THE CLEBSCH-GORDAN COEFFICIENTS OF U,(sly)
AND GRASSMANN GRAPHS

HAU-WEN HUANG

ABSTRACT. In the first section, I will mention a connection between the Clebsch—Gordan
coefficients of U(sly) and Johnson graphs. In the second section, I will develop a g-analog
connection between the Clebsch—Gordan coefficients of Ugy(slz) and Grassmann graphs.

1. THE CLEBSCH-GORDAN COEFFICIENTS OF U(sly) AND JOHNSON GRAPHS

The notation N denotes the set of nonnegative integers. The notation C denotes the
complex number field. The unadorned tensor product ® is meant to be over C. For any
set X the notation CX stands for the vector space over C that has a basis X. A vacuous
summation is interpreted as 0. A vacuous product is interpreted as 1. An algebra is meant
to be a unital associative algebra. An algebra homomorphism is meant to be a unital algebra
homomorphism. For any two elements x,y in an algebra, the bracket [x,y] is defined as

[z,y] = zy — ya.

The universal enveloping algebra U (sly) of sly is an algebra over C generated by E, F, H
subject to the relations
[H,E] =2F, [H,F| = —2F, [E,F]=H.
The element
H2
AN=FEF+ FE+ 5

is called the Casimir element of U(sly). For any n € N there exists an (n + 1)-dimensional
irreducible U(sly)-module L,, that has a basis {U,L-(")}?ZO such that

B =™ (1<i<n), E" =0,
Fvi("):(n—i)vgj_)l (0<i<n-—-1), FolM =0,
Ho™” = (n— 200! (0<i<n).
Every (n + 1)-dimensional irreducible U (sly)-module is isomorphic to L.
Recall that the comultiplication A of Uf(sly) is an algebra homomorphism U(sly) —
U(sly) ® U(sly) given by
EFE — EFEx1+1QFE,
F - FlI+1F,
H - H1+1®H.
The U(sly)-module L, ® L, has the basis

Ul(m)®vj(-n) (0<i<m;0<j<n).
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The Clebsch—Gordan rule states that the U(sly)-module L,, ® L, is isomorphic to

min{m,n}

@ Lm+n—2p-
p=0

Thus the vectors

p(mtn=2p) (0 <p<min{m,n}; 0<i<m+n—2p)

can be viewed as a basis for L,, ® L,. Roughly speaking the Clebsch—Gordan coefficients
of Ul(sly) are the entries of the transition matrix from the first basis to the second basis for
L, ® L,.
The universal Hahn algebra H is an algebra over C generated by A, B, C' and the relations
assert that
[A,B] =C
and each of
[C, A] +2A% + B,
[B,C]+4BA+2C

is central in H. Note that the algebra H is generated by A and B. The Clebsch—Gordan
coefficients of U(sly) can be expressed in terms of Hahn polynomials. The phenomenon can
be explained as follows:

Theorem 1.1 (Theorem 1.5, [5]). There exists a unique algebra homomorphism § : H —
U(sly) ® Ul(sly) that sends

RN H®1—1®H7
4
B — #

By pulling back via f every Ul(sly) ® U(sly)-module can be considered as an H-module.
Let V denote a U(sly) ® U(sly)-module. For any 6 € C we define

V() ={veV|A(H)v=_0v}.

Since A(H) is in the centralizer of §(#) in U(sly) ® U(sl2) the space V() is an H-submodule
of V.

Let 2 stand for a finite set with size D. Let 2% denote the power set of 2. The notation
C stands for the covering relation of this subset lattice (2%, C). For any integer k with
0<k<Dlet

Q
<k:> = {all k-element subsets of (2}.

Recall that the Johnson graph J(D, k) is a simple connected graph whose vertex set is (%)
and two vertices x,y are adjacent if and only if x Ny G x. By [2, Theorem 13.2] there exists
a U(sly)-module C2" given by

Ex = Zy for all z € 2%,
yCx

szZy for all z € 2%,

rCy
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Hx = (D —2|z|)x  for all z € 2%

The action of A on the U(sly)-module C2* is as follows:

D — 2|z])?
sz(D—l—%)x%—ZZy for all x € 2.

Note that the above sum corresponds to a direct sum of the adjacency operators of J(D, k)
for all integers k with 0 < k < D.

