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1 Introduction

J.Kaczorowski defined the associated Euler totient function for a class of generalized L-functions including the Rie-
mann zeta function, Dirichlet L-functions and obtained an asymptotic formula (see [4]) : By a polynomial Euler product
expressions we mean a function F(s) of a complex variable s = ¢ + it which for o > 1 is defined by a Euler product

expressions of the form

-1
) , (1.1)

d
F(s) = l_[Fp(s) = Hﬂ(l -
p

a;(p)
r Jj=1 P
where p runs over primes and |a;(p)| < 1 forall p and 1 < j < d. We take the smallest d € Z such that there is at least
one prime py satisfying )

[ [astpo 0.

=1
where d is called the Euler degree of F. Note that the L-functions from number theory including the Riemann zeta
function {(s) and Dirichlet L-function L(s, y) and Dedekind zeta and Hecke L-functions of algebraic number fields,
as well as the (normalized) L-functions of holomorphic modular forms and, conjecturally, many other L-functions are
polynomial Euler products expressions.

M.Re¢kos described the analytic property of some function connected with the Euler totient function (see [6]) : Let H

be the upper half-plane. We describe basic analytic properties of the function f(z) defined for z € H as follows :

fo=lim Y, E (12)
0<Impp<T,,

where {T,} denotes a real sequence yielding appropriate groupings of the zeros, and the summation is over non-trivial
zeros of {(s) with positive imaginary part. For simplicity we assume here that all the zeros of {(s) have simple. M.R¢ko§
showed the holomorphy of f(z) for Im z > 0, meromorphic continuation to the whole z-plane with its principal part,
and a functional relation containing its reflection property. The functional equation for f(z) connects the values of the
function f at the points z and Z. Define a smooth curve 7 : [0,1] 5 ¢ = 7(¢) € C such that 7(0) = —1/4, 7(1) = 5/2 and
0 <Im7() < 1fort e (0, 1), and define it by £(—=1/4,5/2). The analytic property of f(z) is described by the following

theorems:
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Theorem 1.1 (Theorem 1.in [6]). The function f(z) is holomorphic on H and for z € H we have

[o¢]

: 2 @(n)
27if(2) = fiz) + fo(z) — €* ; Lo (1.3)
where the functions
~1/4
J(s—1)

= ———e’ds, 1.4
he me i 5

{s—=1) ¢
= ————e"d 1.5
L@ fe(—l/4,5/2) £(s) © @ (1.5)

are holomorphic on H and on the whole z-plane respectively, and the last term is a meromorphic function on the whole
z-plane, whose poles are at 7 = log n of the second order with the residues —¢(n)/2ni (n = 1,2,...). Here ¢(n) denotes

Euler’s totient function.

Theorem 1.2 (Theorem 2.in [6]). The function f(z) can be continued analytically to a meromorphic function on the

whole z-plane, which satisfies the functional equation

f@+ f2) = BQ@) (1.6)

and N
Blz) = _%622 " 2_71'[2 k;l 'L;(ZI;) [(nkezl— 1)? " nkezz— 1 (nkeZ1+ 1?2 nkeZ2+ 1| (1.7)
where B(z) is a meromorphic function on the whole z-plane with the poles of the second order at z = —lognk, n,k =

1,2,... and u(k) is the Mobius function.

We now provide the Selberg class S defined as follows : f € S if

[ee]

(1) (ordinary Dirichlet series) f(s) = Z ar(n)n™", converges absolutely for o > 1;
n=1
(i1) (analytic continuation) there exists m € Zs( such that (s — 1) f(s) is entire of finite order;

(iii) (functional equation) f(s) satisfies a functional equation of the form ®(s) = w®(1 —s), where

©(s) = 0 | | T(ys + 1 f(s) = ¥()f (), (1.8)
j=1
say, withr > 0,0 > 0,4; > 0,Re u; > 0 and |w| = 1;
(iv) (Ramanujan conjecture) ay(n) < n° holds for any € > 0 ;
o br(ph)
(v) (Euler product) f(s) = exp[ .
n Z pﬁs

p =0
bs(n) < n” for some ¢ < 1/2.

