11 ( ) ,I1)+ <$2 To — 11

)I(O;l;r2)7

we obtain
I(0;25 2 1) = 1(0; 213 22) (05 1y 21) + 1(05 1,05 20) — 1(0; 1, 15 22).

Tto called this transforming process variable removing, and we use the same terminology.



Lemma 2.10 (|7, Lemma 4.6]). For z € R and z1,...,2, € Cwith 0 < z < |z;| <1 (j =1,...,r), define
V(z1,...,z,;2) as the Q-linear space by

€{0,1,2; '}, a1#0, a,#1
V(zy,...,zr;x) = (1(0;a1,...,a,;1)I(0;01,...,b;5x a;€{0.13; "}, ar#0, an#l, .
(1 ) <( ! )( ! ! ) bj€{071,33j}7 b17é0 Q

Then, for ay,...,a, € {0, 1,27 27, ... o'} with a; #0,a; # 1, we have
I(0;a1,...,ap;1) € V(21,..., 205 2).
Also, for by,...,b € {0,1,x,21,...,2,} with by # 0,b; # z, we have
I(0; by, ..., b;;2) € V(xq,..., 2 2).

Lemma 2.11 (|7, Proposition 4.8]). Let n,l € Z>,a; € {0, Lay' ..z (G =1,...,n) with ay #0,a, #

1,0; €{0,1,21,...,2,} ( =1,...,1) with by # 0,b; # =, and ¢; € {0,1} (j = 2,...,r). Suppose that for
all j € {1,...,r}, there exists some v € {1,...,n} such that :rj_l =a, or x; = b,. Then we have

d$1 r dIJ

/ 10; a1, an; VIO by, . by 22) € Zurir.
0<m, <--<a1 <1

x T; — Cj
1 j=2 J J

These lemmas are also needed in Section 4.

3 Analytic continuations of Liy (z,;a,) and n(u,;s,;o;a,; b,)

In this section, we show analytic continuations of Li}; (z,;a,) and n(u,;s,;o;a,;b,).

Lemma 3.1 ([13, p. 2|). For each z, € (C\ R>1)", there exists a neighborhood K of z, and g € R such
that %t +or — 2L 20 for j =1,...,r whenever z, € K,0 <& <ep and z1,...,2, € Ce.

Lemma 3.2. For u,,z, € C" with |z;]| <1, a, € Z%y with a; =1 and sufficiently small € € R, we have

r _j_1e(l_aj)(xj+'“+x7')z(_lj

1 z
Li¥ (z,;a,) = I | — / I | J — A (13)
. 1 (627T u; 1)F(u]') (CE)T,]:I eTittTr 2 J

j=

In particular, Liy (z,;a,) can be continued analytically to the region (u,,z,) € C" x (C\Rx;)" .

Remark 3.3. In [10, Theorem 3.17], Komori defined

N
1 1
¢&dbs) =[] 711
& By . 2mil(s) _
i I'(s;) s € 1
e(bll+‘“+blR—d1)21 . e(bN1+“'+bNR—dN)ZNZf1_1 e Z?\]N_l Ao A Ad
X z e 2z
$ (ezlb11+“'+szN1 _ 651) .. (621b1R+“'+ZNbNR—€£7') 1 r

for N,R € 22175 = (61,...,5}3) S (C/QﬂiZ)R,d = (dl,...7dN),S = (81,...781\]) S (CN7b =
(bnr)1<n<ni<r<r € CV*E S : a set of linear functionals on C and S : a union of smooth surfaces. Also, he
gives the analytic continuation of ((§,a, b,s). Lemma 3.2 is thecase N = R =1,b;; = 1,d; = T—Z{Zl(l—al)
and S = {t; : CV — CN|t;(s1,...,5,) = s }.



Proposition 3.4. For u,,s, € C",0 € &;,a, € Z%, with a1,a,-1(1) > 1 and b, € Z%; with b1, b,-1(1) > 1
and a,(jy + b; > 1, the function n(u,;s,;o;a,;b;,) has the integral expression

n(uy;s,;0;a.;by)
r 1 e(1=a0())to gy o4t ttr) o (1=bj) () 4+ Far)

1 tsJ—l U j
| | 1’
I l eQmuJ _ eQms] _ 1)]_“(u] 5] car ; eto)tloGy+1tFtr 4 ozj+-tar _ |

dtjdﬂjj.

(14)

In particular, the function n(u,;s,;o;a,;b,) can be continued analytically to the region (u,,s,) € C?.
Furthermore, by the integral expression (14), we obtain a duality formula

77(ur§sr;0';ar§br) :77(Sr§ur;0'_1;br§ar)' (15)
To prove Proposition 3.4, we need the following lemma.

Lemma 3.5 (cf. [13, Lemma 2.4]). For z,t € D, and sufficiently small £ € Ry,

4r—1 1
e ar Teirt

_— 16
er +et —1 (16)

can be bounded by a constant which does not depend on .

Note that, by putting ¢ =id,a, = b, = (1,...,1) in (15), we can obtain (10).

4 Values of n(u,;s,;o;a,;b,) for some particular case

In this section, we consider the values of n(u,;s,; o; a,; b,) for some particular case. For values at non-positive
integers, we have the following proposition.