Fix an element 29 € 2°. The vector spaces C2'™ and C¥ are U (slz)-modules. Hence
C2M° % C2 is a U(sly) 0 U(sly)-module. There exists a unique linear map u(zo) : C2* —
C2"" ® C?™ that sends

r = (z\xo) ®(xNaxg) for all x € 2.

Note that ¢(xg) is a linear isomorphism. For any element X € U(sly) the following diagram
comimutes:

¢(zo)

C2Q CQQ\zO ® (CQTO

X A(X)

C2Q (‘r ) CQQ\zO ® CQTO
t(Zo

By identifying C2” with C2"'"° @ C¥™ via 1(xo), this induces a U(sly) ® U (sly)-module struc-
ture on C2. We denote this module by

(C2n (l’o)

By pulling back via  the U(sly) ® U(sly)-module C2*(x,) is an #-module. The action of A
on the H-module C2” (z) is as follows:

A$:<2_|xo\x|+|x\xo|>x

1 5 for all = € 2%

Applying the above commutative diagram with X = A yields that the action of B on the
H-module C2* () is as follows:

D —2
Bx = <—+&> Z Yy for all z € 2.

2
ly|=|=|

xNyCr

Applying the above commutative diagram with X = H yields that
cle) = (zo)(D - 2k)  (0< k< D).

Hence C(%) is an H-submodule of C2° (zg). We denote this H-module by (C@Z)(xo).
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Now we assume that 1 < k < D — 1 and set zg € (skz) Let T(zo) denote the Terwilliger
algebra of J(D, k) with respect to xg. Since J(D,k) is a P- and Q-polynomial associa-

tion scheme, the algebra T(z) is the subalgebra of End((C(Skz)) generated by the adjacency
operator A and the dual adjacency operator A*(xq) of J(D, k). Recall that

. D(lwo \ @ + |\ zo) 0
A*(zg)x = (D —1) (1— 1D — k) ):c for all z € ().

Therefore the following equations hold on the H-module c(®) (xo):

.. . _D(D-1) (D — 2k)?
veo = gomn (- )

We have seen the following connection between the Clebsch—Gordan coefficients of U(sly)
and Johnson graphs:

Theorem 1.2 (Theorem 5.9, [5]). Let H — End(@cj)) denote the representation corre-
sponding to the H-module c(®) (x0). Then the following equality holds:

Q

k

T(zp) = Im (7—[ — End(C( ))) .

2. THE CLEBSCH-GORDAN COEFFICIENTS OF U,(sl;) AND GRASSMANN GRAPHS

Assume that ¢ is a nonzero complex number which is not a root of 1. For any two elements

x,y in an algebra over C, the ¢-bracket [x,y], is defined as
[z, 9ly = qry — ¢y
The g-analog [n], of any integer n is defined as
_ -
q—q!

My first step is to develop a g-analog of the commutative diagram in Section 1. The

quantum algebra U,(sly) is an algebra over C generated by E, F, K*! subject to the relations

KK'= KK =1,
[E’K]q = [KvF]q =0,
K— K1
q—q '

(1]

B, F] =

The element
A= (q— q_l)QEF +¢ 'K 4+ gK™!

is called the Casimir element of U,(sl2). Recall that a common comultiplication A of U, (sly)
is an algebra homomorphism U, (sly) — U,(slz) ® U,(slz) given by

F - EQ1I+K®E,
F —» FK'4+1®F,
K:I:l — Ki1®Ki1.
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Now assume that €2 is a vector space over a finite field F that has finite dimension D. Set

the parameter
q = VI|F.

The notation £(2) stands for the set of all subspaces of 2. This symbol G now represents
the covering relation of this subspace lattice (L£(€2),C). For any integer k& with 0 < k < D
let

Lr(2) = {all k-dimensional subspaces of 2}.

Recall that the Grassmann graph J,(D, k) is a simple connected graph whose vertex set is
L (2) and two vertices x, 2’ are adjacent if and only if Nz’ G z. It is known from [6, Section
33] that there exists a U,(sly)-module C*®?) given by

Ex=q¢P" Z:c’ for all = € L(Q2),
' Cx

Fr=Y a'  forallzeL(Q),

rCa’

Kx = ¢P~2dimey for all z € L(Q).

