Fox's Z-colorings of braids and related topics

Takuji Nakamura (University of Yamanashi)
Yasutaka Nakanishi (Kobe University)
Shin Satoh (Kobe University)
Kodai Wada (Kobe University)

1 Introduction

This article is an announcement of a forthcoming paper [4]. We refer the reader to [4] for more details.

Fox's coloring is one of the fundamental tools in knot theory. For example, the $\mathbb{Z}/p\mathbb{Z}$ coloring number not only distinguishes various pairs of knots but also gives a lower bound
for the unknotting number of a knot [5], and the \mathbb{Z} -coloring is useful for classifying rational
tangles [3].

The $\mathbb{Z}/p\mathbb{Z}$ -colorings of m-braids relate to the Hurwitz action of the m-braid group on $(\mathbb{Z}/p\mathbb{Z})^m$, and Berger [1] determines the orbits of this action. In this article we consider \mathbb{Z} -colorings of m-braids corresponding to the Hurwitz action of the m-braid group on \mathbb{Z}^m . For two elements $v, w \in \mathbb{Z}^m$, we write $v \sim w$ if there is an m-braid admitting a \mathbb{Z} -coloring such that the top and bottom points receive v and w, respectively. See Figure 1.1. Equivalently, $v \sim w$ holds if they belong to the same orbit. The main aim of this article is to characterize this equivalence relation \sim on \mathbb{Z}^m by introducing several invariants.

Figure 1.1: $v = (a_1, ..., a_m) \sim w = (b_1, ..., b_m) \in \mathbb{Z}^m$

An (m,m)-tangle is an m-braid without monotone property. It is permitted that an (m,m)-tangle has a finite number of loops. Considering \mathbb{Z} -colorings of (m,m)-tangles, we define two coarser equivalence relations on \mathbb{Z}^m than \sim defined above. We write $v \stackrel{\mathcal{T}_0}{\sim} w$ (or $v \stackrel{\mathcal{T}}{\sim} w$) if there is an (m,m)-tangle without loops (or possibly with some loops) admitting a \mathbb{Z} -coloring such that the top and bottom points receive v and w, respectively.

A pure m-braid (or an m-string link) is an m-braid (or an (m,m)-tangle) such that the ith top point connects to the ith bottom point by a string for any $i=1,\ldots,m$. Then we introduce three equivalence relations on \mathbb{Z}^m such that $v \stackrel{\mathcal{P}}{\sim} w$ ($v \stackrel{\mathcal{L}_0}{\sim} w$, or $v \stackrel{\mathcal{L}}{\sim} w$) if there is a pure m-braid (an m-string link without loops, or an m-string link possibly with some loops) admitting a \mathbb{Z} -coloring such that the top and bottom points receive v and w, respectively.

By definition, the six equivalence relations on \mathbb{Z}^m have a relationship as shown in Table 1.1. For example, if $v \stackrel{\mathcal{P}}{\sim} w$ holds, that is, v and w are connected by a \mathbb{Z} -colored pure m-braid, then we have $v \sim w$ and $v \stackrel{\mathcal{L}_0}{\sim} w$ by regarding the pure m-braid as just an m-braid and an m-string link without loops.

Table 1.1: A relationship among the six equivalence relations

Moreover, by permitting virtual crossings, we consider six equivalence relations $\stackrel{v}{\sim}$ (connected by a \mathbb{Z} -colored virtual m-braid), $\stackrel{vT_0}{\sim}$ (connected by a \mathbb{Z} -colored virtual (m,m)-tangle without loops), $\stackrel{vT}{\sim}$ (connected by a \mathbb{Z} -colored virtual m-braid), $\stackrel{vL_0}{\sim}$ (connected by a \mathbb{Z} -colored virtual pure m-braid), $\stackrel{vL_0}{\sim}$ (connected by a \mathbb{Z} -colored virtual m-string link without loops) and $\stackrel{vL}{\sim}$ (connected by a \mathbb{Z} -colored virtual m-string link possibly with loops).

For an element $v = (a_1, \ldots, a_m) \in \mathbb{Z}^m$, we set

- $\Delta(v) = \sum_{i=1}^{m} (-1)^{i-1} a_i \in \mathbb{Z},$
- $d(v) = \gcd\{a_2 a_1, \dots, a_m a_1\} \ge 0,$
- $d_2(v) = 2^s$ for $d(v) = 2^s t > 0$ with $s \ge 0$ and t odd, and $d_2(v) = 0$ for d(v) = 0,
- $M(v)_N = \{a_1, \dots, a_m\} \pmod{N}$ as a multi-set, and
- $\overrightarrow{M}(v)_N = (a_1, \ldots, a_m) \pmod{N}$ as an ordered set.

Theorem 1.1. The twelve equivalence relations on \mathbb{Z}^m $(m \geq 2)$ as above are characterized as shown in Table 1.2.

For example, $v \sim w$ if and only if $\Delta(v) = \Delta(w)$, d(v) = d(w) and $M(v)_{2d(v)} = M(w)_{2d(w)}$. Also, $v \stackrel{\mathcal{L}}{\sim} w$ if and only if $\Delta(v) = \Delta(w)$ and $M(v)_{2d(w)} = M(w)_{2d(w)}$.