] for o > 1, where by(n) = O unless n = p™ with m > 1, and

The empty products are hereafter to be equal to 1.

2 The extension of f(z) to the subclass of S

If a functions F € 8 has a polynomial Euler product expressions (1.1), the subclass of S of the functions with
polynomial Euler product expressions is denoted by SP°Y. Establishing the results which extend Theorem1.1 and 1.2
to the function F € SP°Y are the main aim of the present paper. Let {p} denote the non-trivial zeros of F with positive
imaginary parts, and assume that each p is simple. Moreover, let {T,} denote a real sequence yielding appropriate
groupings of the zeros, where its precise definition is to be given by (3.2) below. For Im z > 0 and F € SP°Y, we consider

the function defined by



e L(p-1)

far)=lim > —p5 2.1)
O<Im’Op<T,1

If there are trivial zeros of F(s) on the imaginary axis in H, they are to be incorporated in the summation. The reason
why £(s) appears in the numerator on the right hand side is that the Barnes type integral (5.3) below for the Whittaker
function can then be applied under the hypothesis (r, 4;) = (1, 1) for all j in (1.8) (see Lemma 5.1 and Section 6).

Fact 2.1 (Fact 2.1 in [3]). The limit in (2.1) exists for all z € H.

We will prove Fact 2.1 in the next section.

3 Proof of Fact 2.1.

We prove Fact 2.1, for which the following Lemma is used.

Lemma 3.1 (Lemma 4. in [8]). Let F € S and let T be sufficiently large, and fix H = Dloglog T with a large constant
D > 0. We take any subinterval [n,n + 1] with n chosen such thatn € Z.o N [T — H,T + H]. Then, there are the lines

t = to such that
|F(o + itg)]™" = O(exp(C(log T)%)), (3.1)

uniformly in o > =2, where C is a positive constant.

Let T be sufficiently large. We fix H = Dloglog T, where D is a large positive constant. We take any subinterval

[n,n + 1], where n is a positive integer in [T — H, T + H]. Then, by Lemma 3.1 there are the lines ¢t = T}, such that
[F(o +iT,)l™" = O(exp(Ci(log T)%)) (3.2)

uniformly for o > -2, where C is a positive constant. Since T, is contained in the interval [T — H, T + H], we can see

that T,, ~ T as n tends to infinity. Let @ = min{Im p > 0}/2 and . denote the contour consisting of the line segments

[b,b+iT,], [b+iT,,a+iT,], [a+iT,, al, [a,(a+b)/2 +ia], [(a+b)/2 +ia,b],

where max {—3/2, max{Re p < 0} /2} < a < 0,b > 5/2. We assume that the real part of s = a + it (t € R) does not

coincide the poles of T'(s + u)I'(s — u). We consider the following contour integral round . :

§6 =D sy (3.3)

v F()

Since we assume the order of p is simple, we have by residue theorem

{(s—1) {(s—=1) {(s=1)
SZ — V) Z.Xd
v F(s) air, F(9) L Fs) O
b+iT), _ a+iT, _
+f —§(s 1)ez“‘ds+‘f _{(s 1)ez“‘ds
b F(s) prir, F(S)
. e f(p—1)
= 2mi _—, (3.4)
2 “rp
0<Im p<T,

where the path L above consists of joining the two line segments [a, (a + b)/2 + ia] and [(a + b)/2 + ia, b]. We now

estimate the integral along the line segment [b + iT,,a + iT,]. For a < o < b, we have by (3.2),

|F(o +iT,)|”" = O(exp(C(log T)%)),



which, with the vertical estimate for {(s — 1), shows with z = x + iy that

b+iT, _
f (=1 o
a+iT, F(s)

for T, T, > 1 with a constant ¢ = c(a, b) > 0, where the last bound tends to zero as n — oco. By Theorem 4.1 below, the

