Forbidden complexes for the 3-sphere Makoto Ozawa Faculty of Arts and Sciences, Komazawa University (joint work with Mario Eudave-Muñoz) ### 1 Introduction A simplicial complex is said to be *critical* (or *forbidden*) for the 3-sphere S^3 if it cannot be embedded in S^3 but after removing any one point, it can be embedded. We show that if a multibranched surface cannot be embedded in S^3 , it contains a critical complex which is a union of a multibranched surface and a (possibly empty) graph. We exhibit all critical complexes which are contained in $K_5 \times S^1$ and $K_{3,3} \times S^1$ families. We further classify all critical complexes for S^3 which can be decomposed into $G \times S^1$ and H, where G and H are graphs, and $G \cap H$ consists of vertices of H. In spite of the above property, there exist complexes which cannot be embedded in S^3 , but they do not contain any critical complexes. From the property of those examples, we define an equivalence relation on all simplicial complexes \mathcal{C} and a partially ordered set of complexes $(\mathcal{C}/\sim;\subseteq)$, and refine the definition of critical. According to the refined definition of critical, we show that if a complex X cannot be embedded in S^3 , then there exists $[X']\subseteq[X]$ such that [X'] is critical for $[S^3]$. Throughout this article, we work in the piecewise linear category, consisting of simplicial complexes and piecewise-linear maps. The polyhedron |X| is expressed directly using X. # 2 Critical complexes For two simplicial complexes X and Y, X is said to be *critical* for Y if X cannot be embedded in Y, but for any point $p \in X$, X - p can be embedded in Y. ### Example. - 1. $S^1 \mid \{ \text{a point} \} \text{ is critical for } S^1.$ - 2. $S^1 \bigsqcup S^1$ is critical for a bouquet of 2 circles. - 3. K_5 and $K_{3,3}$ are critical for S^2 . - 4. S^2 is critical for the torus $S^1 \times S^1$. - 5. S^n is critical for a closed *n*-manifold except for S^n . Henceforce, we assume the connectivity of simplicial complexes. Let $\Gamma(Y)$ denote the set of critical complexes for Y. ### 2.1 Critical complexes for closed manifolds **Lemma.** If $X \in \Gamma(Y)$, then dim $X \leq \dim Y$. **Proof.** Suppose that $\dim X > \dim Y$. Let B^{n+1} be an open (n+1)-ball in X, where $n = \dim Y$. Then for a point $p \in B^{n+1}$, X - p cannot be embedded in Y since X - p contains an open (n+1)-ball in $B^{n+1} - p$. \square **Proposition.** $\Gamma(S^2) = \{K_5, K_{3,3}\}.$ **Proof.** It is straightforward to check that $\Gamma(S^2) \ni K_5, K_{3,3}$. Conversely, let $X \in \Gamma(S^2)$. By the above lemma, dim $X \leq 2$. First, suppose that $\dim X = 2$. Then X contains an open disk D. Since X is critical for S^2 , for any point $p \in D$, X - p can be embedded in S^2 and hence X - D can be embedded in S^2 . Since X is assumed to be connected, X - D is also connected. This implies that the boundary component of X - D corresponding to ∂D bounds a disk E in $S^2 - (X - D)$. Therefore, by filling with E, we have an embedding of X in S^2 . This contradicts the criticality of X and we have dim X = 1. Next, since X cannot be embedded in S^2 , by the Kuratowski's theorem, X contains K_5 or $K_{3,3}$. If X contains K_5 and $X - K_5 \neq \emptyset$, then for a point $p \in X - K_5$, X - p cannot be embedded in S^2 . Hence $X = K_5$. The same holds true for $K_{3,3}$. Thus X is K_5 or $K_{3,3}$. \square Let F_g be a closed orientable surface of genus g > 0, and $\Omega(F_g)$ be the set of forbidden graphs for F_g . Theorem. $$\Gamma(F_q) = \{F_0, \dots, F_{g-1}\} \cup \Omega(F_q)$$. The next theorem gives a characterization of critical complexes with the same dimension. **Theorem.