2 Preliminaries

For an integer $m \geq 2$, let \mathcal{B}_m be the m-braid group with the standard generators $\sigma_1, \ldots, \sigma_{m-1}$. The set $\mathbb{Z}^m = \{(a_1, \ldots, a_m) \mid a_1, \ldots, a_m \in \mathbb{Z}\}$ has the Hurwitz action

Table 1.2: Results

	classical case						virtual case					
	~	$\stackrel{\mathcal{T}_0}{\sim}$	$\left \begin{array}{c} \mathcal{T} \\ \sim \end{array} \right $	$\stackrel{\mathcal{P}}{\sim}$	$\stackrel{\mathcal{L}_0}{\sim}$	$\stackrel{\mathcal{L}}{\sim}$	$\stackrel{v}{\sim}$	$\stackrel{v\mathcal{T}_0}{\sim}$	$\stackrel{v\mathcal{T}}{\sim}$	$\stackrel{v\mathcal{P}}{\sim}$	$\overset{v\mathcal{L}_0}{\sim}$	$\stackrel{v\mathcal{L}}{\sim}$
$\Delta(v) = \Delta(w)$	0	0	0	0	0	0						
d(v) = d(w)	0			0			0			0		
$d_2(v) = d_2(w)$		0			0			0			\bigcirc	
$M(v)_{2d} = M(w)_{2d}$	0						0					
$M(v)_{2d_2} = M(w)_{2d_2}$		0						0				
$M(v)_2 = M(w)_2$			0						0			
$\overrightarrow{M}(v)_{2d} = \overrightarrow{M}(w)_{2d}$				0						0		
$\overrightarrow{M}(v)_{2d_2} = \overrightarrow{M}(w)_{2d_2}$					0						0	
$\overrightarrow{M}(v)_2 = \overrightarrow{M}(w)_2$						0						0

of \mathcal{B}_m from the right defined by

$$v \cdot \sigma_i = (a_1, \dots, a_{i-1}, a_{i+1}, 2a_{i+1} - a_i, a_{i+2}, \dots, a_m)$$
 and $v \cdot \sigma_i^{-1} = (a_1, \dots, a_{i-1}, 2a_i - a_{i+1}, a_i, a_{i+2}, \dots, a_m)$

for an element $v = (a_1, \ldots, a_m) \in \mathbb{Z}^m$. See the left of Figure 2.1. We say that two elements $v, w \in \mathbb{Z}^m$ are (*Hurwitz*) equivalent if there is an m-braid $\beta \in \mathcal{B}_m$ such that $v \cdot \beta = w$, and denote it by $v \sim w$. The right figure shows that

$$(1, -5, 4) \cdot (\sigma_1^{-1} \sigma_2^2) = (7, 7, 10) \in \mathbb{Z}^3,$$

and hence $(1, -5, 4) \sim (7, 7, 10)$.

Figure 2.1: The Hurwitz action of \mathcal{B}_m on \mathbb{Z}^m

An element $v \in \mathbb{Z}^m$ is called *trivial* if $v = a \cdot \mathbf{1} = (a, ..., a)$ for some $a \in \mathbb{Z}$, where $\mathbf{1} = (1, ..., 1)$. By definition, if $v \sim w$ and v is trivial, then we have v = w; in other words, the orbit of a trivial element v consists of v only.

For an element $v = (a_1, \ldots, a_m) \in \mathbb{Z}^m$, we will consider two integers defined by

$$\Delta(v) = \sum_{i=1}^{m} (-1)^{i-1} a_i$$
 and

$$d(v) = \gcd\{a_i - a_j \mid 1 \le i \ne j \le m\} = \gcd\{a_i - a_1 \mid 2 \le i \le m\} \ge 0.$$

We remark that $v \in \mathbb{Z}^m$ is trivial if and only if d(v) = 0. In what follows, " $a \equiv b \pmod{0}$ " means " $a = b \in \mathbb{Z}$ " for convenience. For example, the element $v = (1, -5, 4) \in \mathbb{Z}^3$ has

$$\Delta(v) = 1 - (-5) + 4 = 10$$
 and $d(v) = \gcd\{-6, 3\} = 3$.

Lemma 2.1. For an element $v = (a_1, \ldots, a_m) \in \mathbb{Z}^m$, we have the following.

- (i) $a_1 \equiv \cdots \equiv a_m \pmod{d(v)}$.
- (ii) If m is odd, then $\Delta(v) \equiv a_1 \pmod{d(v)}$.
- (iii) If m is even, then $\Delta(v) \equiv 0 \pmod{d(v)}$.

Let \mathcal{S}_m be the symmetric group on $\{1,\ldots,m\}$. For an m-braid $\beta \in \mathcal{B}_m$, we denote by $\pi_{\beta} \in \mathcal{S}_m$ the permutation associated with β ; that is, β connects each ith top point to the $\pi_{\beta}(i)$ th bottom point $(i=1,\ldots,m)$. For a multi-subset X of \mathbb{Z} and an integer $N \geq 2$, we denote by X_N the multi-subset of $\mathbb{Z}/N\mathbb{Z}$ consisting of the congruence classes of all integers in X modulo N. We also use the symbol $X_0 = X$ for convenience. For $v = (a_1, \ldots, a_m) \in \mathbb{Z}^m$, we set $M(v) = \{a_1, \ldots, a_m\}$ as a multi-subset of \mathbb{Z} .

Now we consider the multi-set $M(v)_{2d(v)} \subset \mathbb{Z}/2d(v)\mathbb{Z}$. If $v = a \cdot \mathbf{1} = (a, \dots, a) \in \mathbb{Z}^m$ is trivial, then we have d(v) = 0 and

$$M(v)_0 = \{\underbrace{a, \dots, a}_m\}_0 \subset \mathbb{Z}.$$

If $v \in \mathbb{Z}^m$ is nontrivial, then it follows from Lemma 2.1(i) that

$$M(v)_{2d(v)} = \{\underbrace{r, \dots, r}_{p}, \underbrace{r + d(v), \dots, r + d(v)}_{m-p}\}_{2d(v)}$$

for some $0 \le r < d(v)$ and $1 \le p \le m-1$. For example, the element v = (1, -5, 4) has

$$d(v) = 3$$
 and $M(v)_6 = \{1, 1, 4\}_6$.

Lemma 2.2. Let $v = (a_1, \ldots, a_m)$ and $w = (b_1, \ldots, b_m) \in \mathbb{Z}^m$ be elements satisfying $v \cdot \beta = w$ for an m-braid $\beta \in \mathcal{B}_m$. Then we have the following.

- (i) $\Delta(v) = \Delta(w)$.
- (ii) d(v) = d(w).
- (iii) $b_{\pi_{\beta}(k)} \equiv a_k \pmod{2d(v)}$ for any $k = 1, \dots, m$.
- (iv) $M(v)_{2d(v)} = M(w)_{2d(v)}$.