< (b - a)T; exp{Cog T)* = yT,, + |xl(lal + b))} (3.5)

convergence of the other integrals in (3.4) are ensured (see (4.5)-(4.7)). The limit in (2.1) therefore exists. O

4 Main theorems

Letting n — oo, we have

< ls—1) {s-1)
e FO) S BT ) TR ¢ d”ﬁ

with f(z, F) in (2.1). To evaluate the integral along the vertical line with s = b +it (¢ > 0), we prepare the Dirichlet series

b+ico éz(s _ 1)

o) e“’ds =2nif(z, F), 4.1)

expansion of {(s — 1)/ F(s) for o > 2.

Definition 4.1 (p.34 in [4]). For o > 1 and F € SPY, we define the Dirichlet coefficients uy as follows :

1 i ur(n) I ﬁ (1 _ af(P)) 4.2)
Fis) & n ) '

p =1

Remark 4.2 (p.34 in [4]). By (4.2), |ur(n)| < 74(n), where 74(n) is the divisor function of order d, so that /¢(s) =

Yy Ta(n)/n’ for o > 1. In particular 71(n) = 1 for all n.

Using (4.2) in o > 2, we obtain

{s=1) _ < g
F(s) _; ns’ *3)

where "
gn) = ) pr(d)~. (4.4)

din
Theorem 4.1 (Theorem 4.1 in [3]). Let max {—3/2,max{Re p < 0}/2} < a < 0,b > 5/2. Then, the function (2.1) is
holomorphic on H, and for z € H the formula

[o¢]

: . g(n)
2if(z, F) = fi(z, F) + fo(z, F) — ¢ Zl R — 4.5)
is valid, where the functions
-1 .
h@F) = %e“zd& (4.6)
(=1
H(@, F) = Fe) ¢ ds 4.7)

are holomorphic on H and on the whole z-plane, and the last term on the right is a meromorphic function on the whole

z-plane with the poles at z =logn(n =1,2,...).
We need not use the condition of a which does not coincide the poles of I'(s + p)I'(s — u) in proving of Theorem 4.1.

Theorem 4.2 (Theorem 4.2 in [3]). For any F € SP°Y with (r, A))=,1) forall jin (1.8) and 0 < u < 1, the function

(2.1) has a meromorphic continuation to y > —m.

The complex number p; when r = 1 in (1.8) is hereafter referred to as u. The L-functions associated with holomorphic
cusp forms and Dedekind zeta functions of the imaginary quadratic fields are the examples of F considered in Theorem

4.2. Letting
H ={zeC:Imz<0}, (4.8)

4



we next study the function, for z € H™,

L(p-1)

feps=lin ) —p= (4.9)
—T,,<ﬁnp<0

If there are trivial zeros of F(s) on the imaginary axis in H~, they are incorporated in the summation. The existence of

the limit on the right hand side of (4.9) is proved similarly to Fact 2.1.

Corollary 4.3 (Corollary 4.3 in [3]). For any F € SP°Y satisfying the same conditions as in Theorem 4.2, the function

(4.9) has a meromorphic continuation to 'y < .

Theorem 4.4 (Theorem 4.4 in [3]). For any F € SP°Y satisfying the same conditions as in Theorem 4.2, the function
(2.1) can be continued analytically to the whole z- plane. In addition to the condition as in Theorem 4.2, we assume that
the Dirichlet series coefficients ap(n) of F € SP°Y is real-valued for all n. Then, the function (2.1) satisfies the functional

equation
f@ F)+ [z, F) = Bz, F), (4.10)

where
2z

1
B F) = 5= (h(z F)+ f7 (2 F) - ° @.11)

F(2)
Jfor all z € C and the function f| (z, F) is holomorphic on H".

5 Some auxiliary results on the Whittaker function

We first introduce the Whittaker function W, ,,(z) (via the confluent hypergeometric function ¥(e, y; z) below), which is
necessary to prove our main theorems, and then prepare some auxiliary results, i.e.its integral expression and asymptotic

expansions.