** Let M be a closed n-manifold and $X \in \Gamma(M)$ be a critical complex for M with dim X = n. Then X is a closed n-manifold which is homeomorphic to a connected proper summand of M including S^n , namely, M = X # M' for some closed n-manifold M' which is not homeomorphic to S^n . ### 2.2 Critical multibranched surfaces We say that a 2-dimensional simplicial complex is a *multibranched surface* if removing all points whose open neighborhoods are homeomorphic to the 2-dimensional Euclidean space yields a 1-dimensional complex homeomorphic to a disjoint union of simple closed curves. Eto–Matsuzaki–the author proved that some family of multibranched surfaces belong to $\Gamma(S^3)$ ([1], [3]). **Theorem.** If a multibranched surface X cannot be embedded in S^3 , then there exists a critical subcomplexes $M \cup G \subset X$ of X, where M is a multibranched surface and H is a (possibly empty) graph. Let Y_n , P_n , D_n denote $K_{1,n} \times S^1$, an n-punctured sphere, n disks respectively. Suppose that a multibranched surface X contains Y_n as a sub-multibranched surface. We replace Y_n with $P_i \cup D_j$ (n = i + j), where ∂P_i and ∂D_j are attached to branches corresponding to branches of degree 1 in Y_n by degree 1 maps. Make this replacement as recursive as possible into $K_5 \times S^1$ and $K_{3,3} \times S^1$ and get the $K_5 \times S^1$ family (1) – (5) and $K_{3,3} \times S^1$ family (6) – (9). **Theorem.** All members of $K_5 \times S^1$ and $K_{3,3} \times S^1$ families cannot be embedded in S^3 , and they contain critical subcomplexes. - (1) $K_5 \times S^1 \supset (K_4 \times S^1) \cup K_{1,4}$ - (2) $(K_4 \times S^1) \cup P_4 \supset (K_4 \times S^1) \cup K_{1,4}$ - (3) $(K_4 \times S^1) \cup P_3 \cup D_1 = (K_4 \times S^1) \cup P_3 \cup D_1$ - (4) $(K_4 \times S^1) \cup D_4 \supset (K_4 K_3) \times S^1 \cup D_4 \cup K_3$ - (5) $(K_3 \times S^1) \cup P_3 \cup D_3 = (K_3 \times S^1) \cup P_3 \cup D_3$ - (6) $K_{3,3} \times S^1 \supset (K_{2,3} \times S^1) \cup K_{1,3}$ - (7) $(K_{2,3} \times S^1) \cup P_3 \supset (K_{2,3} \times S^1) \cup K_{1,3}$ - (8) $(K_{2,3} \times S^1) \cup D_3 \supset (K_{1,3} \times S^1) \cup D_3 \cup K_{1,3}$ - (9) $(K_{1,3} \times S^1) \cup P_3 \cup D_3 \supset (K_{1,3} \times S^1) \cup D_3 \cup K_{1,3}$ We classify these critical complexes $M \cup G$ $(G \neq \emptyset)$ (I) K_4 -type — In the above list, (1), (2) are of K_4 -type. (II) Θ_4 -type — In the above list, (4) are of Θ_4 -type. (III) $K_{2,3}$ -type — In the above list, (6), (7), (8), (9) are of $K_{2,3}$ -type. ### **2.3** Critical complexes which have a form $(G \times S^1) \cup H$ Let X be a simplicial complex such that the 2-dimensional part X_2 of X is a product $G \times S^1$ for a graph G. Then X can be expressed as $X = (G \times S^1) \cup H$, where H is the 1-dimensional part X_1 of X. We define a reduction of $X = (G \times S^1) \cup H$ to $\hat{X} = G \cup H$ as follows. We regard S^1 as the quotient space $[0,1]/\{0\} \sim \{1\}$. By a map $f: (G \times S^1) \cup H \to (G \times \{0\}) \cup H$, we obtain a reduction $\hat{X} = G \cup H$ of $X = (G \times S^1) \cup H$. **Theorem.