Proposition 4.1. For k, € Z",—n, = (-n1,...,—n;) € ZLj,0 € &;,a, € ZL, with aj,a, 17y > 1 and
b, € Z%, with b1,by-1(1) > 1 and a; 4 b; > 1, we have - -

1(kr; —n,5 0385 b,) = B (02,5 by). (17)
For the values at positive integers, we have the following proposition. For simplicity, we put
n(ur;sr;o;an;1,...,1) = n*(uy; s 05 a,)
for a, € {0,1}" with a; =1, and
n(w;sy5051,...,15by) = 0™ (w8505 by)
for b, € {0,1}" with b; = 1. Note that, with this notation, Theorem 15 can be written as
n*(krinp;osa,) =0 (0 ko tay) (18)
with a, € Z%, with (a1,a,-1(1y) = (1, 1).
Theorem 4.2. For k,,n, € Z%,,0 € &,,a, =€ {0,1}" with (a1,a,-1(1)) = (1,1), we have
0 (kpsnpsosan), ™ (Keyng; 03a,) € Ziy ok dng 4oty -

To show Theorem 4.2, we need the variable removing in Section 2.



Example 4.3. For the case r = 2,ny = ng =k; = ka = 1,0 =id,a1 = 1,a2 = 0 in Theorem 15 (or (18)),
we have
7(1,1;1,1;1d; 1,0) = 9™ (1, 1;1, 1,0 151, 0).

Now we calculate these values explicitly by variable removing. By changing variable 1 —e™% =7 =z, we
have
n*(1,1;1,1;id; 1, 0) z/ -l etz)dt dt
5 Ly 9 Ly My Ly (0,002 1 _ etitta 1at2
Lil" (1 —ehittz 1 — et2 Lio(1 — eti+tz
:/ 171( t )dtldtg +/ Mdtldtz
(0,00)2 1 — etatt2 (0,00)2 1 — etttz
i, (%%) Lig( 1,1)
= / LTS %y day +/ — 70 gy da
0<za<z1<1 z1(z2 — 1) O<wo<ai<1 T1(r2 —1)

1052, " oy 51 1(0; 21, 1;
= / —( ’332 7.’[1 ’ )diﬂldxg — / —( » %1 ’Il)d$1d$2.
O<ma<wy <1 0<za<z1<1 z1(r2 — 1)

For Lit' (22, 21) = 1(0; xy ', 27" 1), by variable removing, we obtain
I(O;x;l,mfl; 1) =1(0;21;22)1(0; 1;21) + 1(0;1,0;22) — I(0;1, 15 o),
1(0; 1,21, L;21) = 1(0;1,1,1; 1) — 1(0;1,0,1; z1).

Hence we have

1(0; z1; 1(0;1; 1(0;1,0; —1(0;1, zq;
n*(171,1,171d,170):/ ( 7$1az2) ( ) 71"1)+ ( y Ly 7I2) ( ) 7x17w2)d$1d$2
0<wa<w; <1 z1(72 — 1)
1(0; 1;
_/ ( s L1, 7I1)d$1d$2
O<za<ar<1 (22 — 1)
/1 I(0;21,1;21)1(0; 1521) + 1(0;1,0, 1;21) — I(0; 1, 21, l;ajl)d
= T
0 L1 !
_/1 1(0;w1,1;$1)f(0;1;w1)d$1
0 L1
— /1 I(Ov 1707 1,1‘1) _ I(O7 17x17 17$1)dx1
0 L1

_ /1 21(0;1,0,1;21) — I(0;1,1, 1;x1)dx1
0

L1
=((1,1,2) +2¢(2,2).
For n**(1,1;1, 1; id~':1,0), a similar calculation shows
7 (1,1;1,1;4d 15 1,0) = 2¢(1,1,2) +2¢(1, 3).
Therefore, we obtain
¢(1,1,2) +2¢(2,2) = 2¢(1,3) +2¢(1,1,2).
Example 4.4. Forr =2,k1 = ks =1,n1 =1,n0 = 2,0 = (1,2) € S5 and a1 = az = 1, we have
7°(1,1;1,2;0;1,1) = —2¢(1,4) + ¢(2,3) +4¢(1, 1, 3),
(1,21, 15071 1,1) = ¢(1,2,2) + ¢(2,3) + 3¢(1,1,3) + 4¢(1,4) — ((3,2).

Hence we obtain

—2¢(1,4) +¢(2,3) +4¢(1,1,3) = ¢(1,2,2) + ¢(2,3) + 3¢(1,1,3) +4¢(1,4) — ((3,2)

— 6¢(1,4) —¢(3,2) — ¢(1,1,3) +¢(1,2,2) = 0.



Remark 4.5. In the same way, for the identity permutation id and o = (1,2), we have

N (1:4;id; 1) = ™ (4; 1;id; 1) (& n(1;4) = n(4;1))

— C(5) 4+ ¢(1,4) +¢(2,3) +¢(3,2) +¢(1,1,3) +¢(1,2,2) + ¢(2,1,2) — 3¢(1,1,1,2) =0,
n*(2;3;id; 1) = 0™ (3;2;1d; 1) (& 1(2;3) = n(3;2))

—2¢(1,4) +¢(2,3) +¢(3,2) +¢(1,2,2) +¢(2,1,2) — 2¢(1,1,1,2) = 0,

n*(1,1;1,2:id; 1,1) = **(1,2; 1, 1;id; 1, 1) (< n(1,1;1,2) = n(1,2;1,1))

—2¢(1,4) — ¢(3,2) +3¢(1,1,3) + ¢(1,2,2) = 0,

n*(1,1;2,1;id; 1,1) = ™ (2,1; 1, 1;id; 1, 1) (< n(1,1;2,1) = n(2,1;1,1))

— —2¢(1,4) — €(2,3) — 3¢(1,1,3) +¢(2,1,2) =0,

n*(1,1;2,1;051,1) = n**(2,1;1, 1;0 15 1,1)

— 4¢(1,4) — 2¢(2,3) — €(3,2) 4+ ¢(1,1,3) 4+ 3¢(1,2,2) = 0.

Combining these with Example 4.4, we obtain at most 6 linearly independent relations.
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