Definition 5.1 (The confluent hypergeometric function of the second kind ( [1])). Let W(a, v; z) be the confluent hyper-

geometric function of the second kind defined by

1 (0+)
Y(,y:2) = ————— w1+ wy 5.1
@159 = fmm L W (1w dw 5.1)

for any (a,y) € C? and for |argz| < m. Here the path of integration is a contour in the w-plane which consists of the
upper real axis from e""oo to %'§ with a small § > 0, the circle with the center w = 0 and the radius ¢ through which

arg w varies from O to 27, and the lower real axis from e?*§ to e*™ co.

Definition 5.2 (The Whittaker function ( [5])). The Whittaker function W, ,(z), which has large applicability, e.g. in
number theory and physics, is defined by

1
W ,(z) = 21 2e 2y (5 — K+, 20+ l;z) (largz| < m), (5.2)

where (to avoid many-valuedness) the domain of z is to be restricted in the z-plane cut along the negative real axis with

larg z| < m.

Lemma 5.1 (Barnes type integral for the Whittaker function ( [7], [9])). The Barnes integral for W, ,(z) asserts

W,u(2) =

e_Z/QZK fc+00i F(S)r (—S —K—u-+ %)F(—S —K+u+ %) Sd (5 3)
zas, ’

2mi — oo F(—K—y+%)l"(—l<+,u+%)
forlargzl < 3n/2, and k + u+ 1/2 #0,1,2,...; the contour has loops if necessary so that the poles of I'(s) from those

of T'(—s —k—pu+1/2) XI'(—s — « + u + 1/2) are on opposite sides of it.
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In (5.3), it holds for all finite values of ¢ provided that the contour of integration can always be deformed so as to
separate the poles I'(s) and those of the other I'-factors. By Stirling’s formula for I'(s) (cf. [2]), the integral in (5.3)
represents a function of z which is holomorphic at all points in the domain |arg z| < 37/2 — a with any small @ > 0. The

asymptotic expansions for W(«;y; z) as z — 0 readily asserts the following proposition.

Proposition 5.2 (The asymptotic expansions for W(a; b; z) as z — 0 ([7])). We have the asymptotic expansions, as z — 0

through |arg z| < =,

W(a;b;z) = %zl_b +0(|zZR%) Reb>2,b+2), (5.4)
I'b-1
= %Zl-b +0(logz)) (b=2), (5.5)
= le-b +0(1) (1 <Reb<?2), (5.6)
[(a)

I -b) re-1 ,., B
“Ti+a-n T@ ° * O(z) (Reb=1,b#1), (5.7)

1 I’
= {mgz + @)+ 200} +O(zlogz) (b =1), (5-8)

where Cy is Euler’s constant.
By the definition (5.2) and Proposition 5.2, we have the following asymptotic expansions as z — 0 for W, ,(z).

Proposition 5.3 (The asymptotic expansions in z — 0 for W, ,(2)).

'
Wiepu(2) = l(—mzl/z-ﬂ + 02" Rep21/2,u#1/2), (5.9)
F(E + U - K)
“Ta-no " O(zlogzl) (u=1/2), (5.10)
'
_ 1 ( /J) Z1/2—,u + O(|Z|Reu+1/2) (0 < Re/“l < 1/2)’ (511)
F(E +u-— K)
I'-2 I
— 1( lu) Zp+1/2 + ( :i’l) Z—,u+l/2 + 0(|Z|Re,u+3/2) (Re u= O,'Ll + 0)’ (512)
F(E—,u—/() l"(,u+5—/<)
Z1/2 ' (1 32
S (logz b= (— - K) + 200) + 0P logz)  (u = 0). (5.13)
TET

6 Proof of Theorem 4.2

We prove that the function f(z, F) (z = x + iy) has a meromorphic continuation to y > —x. By Theorem 4.1, the