For example, since w = (7, 7, 10) is equivalent to v = (1, -5, 4), we have

$$\Delta(w) = \Delta(v) = 10, \ d(w) = d(v) = 3 \text{ and } M(w)_6 = M(v)_6 = \{1, 1, 4\}_6$$

by Lemma 2.2(i), (ii) and (iv).

3 The case $m \geq 3$ odd

Throughout this section we consider the equivalence relation \sim on \mathbb{Z}^m for $m=2k-1\geq 3$. The following theorem provides a classification of \mathbb{Z}^{2k-1} under \sim .

Theorem 3.1. For two elements $v, w \in \mathbb{Z}^{2k-1}$, the following are equivalent.

(i) $v \sim w$.

(ii) $\Delta(v) = \Delta(w), d(v) = d(w) \text{ and } M(v)_{2d(v)} = M(w)_{2d(w)}.$

For example, v = (2, -4, 11, 8, -1) and $w = (5, 5, 2, 2, 8) \in \mathbb{Z}^5$ satisfy

$$\Delta(v) = \Delta(w) = 8$$
, $d(v) = d(w) = 3$ and $M(v)_6 = M(w)_6 = \{2, 2, 2, 5, 5\}_6$.

Therefore we have $v \sim w$ by Theorem 3.1.

In the case m = 2k - 1 = 3, the multi-set $M(v)_{2d(v)}$ can be uniquely determined by $\Delta(v)$ and d(v). In fact, we have

$$M(v)_{2d(v)} = \{\Delta(v), \Delta(v) + d(v), \Delta(v) + d(v)\}_{2d(v)},$$

which includes the case where v is trivial with d(v) = 0. Therefore we see that $v \sim w \in \mathbb{Z}^3$ if and only if $\Delta(v) = \Delta(w)$ and d(v) = d(w) only.

To prove Theorem 3.1, we prepare Lemmas 3.2–3.6 and Proposition 3.7.

For an element $v = (a_1, a_2, a_3) \in \mathbb{Z}^3$, we set

$$|v| = \max\{a_1, a_2, a_3\} - \min\{a_1, a_2, a_3\} \ge 0.$$

Lemma 3.2. Let $v = (a_1, a_2, a_3)$ be an element in \mathbb{Z}^3 . If a_1 , a_2 and a_3 are mutually distinct, then v is equivalent to some $w \in \mathbb{Z}^3$ with |w| < |v|.

Lemma 3.3. Any element $v \in \mathbb{Z}^3$ is equivalent to (x, y, y) for some $x \leq y$.

Lemma 3.4. Let $v \in \mathbb{Z}^{2k-1}$ be an element of the form

$$v = (\underbrace{x, \dots, x}_{2p-1}, \underbrace{y, \dots, y}_{2q}, \underbrace{z, \dots, z}_{2r})$$

for some $x, y, z, p, q, r \in \mathbb{Z}$ with $p, q, r \geq 1$ and p + q + r = k. If x < y < z holds, then v is equivalent to

$$(\underbrace{x,\ldots,x}_{2p-1},\underbrace{y',\ldots,y'}_{2q'},\underbrace{z',\ldots,z'}_{2r'})$$

for some $y', z', q', r' \in \mathbb{Z}$ with $x \le y' \le z' < z$ and $\{q', r'\} = \{q, r\}$.

Lemma 3.5. Let $v \in \mathbb{Z}^{2k-1}$ be an element of the form

$$v = (\underbrace{x, \dots, x}_{2p-1}, \underbrace{y, \dots, y}_{2q}, \underbrace{z, \dots, z}_{2r})$$

for some $x, y, z, p, q, r \in \mathbb{Z}$ with $p, q, r \geq 1$ and p + q + r = k. If x < y < z holds, then v is equivalent to

$$(\underbrace{x,\ldots,x}_{2p'-1},\underbrace{y',\ldots,y'}_{2k-2p'})$$

for some $y', p' \in \mathbb{Z}$ with x < y' and $p' \in \{p, p + q, p + r\}$.

Lemma 3.6. Any element $v \in \mathbb{Z}^{2k-1}$ is equivalent to

$$(\underbrace{x,\ldots,x}_{2p-1},\underbrace{y,\ldots,y}_{2k-2p})$$

for some $x, y, p \in \mathbb{Z}$ with x < y and $1 \le p \le k$.

By Lemma 2.1(i) and (ii), any element $v = (a_1, \ldots, a_{2k-1}) \in \mathbb{Z}^{2k-1}$ satisfies

$$a_1 \equiv \cdots \equiv a_{2k-1} \equiv \Delta(v) \pmod{d(v)}$$
.

Therefore we have $a_i \equiv \Delta(v)$ or $\Delta(v) + d(v) \pmod{2d(v)}$. Moreover, the number of a_i 's congruent to $\Delta(v)$ modulo 2d(v) is odd.

Proposition 3.7. Let v be an element in \mathbb{Z}^{2k-1} . Set $\Delta = \Delta(v)$, d = d(v) and

$$M(v)_{2d} = \{\underbrace{\Delta, \dots, \Delta}_{2p-1}, \underbrace{\Delta+d, \dots, \Delta+d}_{2k-2p}\}_{2d}$$

for some $p \in \mathbb{Z}$ with $1 \leq p \leq k$. Then we have

$$v \sim (\underbrace{\Delta, \dots, \Delta}_{2p-1}, \underbrace{\Delta + d, \dots, \Delta + d}_{2k-2p}).$$

4 The case $m \ge 4$ even

Throughout this section we consider the equivalence relation \sim on \mathbb{Z}^m for $m=2k\geq 4$. The following theorem provides a classification of \mathbb{Z}^{2k} under \sim .

Theorem 4.1. For two elements $v, w \in \mathbb{Z}^{2k}$, the following are equivalent.

- (i) $v \sim w$.
- (ii) $\Delta(v) = \Delta(w)$, d(v) = d(w) and $M(v)_{2d(v)} = M(w)_{2d(w)}$.