** Let $X = (G \times S^1) \cup H$ be a critical complex, where G and H are graphs. Then a reduction $\hat{X} = G \cup H$ has a minor $G' \cup H'$ which is one of the following. - 1. $G' \cup H'$ is K_5 , where $H' = K_{1,4}$. - 2. $G' \cup H'$ is K_5 , where $H' = K_3$. - 3. $G' \cup H'$ is $K_{3,3}$, where $H' = K_{1,3}$. The characterization (1), (2) and (3) in this theorem coincide with three types (I), (II) and (III) for $M \cup G$ ($G \neq \emptyset$). We say that an embedding $f: G \times S^1 \to S^3$ is standard if $f(G \times S^1)$ is contained in a standard solid torus $D^2 \times S^1$ in S^3 so that $p^{-1}(p(f(G \times S^1))) = f(G \times S^1)$, where $p: D^2 \times S^1 \to D^2$ is the projection. A circular permutation system for a multibranched surface is a choice of a circular ordering of the sectors attached to each branch. **Lemma.** Let $e \in E(G)$ be an edge and $p \in \text{int}(e \times S^1)$ be a point. Suppose that there exists an embedding $f: X - p \to S^3$. Then there exists an embedding $f': X - p \to S^3$ with the same circular permutation system as f such that $f'((G \times S^1) - p)$ is contained in a standard embedding $f_0: G \times S^1 \to S^3$. **Lemma.** If $X = (G \times S^1) \cup H$ is critical, then a reduction $\hat{X} = G \cup H$ is also critical for S^2 . **Proof.** First suppose that \hat{X} can be embedded in S^2 . Then \hat{X} is contained in a disk $D^2 \subset S^2$ and by embedding $D^2 \times S^1$ in S^3 , $X = (G \times S^1) \cup H$ can be embedded in S^3 . This contradicts the criticality of X. Next we will show that for any edge e in $G \cup H$, $(G \cup H) - e$ can be embedded in S^2 . Let $e \in E(G)$ be an edge and $p \in \operatorname{int}(e \times S^1)$ be a point. Then there exists an embedding $f: X - p \to S^3$. By the above Lemma, there exists an embedding $f': X - p \to S^3$ with the same circular permutation system as f such that $f'((G \times S^1) - p)$ is contained in a standard embedding $f_0: G \times S^1 \to S^3$. This shows that a reduction $\hat{X} = (G - e) \cup H$ can be embedded in S^2 . We omit the case for $e \in E(H)$. \square **Proof of Theorem.** By Lemma, a reduction $\hat{X} = G \cup H$ is critical for S^2 . Hence by Kuratowski's and Wagner's Theorem, \hat{X} has a minor of K_5 or $K_{3,3}$. It is straightforward to check that if $\hat{X} = G \cup H$ has a minor K_5 , then we have the conclusions (1) or (2), and if $\hat{X} = G \cup H$ has a minor $K_{3,3}$, then we have the conclusion (3). \square ## 3 Refined critical complexes ### 3.1 Complexes which do not contain critical complexes Suppose that a complex X cannot be embedded in S^3 . Then we expect that there is a subspace $X' \subset X$ which is critical. However, there are many complexes which cannot be embedded in S^3 , but do not contain any critical complexes. **Example.