Fix an element zg € £(€). Let t(zg) : CX®) — CEE/20) & CE®0) denote the linear map that
sends

r = (x+z)/ro®@xzNzy  forall x € L(Q).
Unfortunately, the following diagram is not commutative for any element X € U, (sl):

(zo)

CL(&Z) (CL(Q/CL’O) ® Cﬁ(mg)

X A(X)

CL(&Z) s (CL(SZ/CL’O) ® Cﬁ(mg)
L(l’o)

I choose another comultiplication A of U,(slz) [3, Lemma 1.2] which is an algebra homo-
morphism Uy (sly) — U,(sly) ® Uy,(sly) given by
E —» Egl+K'9E,
F = FQK+1QF,
K:I:l — K:I:l ® Kil.
I consider a more general setting of the U,(sly)-module structure on C*) [3, Proposition

11.2]: Suppose that X is a nonzero scalar in C. Then there exists a unique U,(sly)-module
CXY such that

Ex=\g" Z ' forall x € L(Q),

' Cx

Fr=\q Z ¥ forall x € L(Q),
xCx’

Kz = ¢gP~2dimzy, for all x € L(Q).
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We denote the U,(sly)-module by CXY(\). The previous U,(sly)-module CX(Y is identical
to the U, (sly)-module CXY(g). The action of A on the U,(sl;)-module C£(¥()) is as follows:

Ax = <qD—2dimac+1 4 q2dimx—D+1 + q—l—D _ ql_D)‘r

+4d Pla-a"? Y for all = € £(Q).

dimz'=dim
!
xNx' Cr

Note that the above sum corresponds to a direct sum of the adjacency operators of J,(D, k)
for all integers k with 0 < k < D.

Recall the triple coordinate system for the subspace lattice (£(£2),C), introduced in
Dunkl’s 1977 paper [1, Section 4]. Define £(2),, to be the set of all triples (y, z, 7) where

o yc L(Nxp);

o 2 € L(x9);

e 7 is a linear map from y into zy/z.
For any two triples (v, z,7), (v/, 2/, 7") € L(2),, we write (y,z,7) C (v, 2',7") whenever the
following conditions hold:

oy Cy.

o 2 C 7.

o 7(u) C 7'(u) for all u € y.
Note that (L£(€2).,, C) is a poset. Fix a subspace z; of € such that Q = xy @ x;. For any
u € ) we write ug and u; for the unique vectors ug € x¢ and u; € x1 such that v = ug + u;.
For any = € £L(2) we define the linear map 77} (x) : @ + xo/x0 — o/x N 2o by

u+mzy — up+ (zNao) for all u € x.
The map @31 : £(2) = L(Q),, given by
v = (x4 x0/T0,7 N30, T, (T)) for all z € L(Q)

is an order isomorphism. We may identify the subspace lattice (L£(2), C) with the triple
coordinate system (L£(Q)s,,C). The following linear maps Lq(zo), La(xo), R1(xo), Ra(z0) :
CESY — CE® were mentioned in [1]:

Li(xg) : ¢ Z ' forall x € L(Q),

' Gz
' Nzo=2Nx0

Lay(xg) @ Z ' forall x € L(Q),

z'Cx
' +xo/ro=x+20/T0

Ri(zg) :  — Z ¥ forall x € L(Q),

zCx’
' Nzo=zNxo

Ro(zg) : . — Z ¥ forall x € L(Q).

zCx’
' +xo/ro=x+20/T0

Define the linear maps D1 (z¢), Da(xg) : CFY — CFY as follows:
Di(zg) : & s glim@wo—2dim{@tao/zo) . for all € L(Q),
Dy(xg) @ & +— giimzo—2dimanzo, for all x € L(Q).
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Using the triple coordinate system (£(£2),,, €), it is not difficult to me to verify the following
properties: For any nonzero A, u € C the following diagrams commute:

CL®) (o) ;

(zo)

Cﬁ(&Z/zO)(l) R (CL(:E())()\) Cﬁ(&z) (Cﬁ(ﬂ/zo)()\) ® Cﬁ(xo)(qdimzo)

qdim zoi?Ll (SCO) E®l qdim aco*Dl)1 :[30) ¢} L2(-TO) 16 F

Cﬁ(&z) s Cﬁ(&Z/zO)(l) 2 (CL(:E())()\) Cﬁ(&z) s (Cﬁ(ﬂ/zo)()\) ® Cﬁ(xo)(qdimzo)

t(zo) t(zo0)

(o)

oL@ - ; (o)

CE®/20)(1) @ CE@I(\)  CE®) ‘ > CE/70) ()) @ CEwo) (glimao)

qldingRl(%) ° D2($0)—1 F 1 ql—dimac Rz(l’o) 1 F

CL(Q) 5 (CL(Q/zO)(l) ® Cﬁ(:ﬂo)(}\) Cﬁ(&z) 5 Cﬁ(Q/zO)(A) ® Cﬁ(xo)(qdimzo)

v(wo) v(o)

