Asymptotic stability for linear differential equations
with two kinds of time delays
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1 Introduction

In this study, we discuss the asymptotic stability for the zero solution of a scalar linear

differential equation with two kinds of time delays

() = —ax(t) —bx(t — 1) — c/t_ z(s)ds, (E)

where a, b, c € R and 7 > 0. Our study is motivated by the following stability results for
(E) in the special cases where ¢ =0, b =0, and a = 0.

When ¢ = 0, equation (E) becomes
7' (t) = —ax(t) — bx(t — 7). (Eq)
In 1950, Hayes [4] obtained the following stability criterion for (E).

Theorem A. The zero solution of (Ey) is asymptotically stable if and only if
1
a>——, a+b>0, and b<wsinwr — acoswT
T

where w is the solution in (0,7/7) of wcoswT = —asinwr.

The stability region for (E;), the set of all (a,b) in which the zero solution of (E;) is
asymptotically stable, is presented by the region in Figure 1. The upper boundary of the
stability region of (E;) is given parametrically by the equation

w w

s
a=— , b=— , O<w< —.
tanwTt Sin w1 T

A natural question now arises: how does the asymptotic stability of (E;) with fixed a
and b depend on the delay 77 In 1982, Cooke and Grossman [1] obtained another type of
stability criterion for (E;).
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Figure 1. Stability region for (E;) with 7 = 1.
Theorem B. The zero solution of (Ey) is asymptotically stable if and only if either
a+b>0, a—b>0, and T isarbitrary, (1)

or

a+b>0, a—b<0, and 0<7<

\/ﬁ arccos (—%) (2)

is satisfied.

In Figure 1, we notice that conditions (1) and (2) correspond to the blue and red
regions, respectively.
When b = 0, equation (E) becomes

In 2004, Sakata and Hara [6] provided the following stability result for (E,).

Theorem C. The zero solution of (Ey) is asymptotically stable if and only if
a+er >0, and c¢<yp(a),

where the curve ¢ = p(a) is given parametrically by the equation

wsinwT w? 2

ag=—— c¢c=— (O<w<—.
1 —coswr 1 —coswr T

The stability region for (E,), the set of all (a,c) in which the zero solution of (E,) is
asymptotically stable, is presented by the region in Figure 2.
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Figure 2. Stability region for (Eg) with 7 = 1.

Funakubo et al. [2] and Hara and Sakata [3] investigated the delay-dependent stability
criterion for (Ey) with fixed a and ¢. By virtue of their work, we have the following result.

Theorem D. The zero solution of (Eq) is asymptotically stable if and only if any one of

the following four conditions is satisfied.

a>0, ¢>0, 2c—a*><0, and 7 is arbitrary, (3)
a>0, ¢<0, and O<T<—%, (4)
a>0, 2c—a*>0, and 0<T< ! <2 arccos <a2 — C)) (5)
) - ) T T T = )
V2c — a? c

1 2
a<0, 2c—a*>0, and —9<T<—arccos(a C). (6)

c 2c — a? c

In Figure 2, we notice that conditions (3), (4), (5), and (6) correspond to the blue,
green, red, and yellow regions, respectively.

When a = 0, equation (E) becomes

Z(t) = —bx(t — 1) — c/t z(s)ds. (E3)

—T

In 2004, Sakata and Hara [6] gave the following stability result for (Ej).
Theorem E. The zero solution of (E3) is asymptotically stable if and only if
b+cr >0, and c<y(b),

where the curve ¢ = 1 (b) is given parametrically by the equation

w sin wT w? cos wT o
b=—""" ¢=—-T """ O<w<—,
1 — coswr 1 — coswr T
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Figure 3. Stability region for (E3) with 7 = 1.

The stability region for (E3) is presented by the region in Figure 3. To our best
knowledge, no delay-dependent stability criterion for (Ez) with fixed b and ¢ has been
obtained. The purpose of this study is to establish the delay-dependent stability criterion
for (E3) and to extend Theorems B and D to equation (E).

2 Main Results

Throughout this study, let wy denote a constant defined as wy = Vb2 + 2¢ — a?. Also, let

T*, Tn, and o,, denote the critical values of 7 defined as

. a+b
— —
1 (b—a)*—w?
T":w_o(ams(m +om), neZt=1{0,12,..},
(b—a)*—w?
anzw—O(Q(n—l—l)W—arccos <m , neZ’.

Our main results are stated below:

Theorem 1. Let a > 0. Then, the zero solution of (E) is asymptotically stable if and
only if a+ b+ ct > 0 and any one of the following five conditions holds:

(i)
(ii)
(iif)
(iv)

)

(v

b > a,

b > —a,

b2 4 2¢ —a® <0,

b < a,
b < —a,

b2 4 2¢ —a® > 0,

b2 +2c—a? <0,

c >0,

b2 4 2¢ —a® > 0,

c> 0,

and 7" < T < 0.

c <0,

and 0 <71 < T,

and 0<71<T7",

and T is arbitrary,

and 0< T < 0g,



Theorem 2. Let a < 0. Then, the zero solution of (E) is asymptotically stable if and
only if a +b+ ct > 0 and any one of the following four conditions holds:

i) b>—a, V¥ +2c—a’>>0, and 0<7 <7,
(i) b>-—a, b*+2c—a*<0, and 0<7 <75,
)
)

(iii) |b| < —a, B*+2c—0a’>>0, and T <T <79,

(iv) b<a, ¢>0, and 7" <7 <o0.
Remark 1. Forc = 0, the combined result of Theorems 1 and 2 coincides with Theorem B.

Remark 2. Forb = 0, the combined result of Theorems 1 and 2 coincides with Theorem D.

In addition, let @ = 0 in Theorem 2. Then, we obtain the following delay-dependent
stability criterion for (E3) that pairs with Theorem E.

Corollary 1. The zero solution of (E3) is asymptotically stable if and only if b+ ¢t > 0

and any one of the following three conditions holds:

1
b>0, b*+2c>0 and 0<7T < ————arccos __c : (7)
b+ 2¢ b +c

b
b>0, ¥>+2c<0, and 0<7< —-, (8)
C

b<0, ¢>0, and —Q<T<;<27r—arccos<—L>> (9)
- ’ c VI +2c +c))

In Figure 3, we notice that conditions (7), (8), and (9) correspond to the blue, green,

and red regions, respectively.
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Figure 4. Stability region for (E3) with 7 = 1.
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Moreover, let a = b in Theorems 1 and 2. Then, we obtain the following result for

2'(t) = —a(z(t) +x(t — 7)) — c/t_ x(s)ds. (Ey)

Corollary 2. The zero solution of (E4) is asymptotically stable if and only if 2a+cT > 0
and any one of the following four conditions holds:

e
a>0, ¢>0, and 0<7<—

ver

a>0, c¢c=0, and 7 s arbitrary,

2a
a>0 ¢<0, and 0<7<——,
C

2a T

a<0, ¢>0, and ——<7<——.

c V2¢

Theorems 1 and 2 are proved using the fact that the zero solution of (E) is asymptot-

ically stable if and only if all the roots of the associated characteristic equation

0

)\+a—|—be_’\7—|—c/ eMds =0

—T

have negative real parts; see reference [5] for proof details.
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