For example, v = (-4, 11, 8, -1) and $w = (5, 5, 2, 8) \in \mathbb{Z}^4$ satisfy

$$\Delta(v) = \Delta(w) = -6$$
, $d(v) = d(w) = 3$ and $M(v)_6 = M(w)_6 = \{2, 2, 5, 5\}_6$.

Therefore we have $v \sim w$ by Theorem 4.1.

To prove Theorem 4.1, we prepare Lemma 4.2 and Proposition 4.3.

Lemma 4.2. Let $v \in \mathbb{Z}^{2k}$ be a nontrivial element of the form

$$v = (\underbrace{x, \dots, x}_{p}, x + \lambda d, \underbrace{x + d, \dots, x + d}_{2k-p-1})$$

for some $x, \lambda, d, p \in \mathbb{Z}$ with d > 0 and $1 \le p \le 2k - 2$. Then we have

$$v \sim v + 2nd \cdot \mathbf{1}$$

for any $n \in \mathbb{Z}$.

Proposition 4.3. Let v be a nontrivial element in \mathbb{Z}^{2k} . Set d = d(v) and

$$M(v)_{2d} = \{\underbrace{r, \dots, r}_{p}, \underbrace{r+d, \dots, r+d}_{2k-p}\}_{2d}$$

for some $r, p \in \mathbb{Z}$ with $0 \le r < d$ and $1 \le p \le 2k - 1$.

(i) If $p \geq 2$ holds, then there is an even integer λ such that

$$v \sim (\underbrace{r, \dots, r}_{p-1}, r + \lambda d, \underbrace{r + d, \dots, r + d}_{2k-p}).$$

(ii) If $2k - p \ge 2$ holds, then there is an odd integer λ such that

$$v \sim (\underbrace{r, \dots, r}_{p}, r + \lambda d, \underbrace{r + d, \dots, r + d}_{2k-p-1}).$$

5 Tangles

In this section we define two coarser equivalence relations $\stackrel{\mathcal{T}_0}{\sim}$ and $\stackrel{\mathcal{T}}{\sim}$ on \mathbb{Z}^m than \sim , and characterize them. Throughout this section we assume $k \geq 2$ and $m \geq 3$.

5.1 Tangles

By a k-string tangle T, we mean a tangle diagram of k strings possibly with some loops. A map C: {arcs of T} $\to \mathbb{Z}$ is called a \mathbb{Z} -coloring of T if the equation a+c=2b holds at each crossing of T, where a and c are the integers assigned to the under-arcs at the crossing, and b is the integer assigned to the over-arc. The integer assigned to an arc is called the *color* of the arc. Let a_1, \ldots, a_{2k} be the colors of the 2k endpoints of T listed in counterclockwise order. Then we say that the endpoints receive $v = (a_1, \ldots, a_{2k}) \in \mathbb{Z}^{2k}$. For example, we consider a 3-string tangle T with a single loop admitting a \mathbb{Z} -coloring as shown in Figure 5.1. Then the 6 endpoints of T receive $(1, 5, 19, 20, 6, 1) \in \mathbb{Z}^6$.

Proposition 5.1. For an element $v \in \mathbb{Z}^{2k}$, the following are equivalent.

- (i) There is a k-string tangle T without loops admitting a \mathbb{Z} -coloring such that the 2k endpoints of T receive v.
- (ii) There is a k-string tangle T' possibly with some loops admitting a \mathbb{Z} -coloring such that the 2k endpoints of T' receive v.
- (iii) $\Delta(v) = 0$.

5.2 (m, m)-tangles without loops

By an (m, m)-tangle, we mean an m-string tangle diagram possibly with some loops such that each string connects between top and bottom points. We denote by \mathcal{T}_m the set of (m, m)-tangles, and by $\mathcal{T}_{m,0} \subset \mathcal{T}_m$ that of (m, m)-tangles without loops.

Figure 5.1: A 3-string tangle with a single loop admitting a Z-coloring

For two elements $v, w \in \mathbb{Z}^m$, we write $v \stackrel{\mathcal{T}_0}{\sim} w$ if there is an (m, m)-tangle without loops admitting a \mathbb{Z} -coloring such that the top and bottom points receive v and w, respectively. Figure 5.2 shows an example of a (3,3)-tangle without loops admitting a \mathbb{Z} -coloring which gives $(-1,2,2) \stackrel{\mathcal{T}_0}{\sim} (0,3,2)$. We remark that $(-1,2,2) \not\sim (0,3,2)$ by Lemma 2.2(ii); in fact, we have

$$d((-1,2,2)) = 3 \neq 1 = d((0,3,2)).$$

Figure 5.2: A (3,3)-tangle without loops admitting a \mathbb{Z} -coloring

The following theorem provides a classification of \mathbb{Z}^m under $\stackrel{\mathcal{T}_0}{\sim}$.

Theorem 5.2. For two elements $v, w \in \mathbb{Z}^m$, the following are equivalent.

- (i) $v \stackrel{\mathcal{T}_0}{\sim} w$.
- (ii) $\Delta(v) = \Delta(w)$, $d_2(v) = d_2(w)$ and $M(v)_{2d_2(v)} = M(w)_{2d_2(w)}$.

To prove this theorem, we prepare Lemmas 5.3–5.5, Propositions 5.6 and 5.7.

Lemma 5.3. Let $T \in \mathcal{T}_{m,0}$ be an (m,m)-tangle without loops admitting a \mathbb{Z} -coloring such that the top m points of T receive $v = (a_1, \ldots, a_m) \in \mathbb{Z}^m$, and

$$a_i = c_{i1}, c_{i2}, \dots, c_{in(i)}$$

the colors of all the arcs on each ith string of T from top to bottom (i = 1, ..., m). If $c_{ij} - a_1$ is divisible by an integer $N \ge 1$ for any i, j, then we have the following.

- (i) $c_{ij} a_i$ is divisible by 2N for any i, j.
- (ii) If $a_i a_1$ is divisible by 2N for any i, then so is $c_{ij} a_1$ for any i, j.