CLO) (o) ;

L(wo)

CEE/20) (\) i CEEo) (1) CEE) CEE/z0) (N i CF®0) (1)

D1 (xo) KPl Do (xo) 1K

CFEO) — CEE®/20) (\) © CF@) (1) CEO) ———— CEO/m)()) @ CE@) (1)

t(zo) t(zo)

Applying the above commutative diagrams, we can conclude that

Theorem 2.1 (Theorem 11.15, [3]). The following diagram commutes for each X € U,(sly):

t(zo)

CL(Q) (qdimxo) N CL(Q/x0)<1) ® (Cﬁ(xo)(qdimxo)
X A(X)

C[,(Q) (qdimzo) s C[,(Q/zo)<1) ® Cﬁ(mo)(qdimzo)

t(zo)

Although Theorem 2.1 is a g-analog of the commutative diagram in Section 1, the linear
map ¢(zo) is not an isomorphism in the general case.

The wnwersal qg-Hahn algebra H, is an algebra over C generated by A, B,C and the
relations assert that each of

1B, Clq [4, B,

W—i_A’ C, A, W-FC
is central in H,. With respect to the first comultiplication A of U,(sly), the algebraic
treatment of the Clebsch—Gordan coefficients of U,(sl;) was given in [4, Theorem 2.9]. With
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respect to the second comultiplication A of U,(sly), the result [4, Theorem 2.9] can be
modified as follows:

Theorem 2.2 (Theorem 1.4, [3]). There exists a unique algebra homomorphism § : Hy, —
U,(sly) ® U,(slz) that sends

A — 1K,

B — A(A),

C = K'®@l—ql¢—¢")YExFK™"

Instead of U, (sly)@U,(sls), I consider an algebra 20, which is inspired by the triple coordinate
system (L£(£2),,, C) and the equations established in [7, Section 7].

Definition 2.3 (Definition 2.1, [3]). The algebra 20, is an algebra over C defined by gen-
erators and relations. The generators are 4, Es, Fi, F5, Kfﬁl, Kéﬂ, I*!. The relations are as
follows:

I is central in 20,
I'=rtr=1u,
K\K'=K 'K, =1,
KoKy ' = Ky Ky =1,
(K4, Bs] = [Ky, Fy] = (K, K| = [Ks, By] = [Ky, Fi] =0,
[E1, Kilg = [Ky, Filg = [Ea, Kol = [Ka, Fo], = 0,
(B, Bs] = [Ey, Fy] = [Fy, Bo] = [F1, Fy] =0,

K, —IK!

By, 1] = 1—_117
q—q

IKy — K5t

By, Fy) = —2—2-,
q—q

By [3, Theorem 2.2] there exists a unique algebra surjective homomorphism b : 20, —
U,(sly) @ U,(sly) that sends

Eir —» ExIl, Ey —» 1xE,
Fl — F@l, F2 — 1®F,
K = K¥' el Ky' = 1@ K,

' - 1®1.

Therefore 20, is an algebraic covering of U,(sly) ® U,(sly). It can be shown that b is not
an isomorphism [3, Proposition 2.4]. By [3, Theorem 3.1] there exists a unique algebra

homomorphism A : U,(sly) — 20, that sends

E +— E +K['E,,
F = K+ Fy,
K*' = KPP

Moreover the following diagram commutes [3, Theorem 3.2]:
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A
U,(sly) 20,

Uq(5[2) ® Uq(5[2)

Thus A is a lift of A across b. By [3, Theorem 5.2] there exists a unique algebra homomor-

phism g : H, — 20, that sends

A = K

B — A(A),

C — IK'—qlqg—q")VEFRK,"
Moreover the following diagram commutes [3, Theorem 5.3]

H, i 2,

Uq(5[2) ® Uq(5[2)

Thus f is a lift of § across b.
Let Ds(xg) and Dy4(z¢) denote the linear maps C*) — C*) defined as follows:

Ds3(zg) : x — Z (x + xo/x0,2 No, 7) for all z € L(N),
(x4x0/x0,2N20,T)EL(Q) 2
rk(Tjol (x)—T):l

|z U x|

Dy(xg) @ x for all z € L(Q).