A I At (CE
b= Fe ¢ BT f o ¢

is convergent for y > 0. We recall the hypotheses that (r,4;) = (1, 1) for all jin (1.8) and 0 < u < 1. We rewrite the

function

functional equation (1.8) under these hypotheses as follows :

O°T(s + WF(s) = wQ'T(1 =5+ wWF( =7%)
= wQ'™T(1 - s+ wWF( -7%),

where the conditions of Q and w are the same as noted in (1.8). Hence

Fs+p) 1
r( —s+u)ﬁ’

_ EQZS_I

o~ (6.1)
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which yields, from the reciprocal relation I'(s)['(1 — s) = 7/ sin s, that

| —
—_— = 2Q25'1 sinz(s — (s + (s — p) ) (6.2)
F(s) n F(1-75)
By (6.2) and the functional equation for {(s), on setting
H(s,w) = 2rQ?*)*{(2 — $)I'(s — )T (s + 1)L (2 — 5)e™*,
H
K(s,w) = Gw (6.3)
F(1-=75)
we have
3mi i i 3mi
filz, F) = J_(z+ 7)+J+(z— 5)+J_(z+ 5)+J+(z— 7)
4
= fij@F), (6.4)
=1
say, where
iiein’i[ua a+ico
Ji(W) = m : K(S, W)dS. (65)
It follows from, by Stirling’s formula,
(s + (s — 02 = 5) =< e 2912 (a5t — +o0), (6.6)

max {—-3/2, max{Re p < 0}/2} < a < 0, and the vertical estimates for {(2 — s) and F(1 =) that fi;(z, F) (j = 1,...,4)
are holomorphic for y > —3nx, for y > —nx, for y > =27 and for y > 0 respectively. We next show that fi4(z, F) can be
continued to 0 < y < 3x. Splitting the integral in fi4(z, F), we have

fia(z, F) = J, (Z— %)

_ wet™i artico f a X 3ni 4
T Wi e T\TET 2

=1(z, F) + I(z, F),

say, where
L(z F) = wemi (R (3w 6.7)
T 00 Jew T\ 2T |
wekmi a 37
L(z F) = Kls.z= 22 ds. 6.8
2z £) <2n>3Qifa_ioo (” 2) ’ ©®

Here, we recall the hypothesis that the real part of s = a + it (t € R) does not coincide with the poles of T'(s + @)I'(s — w).
From (6.6), we can see that the integral I5(z, F)) is convergent for y < 3x. From (6.6) again, I;(z, F') converges absolutely
for 0 < y < 3. Substituting the Dirichlet series expansions in (4.2) and {(2 — s), and then integrating term-by-term, we

have . _
et &0 ,up(k) +ico

k,n=1 a=iee

II(Z’ F) =

where the interchange of the order of integration and summation can be justified by absolute convergence as follows :

For 0 < y < 3, each s-integral in (6.9) is bounded as

< (nk)aeaxf e—(y—3ﬂ/2)t—37r|t|/2(|t| + 1)a+1/2dt < (l’lk)a,



and hence the series in (6.9) is bounded above as

lr (K|

1-a;2-a
k,n=1 k n

by (4.2) and a < 0. We next prepare the following notations which is used to describe the residues of the integrand in

(6.9) and also used later in similar situations : for u ¢ {0, 1/2},

="

S k0, 0) = —TQp = mTQ — p + ) 2k QP07 (6.10)
and for u =0,
Sewmw.0) = T e omko?) + +i1 Coo ! 6.11)
nm\W, = n P - .
kinm W ml QankQ2yr | 8T YL T T

with Euler’s constant Cy, and also for u = 1/2,

1 F(% + m) 172w 3
St (W’ 5) T T Qmk QPR {m (‘”(5 ’ m) T 1))

— m(log(2mnkQ?) + w) + 1} (6.12)

with Euler’s psi function /(s) = (I"/T")(s). Then we have the following lemma.

