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1 Grid homology and connected sums

Grid homology is a combinatorial reconstruction of knot Floer homology for knots in S3
developed by Manolescu, Ozsvath, Szabd, and Thurston [14]. There are several versions
of grid homology like knot Floer homology. The hat and minus versions have been mainly
considered. For a knot K € S3, the minus version of grid homology GH~(K) is a bigraded
F[U]-module and the hat version GH (K) is a bigraded F-vector space. Of course, the
invariance of these versions can be proved by knot Floer homology [13, Theorem 3.3], but
a combinatorial proof of the invariance is also given [14, Theorem 1.2]. See [17] for details.

In this talk, we treat the minus version of grid homology for knots. The main purpose
of this talk is to give a combinatorial proof of a Kiinneth formula for knot Floer homology
of connected sums proved in [16],

HFK™(K) ®pp) HFK™(K3) = HFK™ (K #K3). (1)

The connected sum operation has not rarely been treated in grid homology, despite being a
basic operation for knots. The Legendrian and transverse grid invariants are combinatorial
invariants originally defined using grid homology, but due to the lack of a method to study
connected sums in grid homology, their additivity was proved using knot Floer homology
[21].

Recently, the author [9] gave a combinatorial proof of the Kiinneth formula of the hat
version. In this talk, we will prove the Kiinneth formula (1) of the minus version using
grid homology. Furthermore, we quickly give a combinatorial proof of the additivity of
the tau invariant and the Legendrian and transverse grid invariants.

By definition, for an nxn grid diagram G, the grid chain complex GC~(G) is a complex
over F[Uy,...,U,]. We regard GC~(G) as a complex over F[U], where the action by U is
multiplication by Uj.

Theorem 1.1. Let Gy, Go, and Gy be grid diagrams representing Ky, Ky, and K # K>
respectively as in Figure 1. There are a subcomplex C' of GC~(Gy) and two quasi-
isomorphisms C' — GC™(Gy4) and C — GC™(Gy) ®pp) GO~ (Gy).

The definition of the tau invariant in grid homology is the same as in knot Floer
homology.

Definition 1.2. For a knot K, 7(K) is —1 times the maximal integer ¢ for which there
is a homogeneous, non-torsion element in GH~(K) with Alexander grading equal to i.
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Figure 1: Grid diagrams representing K1, Ko, and K1#Ko.

Corollary 1.3.
T(Kl#Kg) = T(Kl) + T(Kg)

for any two knots K1 and K.

The Legendrian grid invariants A", A\~ € GH~(K) are defined to be the homology
classes determined by the canonical generators x* of the grid chain complex. To prove
Theorem 1.1, we constructed quasi-isomorphisms for grid chain complexes. These quasi-
isomorphisms send the canonical generators x* to themselves, so the additivity of the
Legendrian grid invariants can be quickly shown.

Theorem 1.4. Let Gy, Go, and Gy be grid diagrams representing Legendrian knots Ky,
ICo, and KC1# Ko respectively. Then there is an isomorphism

GH™(G1) ® GH™(G2) = GH™(Gy),
which maps \T (K1) @ AT(Kg) to NT(K1#K ) and A~ (K1) @ A~ (Ka) to A\~ (K1 #Ks).

The grid transverse invariant is defined to be the homology class At € GH™(G), so
the additivity of the transverse grid invariants is also proved.

Corollary 1.5. Let Gy, Gy, and Gy be two good grid diagrams representing transverse
knots T, Ta, and Ti#7Ts respectively. Then there is an isomorphism

GH_(Gl) X GH_(GQ) — GH_(G#)
which maps 0~ (T1) @ 0~ (Tz) to 6~ (Ti#T2).



2 Problems in grid homology

Compared with knot Floer homology, grid homology has many properties that are ex-
pected but still not proven in the framework of grid homology.

There are many operations on knots and links and some of them such as connected
sum, mutation, and Murasugi sum are studied using knot Floer homology. In [10], the
connected sum operation in grid homology is combinatorially described.

Question 2.1. Characterize operations on knots and links using grid homology.

The original grid homology is an invariant of knots in S3. Its definition comes from a
special case of a genus one multi-pointed Heegaard diagram. Since a grid diagram is on
the torus, it is essential that the genus of the Heegaard diagram is one. A typical example
of three-manifolds with Heegaard genus one is lens spaces. Baker, Grigsby, and Hedden
[1] defined grid homology for lens spaces. Tripp [20] gave a combinatorial proof that grid
homology for lens spaces is a link invariant. On the other hand, grid homology for general
three-manifolds has not been defined.

Note that Manolescu, Ozsvath, and Thurston [15] gave combinatorial descriptions of
the Heegaard Floer homology (not knot Floer homology) for arbitrary three-manifolds
using the link surgery formula and grid homology.

Question 2.2. Define grid homology for knots/links in an arbitrary oriented, closed
three-manifold.

The tau, epsilon, and Upsilon invariants in knot Floer homology are reconstructed
using grid homology. These invariants are concordance invariants and well-studied [7].

e Sarkar [18] gave a combinatorial description of the tau invariant using grid homology.
Using grid homology, Sarkar showed that the tau invariant is a concordance invariant
and gave a combinatorial proof of the Milnor conjecture. The idea in this paper is in
effect the only way to show the concordance invariance of invariants in grid homology.
Using grid homology, the tau invariant for knots with at most 11 crossings was
determined [2].

e Dey and Doga [5] gave a combinatorial description of the epsilon invariant using grid
homology and combinatorially proved that the epsilon invariant is a concordance
invariant. They obtained an alternative derivation of the epsilon invariant of cables
of negative torus knots and computed the invariant for closures of positive braids.

e ['oldvari [6] defined the Upsilon invariant using grid homology and proved some
properties known in knot Floer homology. The author [8] gave another formulation
of the grid Upsilon invariant and proved that it is a concordance invariant. Using
this formulation, the Upsilon invariant in grid homology can be proved to coincide
with one in knot Floer homology. Using grid homology, the Upsilon invariant for
prime knots with at most 11 crossings was computed [19].

Question 2.3. Give applications of the above combinatorial descriptions of the tau,
epsilon, and Upsilon invariants.



In Floer theory, it is an interesting problem whether Floer homology can be lifted to a
Floer spectrum or pro-spectrum, in the sense of stable homotopy theory. Stable homotopy
refinements of Seiberg-Witten Floer homology have been constructed [12]. Also, there is
a lift of Khovanov homology to a stable homotopy type [11].

Recently, Manolescu and Sarkar constructed a stable homotopy refinement of knot
Floer homology using grid homology [3]. So far, the only given stable homotopy refinement
of knot Floer homology is their construction. For a grid diagram G, they defined knot
Floer spectrum X*(G). Its homology is the grid homology GH™, the plus version of grid
homology. The construction of X (G) is based on a framed flow category introduced by
Cohen, Jones, and Segal [4].

Question 2.4. Compute knot Floer spectra of various knots.
Question 2.5. Define an invariant that captures the information of knot Floer spectra.

Question 2.6. Find a pair of knots that we can be distinguished by knot Floer spectra
but not by knot Floer homology.
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