For $T \in \mathcal{T}_{m,0}$, we denote by $\pi_T \in \mathcal{S}_m$ the permutation on $\{1,\ldots,m\}$ associated with T; that is, each ith string of T connects the ith top point to the $\pi_T(i)$ th bottom point $(i=1,\ldots,m)$. For $v=(a_1,\ldots,a_m)\in\mathbb{Z}^m$, we define an integer $d_2(v)\geq 0$ as follows: If v is nontrivial with $d(v)=2^st$ for $s\geq 0$ and t odd, then we set $d_2(v)=2^s$. If v is trivial, that is, d(v)=0, then we set $d_2(v)=0$.

Lemma 5.4. Let $T \in \mathcal{T}_{m,0}$ be an (m,m)-tangle without loops admitting a \mathbb{Z} -coloring such that the top and bottom points receive $v = (a_1, \ldots, a_m)$ and $w = (b_1, \ldots, b_m) \in \mathbb{Z}^m$, respectively. Then we have the following.

- (i) $\Delta(v) = \Delta(w)$.
- (ii) $d_2(v) = d_2(w)$.
- (iii) $b_{\pi_T(i)} \equiv a_i \pmod{2d_2(v)}$ for any $i = 1, \ldots, m$.
- (iv) $M(v)_{2d_2(v)} = M(w)_{2d_2(w)}$.

Lemma 5.5. For any integers $x, s, t \in \mathbb{Z}$ with $s \geq 0$ and t odd, we have

$$(x, x + 2^{s}t) \stackrel{\mathcal{T}_0}{\sim} (x + 2^{s}, x + 2^{s}(t+1)).$$

For any element $v \in \mathbb{Z}^m$, we have

$$a_1 \equiv \cdots \equiv a_m \pmod{d_2(v)}$$

by Lemma 2.1(i) and the fact that $d_2(v)$ divides d(v). In the case where m is odd, it follows from Lemma 2.1(ii) that

$$a_i \equiv \Delta(v) \text{ or } \Delta(v) + d_2(v) \pmod{2d_2(v)},$$

and the number of a_i 's congruent to $\Delta(v)$ modulo $2d_2(v)$ is odd.

Proposition 5.6. Let v be a nontrivial element in \mathbb{Z}^{2k-1} . Set $\Delta = \Delta(v)$, $d_2 = d_2(v)$ and

$$M(v)_{2d_2} = \{\underbrace{\Delta, \dots, \Delta}_{2p-1}, \underbrace{\Delta + d_2, \dots, \Delta + d_2}_{2k-2p}\}_{2d_2}$$

for some $p \in \mathbb{Z}$ with $1 \le p \le k-1$. Then we have

$$v \stackrel{\mathcal{T}_0}{\sim} (\underbrace{\Delta, \dots, \Delta}_{2p-1}, \underbrace{\Delta + d_2, \dots, \Delta + d_2}_{2k-2p}).$$

We consider the case where m = 2k is even. For a nontrivial element $v = (a_1, \ldots, a_{2k}) \in \mathbb{Z}^{2k}$, there is an integer r with $0 \le r < d_2(v)$ such that $a_i \equiv r \pmod{d_2(v)}$ for any $i = 1, \ldots, 2k$. Then it holds that

$$a_i \equiv r \text{ or } r + d_2(v) \pmod{2d_2(v)}.$$

Proposition 5.7. Let v be a nontrivial element in \mathbb{Z}^{2k} . Set $d_2 = d_2(v)$ and

$$M(v)_{2d_2} = \{\underbrace{r, \dots, r}_{p}, \underbrace{r + d_2, \dots, r + d_2}_{2k-p}\}_{2d_2}$$

for some $r, p \in \mathbb{Z}$ with $0 \le r < d_2$ and $1 \le p \le 2k - 1$.

(i) If $p \geq 2$ holds, then there is an even integer λ such that

$$v \stackrel{\mathcal{T}_0}{\sim} (\underbrace{r, \ldots, r}_{p-1}, r + \lambda d_2, \underbrace{r + d_2, \ldots, r + d_2}_{2k-p}).$$

(ii) If $2k - p \ge 2$ holds, then there is an odd integer λ such that

$$v \stackrel{\mathcal{T}_0}{\sim} (\underbrace{r,\ldots,r}_p,r+\lambda d_2,\underbrace{r+d_2,\ldots,r+d_2}_{2k-p-1}).$$

5.3 (m, m)-tangles possibly with loops

For two elements $v, w \in \mathbb{Z}^m$, we write $v \stackrel{\mathcal{T}}{\sim} w$ if there is an (m, m)-tangle possibly with some loops admitting a \mathbb{Z} -coloring such that the top and bottom points receive v and w, respectively. We remark that $v \stackrel{\mathcal{T}_0}{\sim} w$ implies $v \stackrel{\mathcal{T}}{\sim} w$ by definition.

Figure 5.3 shows an example of a (3,3)-tangle with a single loop admitting a \mathbb{Z} -coloring which gives $(6,10,4) \stackrel{\mathcal{T}}{\sim} (0,0,0)$. We remark that $(6,10,4) \stackrel{\mathcal{T}_0}{\sim} (0,0,0)$ by Lemma 5.4(ii); in fact, we have

$$d_2((6,10,4)) = 2 \neq 0 = d_2((0,0,0)).$$

Figure 5.3: A (3,3)-tangle with a single loop admitting a \mathbb{Z} -coloring

The following theorem provides a classification of \mathbb{Z}^m under $\stackrel{\mathcal{T}}{\sim}$.

Theorem 5.8. For two elements $v, w \in \mathbb{Z}^m$, the following are equivalent.

(i) $v \stackrel{\mathcal{T}}{\sim} w$.

(ii) $\Delta(v) = \Delta(w)$ and $M(v)_2 = M(w)_2$.

To prove this theorem, we prepare Lemmas 5.9–5.11 and Proposition 5.12.

Lemma 5.9. Let $T \in \mathcal{T}_m$ be an (m, m)-tangle possibly with some loops admitting a \mathbb{Z} coloring such that the top m points of T receive $v = (a_1, \ldots, a_m) \in \mathbb{Z}^m$, and

$$a_i = c_{i1}, c_{i2}, \dots, c_{in(i)}$$

the colors of all the arcs on each ith string of T from top to bottom (i = 1, ..., m). Then $c_{ij} \equiv a_i \pmod{2}$ for any i, j.