Lemma 6.1 (Lemma 7.1 in [3]). The residues of the integrand in (6.9) are given as follows :

() for u ¢ {0,1/2}, those at s = tu—m(m =0, 1,...) equal

3ni
R;(:,i,m(z, i,u) = Sk,n,m (Z - 7, i,u) ;

(1) foru =0, thoseat s = —m (m =0,1,...) equal

3mi
ngr)l,m(z’ 0) = Sk,n,m (Z - 7, 0) )

(iii) for u = 1/2, thoseat s = 1/2—m(m =0,1,...) equal

3mi 1
Rl(:li,m(z’ 1/2) = Sk,n,zn (Z - ) .

22
Proof. The reciprocal relation I'(s) shows that I'(—m + €) = (=1)"n/I'(1 + m — €) sin(ze) (m = 0, 1, .. .), and this implies

the Laurent series expansion, as € — 0,

D"

I'(-m+¢) = — e {1+ U(l +m)e + 0(€*)}, (6.13)
which with the Taylor series expansion
TFQ+m—e) = @m+ D1 — 2+ me + O()). (6.14)

Readily asserts the cases (i) and (ii), by substituting (6.13) and (6.14) into the integrand in (6.9), and by noting ¥(1+m) =
2o (1/h) + (1) with y(1) = —Cy, while (iii) by noting I'(s — 1/2)['(s + 1/2) = (s = 1/2)['(s — 1/2)? and by substituting

(6.13), instead of (6.14), the Taylor series expansion, as € — 0,

3 _r(3 e 2
F(§+m—6)—l"(2+m){l w(2+m)6+0(6)}.



a+ico

Since lim7_, ;o e = 0for 0 <y < 3min (6.9), we obtain if u ¢ {0, 1/2}, by the residue theorem,

Hieo 3mi 3ni
Kls,z2- Zas=- | ks,z-Z
[ Kl as=- [ ooz

M] M2
- 2711'{2 R, G+ > R —u)}, (6.15)

my=0 mp=0
where C is a contour separating the poles of I'(2 — s) from those of I'(s + u)I'(s — ) in opposite sides, and M, and M, are

the integers chosen correspondingly . Here the split residual terms in (6.15) when u € {0, 1/2} are to be understood as

M’ M//
D R0 (fu=0) Y R) 1/ (ifu=1/2), (6.16)
m=0 m=0

where the same convention is used hereafter. The integral over C in (6.15) can be evaluated, on replacing s with 2 — s,

by the formula (5.3), and this shows that it equals
Tk,}’l (Z - 37”/2) D

where and in the sequel

Tin(w) = 2127k Q%) exp (47;];2 + %) T2 - Q2 + W32, (#;Qz) . (6.17)
Therefore, we have
W™ > up(k) _ 3. . < (1
WeF)= g 20 T | (Z ) 5’”) ) 27”{2_0 Binm (1)
" = t mp=
+ Y R G —ﬂ)} . (6.18)
my=0 |

The following lemma ensures the convergence for the series on the right hand side in (6.18).

Lemma 6.2 (Lemma 7.2 in [3]). For F € 8" with (r, A)) =1, 1) forall jand 0 < u < 1in (1.8), the series on the

right hand side in (6.18) is absolutely and uniformly convergent on every compact subset on the whole z-plane.

By Lemma 6.2, for any F € SPV with (r,4;) = (1,1) for all jin (1.8) and 0 < p < 1, we have the following analytic

continuation of f(z, F) fory > —n:

3 ] i T
far = (er s (e D) e (e D)o 2L

2 2) T @nyo
S pir(k) 3 S
F ) )
= Tin (z—zm)—Zm{Z Rgr)l’ml(z,/vt)
k,n=1 m;=0
o 1) Ee’”i < 3 d 6
R , = Kls,z—— , .19
" 2 B[+ g [kl @1

where the first integral is holomorphic for y > -3, the second for y > —, the third for y > -2, the fourth double sum
for y > —co by Lemma 6.2, and the last for y < 3z. Therefore, (6.19) completes the proof of the continuation of f(z, F)
to the region y > —x. O
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