** Let X be a complex consisting of S^2 , D_1 , D_2 and γ . X cannot be embedded in S^3 , but X does not contain any critical subcomplex as shown below. : Suppose that $X' \subset X$ is critical. Since X' cannot be embedded in S^3 , X' must contain the whole of S^2 and γ . For any small neighborhood N(x;X'), N(x;X') must contain two subdisks $D_1' \subset D_1$ and $D_2' \subset D_2$, and X' must have a path connecting D_1' and D_2' containing γ . Thus, X' must contain a subcomplex which is homeomorphic to X. However, for any point $p \in \text{int} D_1'$, X' - p cannot be embedded in S^3 since it contains a subcomplex which is homeomorphic to X. \square **Theorem.** The cone over K_5 cannot be embedded in S^3 . But, it does not contain any critical complex. ### 3.2 Partially ordered set of complexes From the above example and theorem, we derive the following refined definition of critical. For two connected simplicial complexes X and Y, X is said to be refined critical for Y if X cannot be embedded in Y, but for any proper subspace X' of X, which does not contain a subspace homeomorphic to X, X' can be embedded in Y. This refined definition of critical leads us the following equivalence relation. Let \mathcal{C} denote the set of all connected simplicial complexes. $X, Y \in \mathcal{C}$ are equivalent, denoted by $X \sim Y$, if X can be embedded in Y and Y can be embedded in X. We denote by $[X] \subseteq [Y]$ if X can be embedded in Y. Then $(\mathcal{C}/\sim,\subseteq)$ is a partially ordered set. For $[X], [Y] \in \mathcal{C}/\sim, [X]$ is said to be *critical* for [Y] if $[X] \nsubseteq [Y]$, but for any $[X'] \subsetneq [X]$, $[X'] \subseteq [Y]$. Put $$\Gamma([Y]) = \{ [X] \in \mathcal{C} / \sim \mid [X] \text{ is critical for } [Y] \}$$ **Example.** Let E_1 and E_2 denote the example $X = S^2 \cup D_1 \cup D_2 \cup \gamma$ and the cone over K_5 . Then, we have $$\Gamma([S^3]) \ni [E_1], [E_2].$$ **Proposition.** If $X \in \Gamma(Y)$, then $[X] \in \Gamma([Y])$. We denote the quotient space obtained from an n-ball B^n and the closed interval [0,1] by identifying p and $\{0\}$ by $B^{n\perp}$. **Proposition.** $\Gamma([S^1]) = \{B^{1^{\perp}}\}.$ Proposition ([2]). $$\Gamma([S^2]) = \{ [K_5], [K_{3,3}], [B^{2^{\perp}}] \}.$$ We generalize Mardešić-Segal's Theorem. **Theorem.** $$\Gamma([F_g]) = \{[F_0], \dots, [F_{g-1}], [B^{2^{\perp}}]\} \cup \{[G] \mid G \in \Omega(F_g)\}.$$ As we have seen the above example and theorem, those examples do not satisfy the natural property. However, by considering the equivalence relation above, we obtain the next natural property. **Theorem.** Suppose that a 2-dimensional complex X cannot be embedded in a closed n-manifold M ($n \le 3$). Then there exists an element $[X'] \subseteq [X]$ such that [X'] is critical for [M]. For a typical example, a torus T cannot be embedded in a 2-sphere S^2 . By applying this existence theorem, there exist $[K_5], [K_{3,3}] \subseteq [T]$ such that $[K_5], [K_{3,3}]$ are critical for $[S^2]$. #### References - [1] K. Eto, S. Matsuzaki, M. Ozawa, An obstruction to embedding 2-dimensional complexes into the 3-sphere, Topol. Appl. 198 (2016), 117–125. - [2] S. Mardešić, J. Segal, A note on polyhedra embeddable in the plane, Duke Math. J. **33** (1966), 633–638. - [3] S. Matsuzaki, M. Ozawa, Genera and minors of multibranched surfaces, Topol. Appl. 230 (2017), 621–638. Department of Natural Sciences, Faculty of Arts and Sciences, Komazawa University 1-23-1 Komazawa, Setagaya-ku, Tokyo, 154-8525, Japan E-mail address: w3c@komazawa-u.ac.jp 駒澤大学·総合教育研究部 小沢 誠