Lemma 5.10. If two elements $v, w \in \mathbb{Z}^m$ satisfy $v \stackrel{\mathcal{T}}{\sim} w$, then we have the following.

- (i) $\Delta(v) = \Delta(w)$.
- (ii) $M(v)_2 = M(w)_2$.

Lemma 5.11. If two integers $x, y \in \mathbb{Z}$ satisfy $x \equiv y \pmod{2}$, then we have

$$(\underbrace{x,\ldots,x}_{2p}) \stackrel{\mathcal{T}}{\sim} (\underbrace{y,\ldots,y}_{2p}).$$

Proposition 5.12. Let v be an element in \mathbb{Z}^m . Set

$$M(v)_2 = \{\underbrace{0, \dots, 0}_{p}, \underbrace{1, \dots, 1}_{m-p}\}_2$$

for some $p \in \mathbb{Z}$ with $0 \le p \le m$.

(i) If $p \ge 1$ holds, then there is an even integer λ such that

$$v \stackrel{\mathcal{T}}{\sim} (\underbrace{0,\ldots,0}_{p-1},\lambda,\underbrace{1,\ldots,1}_{m-p}).$$

(ii) If $m-p \geq 1$ holds, then there is an odd integer λ such that

$$v \stackrel{\mathcal{T}}{\sim} (\underbrace{0,\ldots,0}_{p},\lambda,\underbrace{1,\ldots,1}_{m-p-1}).$$

6 Pure braids and string links

In this section we define three finer equivalence relations $\overset{\mathcal{P}}{\sim}$, $\overset{\mathcal{L}_0}{\sim}$ and $\overset{\mathcal{L}}{\sim}$ on \mathbb{Z}^m than \sim , $\overset{\mathcal{T}_0}{\sim}$ and $\overset{\mathcal{T}}{\sim}$, respectively, and characterize them. Throughout this section we assume $m \geq 3$.

6.1 Pure braids

A pure m-braid is an m-braid $\beta \in \mathcal{B}_m$ such that the permutation $\pi_\beta \in \mathcal{S}_m$ associated with β is the identity e; that is, the ith top point connects to the ith bottom point by a string of β for any $i = 1, \ldots, m$. Let \mathcal{P}_m denote the pure m-braid group, which is the subgroup of \mathcal{B}_m consisting of pure m-braids. We denote by $\stackrel{\mathcal{P}}{\sim}$ the equivalence relation on \mathbb{Z}^m induced from the Hurwitz action of $\mathcal{P}_m \subset \mathcal{B}_m$.

For an element $v = (a_1, \ldots, a_m) \in \mathbb{Z}^m$, we set $\overline{M}(v) = (a_1, \ldots, a_m)$ as an ordered set of \mathbb{Z} . The following theorem provides a classification of \mathbb{Z}^m under $\overset{\mathcal{P}}{\sim}$.

Theorem 6.1. For two elements $v, w \in \mathbb{Z}^m$, the following are equivalent.

(i) $v \stackrel{\mathcal{P}}{\sim} w$.

(ii)
$$\Delta(v) = \Delta(w)$$
, $d(v) = d(w)$ and $\overrightarrow{M}(v)_{2d(v)} = \overrightarrow{M}(w)_{2d(w)}$.

For example, we consider v = (1, -5, 4), w = (10, 7, 7) and $u = (7, 7, 10) \in \mathbb{Z}^3$. They satisfy

$$\Delta(v) = \Delta(w) = \Delta(u) = 10, \ d(v) = d(w) = d(u) = 3,$$

$$M(v)_6 = M(w)_6 = M(u)_6 = \{1, 1, 4\}_6 \text{ and}$$

$$\overrightarrow{M}(v)_6 = \overrightarrow{M}(u)_6 = (1, 1, 4)_6 \neq (4, 1, 1)_6 = \overrightarrow{M}(w)_6.$$

Then we have

$$v \sim w, \ v \not\sim w \text{ and } v \sim u$$

by Theorem 6.1. See Figure 6.1.

Figure 6.1: $(1, -5, 4) \sim (10, 7, 7)$ and $(1, -5, 4) \stackrel{\mathcal{P}}{\sim} (7, 7, 10)$

To prove Theorem 6.1, we prepare Lemma 6.2.

For an integer i with $1 \leq i \leq m$, we consider two subgroups of \mathcal{S}_m defined by

$$\mathcal{S}_{1,i} = \{ \pi \in \mathcal{S}_m \mid \pi(j) = j \text{ for } i+1 \leq j \leq m \} \text{ and }$$

 $\mathcal{S}_{i,m} = \{ \pi \in \mathcal{S}_m \mid \pi(j) = j \text{ for } 1 \leq j \leq i-1 \}.$

Lemma 6.2. Let $v \in \mathbb{Z}^m$ be an element of the form

$$v = (\underbrace{x, \dots, x}_{p}, x + \lambda d, \underbrace{x + d, \dots, x + d}_{m-p-1}).$$

for some $x, \lambda, d, p \in \mathbb{Z}$ with d > 0 and $1 \le p \le m - 2$.

- (i) If λ is even, then for any $\pi \in \mathcal{S}_{1,p+1}$ and $\pi' \in \mathcal{S}_{p+2,m}$, there is an m-braid $\beta \in \mathcal{B}_m$ such that $v \cdot \beta = v$ and $\pi_{\beta} = \pi \pi'$.
- (ii) If λ is odd, then for any $\pi \in \mathcal{S}_{1,p}$ and $\pi' \in \mathcal{S}_{p+1,m}$, there is an m-braid $\beta \in \mathcal{B}_m$ such that $v \cdot \beta = v$ and $\pi_{\beta} = \pi \pi'$.