|z N x|

It can be shown that the map Dj(xg) is independent of the choice of z;. The map Ds(x)
is a direct sum of the adjacency operators of some bilinear forms graphs. By [3, Lemmas
12.10-12.13] the following equations hold:

o [Ds(x0), Li (o)l = ¢~ (1 — ¢™™ " Dy(x0)) © Ly (o)

o [Dy(w0), Li(x0)lg = —(g¢ — ¢ ') (1 = ¢™™* Dy(2)) o Ly (o).
o [La(20), D3(w0)lg = ¢~ (1 — P~ ™0 Dy (20) ") 0 La(20).
® [La(w0), Da(0)lg = —(¢ — ¢ ) (1 = ¢" =™ Dy (o) ") 0 La(o).
o [Ri(x0), D3(x0)]g = ¢ (1 — ¢ Dy(x0)) o Ri(0).
o [Ry(20), Da(20)lg = —(q — ¢7")(1 = ¢™™*° Dy(x0)) o Ry (o).
o [Ds(w0), Ra(20)]g = ¢ (1 — ¢”~ ™% Dy (20) ") 0 Ry(20).
o [Da(x0), Ra(wo)lg = —(¢ — ¢~ ")(1 = ¢”~ "™ Dy () ") 0 Ro (o).
Thus the map (¢? — 1)Ds(xg) + D4(x) satisfies the following equations [3, Lemma 12.15]
® [(¢> — 1) D3(x0) + Da(wo), L (w0)]q = 0.

® [Ly(x9), (4> — 1)Ds(20) + Da(wo)]q = 0.
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® [Ri(w0), (¢° — 1) D3(o) 4 Da(w0)]q = 0.
o [(¢> = 1)D3(w0) + Da(wo), Ra(o)]y = 0.

In [7] the linear map (q? — 1) D3(xq) + D4 () was mentioned in another way. It can be shown
that (¢* — 1)D3(zg) + D4(x) is invertible [3, Lemma 12.14]. For any nonzero A, u € C the
following diagram commutes [3, Lemma 12.16]:

ce@ ) c@sm)(3) g CE@) (1)
(¢* = 1)Ds(x0) + Da(zo) "K' 2 K

CE) ——— CFO/m0) () @ CE@o)(y)

t(zo)

Inspired by the aforementioned diagrams, we discover the following result [3, Theorem
13.19]: There exists a unique 2J,-module C*Y) given by

By = ¢@me0 DL (20),
Ey = ¢"™ =P Dy (x0) o La(wo),
Fy = ¢' 7% Ry (29) 0 Day(x0) ™,
Fy = ¢t~dmao Ry (),

Kif' = Dy(z0)*,

K5 = Dy(z0)*,

I = ¢FP Dy (20)*! 0 Da(20) 0 ((¢* — 1) D3(20) + Dy(z0))*".

We denote the above 20,-module by Cr® (o). By pulling back via f, the 20,-module

C£) () is also an H,-module. The actions of A and B on the H,module C*(? (x) are as
follows:

Az — q2 dim(2Nzo)~dim o ,. for all z € L(Q),

Br = (qD—2dimac+1 4 q2dimx—D+1 4 q—l—D _ 1—D)

q T

+ ¢ Plg—q")? Z x for all z € L(Q).
Z/ecdimz(ﬂ)
zNx' Cr
Assume that zo € L;(Q) where k is an integer with 1 < k < D — 1. The subspace C*+(¥ of
CF) () is an H,-submodule of CX® (). We denote this H,module by C*+(Y(z). Let

T(z0) = Im (H, — End(C5®)) .

Here H, — End(C*+(¥)) denotes the representation corresponding to the H,-module C+) ().
Let J,(D, k) denote the Grassmann graph of L£;(€2). Let T(z) denote the Terwilliger algebra
of J,(D, k) with respect to zq. Since J,(D, k) is a P- and Q-polynomial association scheme
the algebra T(z() is the subalgebra of End(C**(Y) generated by the adjacency operator A
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and the dual adjacency operator A*(zg) of J,(D, k). The following equations hold on the
H,-module C5+V(z):

- qD_lB _ q2D—2k _ q2k 1
A= (q—q')? e
. _[D—-1], ¢"[D], _ ¢ - "
A*(xg) = q—q! ([k]q[p_k;]qA 1D — k], L3P )

Therefore T(z,) is a subalgebra of T(zo). Please refer to [3, Section 16] for the detailed
study of T(z) from the above perspective.
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