For example, we consider the element $v=(0,0,2,1,1,1)\in\mathbb{Z}^6$ as in Lemma 6.2 for $x=0,\ \lambda=2,\ d=1$ and p=2. For the permutations $\pi=(2\ 3)\in\mathcal{S}_{1,3}$ and $\pi'=e\in\mathcal{S}_{4,6}$, the 6-braid $\beta=(\sigma_3\sigma_2^{-1})\sigma_3(\sigma_2\sigma_3^{-1})\in\mathcal{B}_6$ satisfies $v\cdot\beta=v$ and $\pi_\beta=\pi\pi'=(2\ 3)$. See Figure 6.2.

Figure 6.2: The 6-braid $\beta = \sigma_3 \sigma_2^{-1} \sigma_3 \sigma_2 \sigma_3^{-1}$ with $\pi_\beta = (2\ 3)$

6.2 String links

An m-string link is an (m, m)-tangle T possibly with some loops such that the permutation $\pi_T \in \mathcal{S}_m$ associated with T is the identity; that is, the ith top point connects to the ith bottom point by a string for any $i = 1, \ldots, m$. We denote by \mathcal{L}_m the set of m-string links, and by $\mathcal{L}_{m,0} \subset \mathcal{L}_m$ that of m-string links without loops.

For two elements $v, w \in \mathbb{Z}^m$, we write $v \stackrel{\mathcal{L}_0}{\sim} w$ if there is an m-string link without loops admitting a \mathbb{Z} -coloring such that the top and bottom points receive v and w, respectively. By Lemmas 5.4, 6.2, Propositions 5.6 and 5.7, we have a classification of \mathbb{Z}^m under $\stackrel{\mathcal{L}_0}{\sim}$ as follows.

Theorem 6.3. For two elements $v, w \in \mathbb{Z}^m$, the following are equivalent.

(i)
$$v \stackrel{\mathcal{L}_0}{\sim} w$$
.

(ii)
$$\Delta(v) = \Delta(w)$$
, $d_2(v) = d_2(w)$ and $\overrightarrow{M}(v)_{2d_2(v)} = \overrightarrow{M}(w)_{2d_2(w)}$.

For two elements $v, w \in \mathbb{Z}^m$, we write $v \stackrel{\mathcal{L}}{\sim} w$ if there is an m-string link possibly with some loops admitting a \mathbb{Z} -coloring such that the top and bottom points receive v and w, respectively. By Lemmas 5.9, 5.10 and Proposition 5.12, we have a classification of \mathbb{Z}^m under $\stackrel{\mathcal{L}}{\sim}$ as follows.

Theorem 6.4. For two elements $v, w \in \mathbb{Z}^m$, the following are equivalent.

- (i) $v \stackrel{\mathcal{L}}{\sim} w$.
- (ii) $\Delta(v) = \Delta(w)$ and $\overrightarrow{M}(v)_2 = \overrightarrow{M}(w)_2$.

7 Virtual versions

In this section we define six equivalence relations $\overset{v}{\sim}$, $\overset{v\mathcal{T}_0}{\sim}$, $\overset{v\mathcal{T}}{\sim}$, $\overset{v\mathcal{P}}{\sim}$, $\overset{v\mathcal{L}_0}{\sim}$ and $\overset{v\mathcal{L}}{\sim}$ on \mathbb{Z}^m as virtual versions of \sim , $\overset{\tau_0}{\sim}$, $\overset{\tau}{\sim}$, $\overset{\tau}{\sim}$, $\overset{\tau}{\sim}$, $\overset{\tau}{\sim}$, and $\overset{\tau}{\sim}$, respectively, and characterize them for $m \geq 3$.

Let VB_m $(m \ge 2)$ be the virtual m-braid group with the standard generators

$$\sigma_1, \ldots, \sigma_{m-1}$$
 and $\tau_1, \ldots, \tau_{m-1}$

such that σ_i corresponds to a classical crossing (see the left of Figure 2.1 again), and τ_i corresponds to a virtual crossing between the *i*th and (i + 1)st strings (cf. [2]).

The set \mathbb{Z}^m has the Hurwitz action of \mathcal{VB}_m such that $v \cdot \sigma_i$ is defined as the same as in Section 2 and

$$v \cdot \tau_i = (a_1, \dots, a_{i-1}, a_{i+1}, a_i, a_{i+2}, \dots, a_m),$$

where $v = (a_1, \ldots, a_m) \in \mathbb{Z}^m$. See the left of Figure 7.1. We denote by $v \stackrel{v}{\sim} w$ if there is a virtual m-braid $\beta \in \mathcal{VB}_m$ with $v \cdot \beta = w$. The right figure shows that

$$(1, -5, 4) \cdot (\tau_1 \sigma_2 \sigma_1^{-1} \tau_2) = (-2, 1, 1) \in \mathbb{Z}^3,$$

and hence $(1, -5, 4) \stackrel{v}{\sim} (-2, 1, 1)$.

Figure 7.1: The Hurwitz action of \mathcal{VB}_m on \mathbb{Z}^m

Theorem 7.1. For two elements $v, w \in \mathbb{Z}^m$, the following are equivalent.

(i) $v \stackrel{v}{\sim} w$.

(ii)
$$d(v) = d(w)$$
 and $M(v)_{2d(v)} = M(w)_{2d(w)}$.

For two elements $v, w \in \mathbb{Z}^m$, we write $v \stackrel{v\mathcal{T}_0}{\sim} w$ (or $v \stackrel{v\mathcal{T}}{\sim} w$) if there is a virtual (m, m)-tangle without loops (or possibly with some loops) admitting a \mathbb{Z} -coloring such that the top and bottom points receive v and w, respectively.

Theorem 7.2. For two elements $v, w \in \mathbb{Z}^m$, the following are equivalent.

(i) $v \stackrel{v\mathcal{T}_0}{\sim} w$.

(ii)
$$d_2(v) = d_2(w)$$
 and $M(v)_{2d_2(v)} = M_2(w)_{2d_2(w)}$.

Theorem 7.3. For two elements $v, w \in \mathbb{Z}^m$, the following are equivalent.

(i) $v \stackrel{v\mathcal{T}}{\sim} w$.

(ii)
$$M(v)_2 = M(w)_2$$
.

The virtual pure m-braid group is defined by

$$\mathcal{VP}_m = \{ \beta \in \mathcal{VB}_m \mid \pi_\beta = e \}.$$

Then \mathcal{VP}_m acts on \mathbb{Z}^m as well as \mathcal{VB}_m does. For two elements $v, w \in \mathbb{Z}^m$, we write $v \stackrel{v\mathcal{P}}{\sim} w$ if there is a virtual pure m-braid $\beta \in \mathcal{VP}_m$ with $v \cdot \beta = w$.

Theorem 7.4. For two elements $v, w \in \mathbb{Z}^m$, the following are equivalent.

(i) $v \stackrel{v\mathcal{P}}{\sim} w$.

(ii)
$$d(v) = d(w)$$
 and $\overrightarrow{M}(v)_{2d(v)} = \overrightarrow{M}(w)_{2d(w)}$.

For two elements $v, w \in \mathbb{Z}^m$, we write $v \stackrel{v\mathcal{L}_0}{\sim} w$ (or $v \stackrel{v\mathcal{L}}{\sim} w$) if there is a virtual m-string link without loops (or possibly with some loops) admitting a \mathbb{Z} -coloring such that the top and bottom points receive v and w, respectively.

Theorem 7.5. For two elements $v, w \in \mathbb{Z}^m$, the following are equivalent.

(i) $v \stackrel{v\mathcal{L}_0}{\sim} w$.

(ii)
$$d_2(v) = d_2(w)$$
 and $\overrightarrow{M}(v)_{2d_2(v)} = \overrightarrow{M}(w)_{2d_2(w)}$.

Theorem 7.6. For two elements $v, w \in \mathbb{Z}^m$, the following are equivalent.

(i) $v \stackrel{v\mathcal{L}}{\sim} w$.

(ii)
$$\overrightarrow{M}(v)_2 = \overrightarrow{M}(w)_2$$
.

Proposition 7.7. For an element $v \in \mathbb{Z}^{2k}$, the following are equivalent.

- (i) There is a virtual k-string tangle without loops T admitting a \mathbb{Z} -coloring such that the 2k endpoints of T receive v.
- (ii) $\Delta(v) \equiv 0 \pmod{2d_2(v)}$.

Proposition 7.8. For an element $v \in \mathbb{Z}^{2k}$, the following are equivalent.

- (i) There is a virtual k-string tangle possibly with some loops T admitting a \mathbb{Z} -coloring such that the 2k endpoints of T receive v.
- (ii) $\Delta(v) \equiv 0 \pmod{2}$.

8 The case m=2

In the previous sections we provide the characterization results of the twelve equivalence relations on \mathbb{Z}^m for $m \geq 3$. This section extends them to the case m = 2.

Theorem 8.1. For two elements $v, w \in \mathbb{Z}^2$, we have the following.

- (i) $v \sim w$ if and only if $\Delta(v) = \Delta(w)$ and $M(v)_{2d(v)} = M(w)_{2d(w)}$.
- (ii) $v \stackrel{\mathcal{T}_0}{\sim} w$ if and only if $\Delta(v) = \Delta(w)$ and $M(v)_{2d_2(v)} = M(w)_{2d_2(w)}$.
- (iii) $v \stackrel{\mathcal{T}}{\sim} w$ if and only if $\Delta(v) = \Delta(w)$ and $M(v)_2 = M(w)_2$.

Theorem 8.2. For two elements $v, w \in \mathbb{Z}^2$, we have the following.

- (i) $v \stackrel{\mathcal{P}}{\sim} w$ if and only if $\Delta(v) = \Delta(w)$ and $\overrightarrow{M}(v)_{2d(v)} = \overrightarrow{M}(w)_{2d(w)}$.
- (ii) $v \stackrel{\mathcal{L}_0}{\sim} w$ if and only if $\Delta(v) = \Delta(w)$ and $\overrightarrow{M}(v)_{2d_2(v)} = \overrightarrow{M}(w)_{2d_2(w)}$.
- (iii) $v \stackrel{\mathcal{L}}{\sim} w$ if and only if $\Delta(v) = \Delta(w)$ and $\overrightarrow{M}(v)_2 = \overrightarrow{M}(w)_2$.

Theorem 8.3. For two elements $v, w \in \mathbb{Z}^2$, we have the following.

- (i) $v \stackrel{v}{\sim} w$ if and only if d(v) = d(w) and $M(v)_{2d(v)} = M(w)_{2d(w)}$.
- (ii) $v \stackrel{vT_0}{\sim} w$ if and only if $d_2(v) = d_2(w)$ and $M(v)_{2d_2(v)} = M(w)_{2d_2(w)}$.
- (iii) $v \stackrel{v\mathcal{T}}{\sim} w$ if and only if $M(v)_2 = M(w)_2$.

Theorem 8.4. For two elements $v, w \in \mathbb{Z}^2$, we have the following.

- (i) $v \stackrel{vP}{\sim} w$ if and only if d(v) = d(w) and $\overrightarrow{M}(v)_{2d(v)} = \overrightarrow{M}(w)_{2d(w)}$.
- (ii) $v \stackrel{v\mathcal{L}_0}{\sim} w$ if and only if $d_2(v) = d_2(w)$ and $\overrightarrow{M}(v)_{2d_2(v)} = \overrightarrow{M}(w)_{2d_2(w)}$.
- (iii) $v \stackrel{v\mathcal{L}}{\sim} w$ if and only if $\overrightarrow{M}(v)_2 = \overrightarrow{M}(w)_2$.

Acknowledgements. This work was supported by JSPS KAKENHI Grant Numbers JP20K03621, JP19K03492, JP22K03287 and JP23K12973.

References

- [1] E. Berger, Hurwitz equivalence in dihedral groups, Electron. J. Combin. 18 (2011), no. 1, Paper 45, 16 pp.
- [2] S. Kamada, Braid presentation of virtual knots and welded knots, Osaka J. Math. 44 (2007), no. 2, 441–458.
- [3] L. H. Kauffman and S. Lambropoulou, On the classification of rational tangles, Adv. in Appl. Math. **33** (2004), no. 2, 199–237.
- [4] T. Nakamura, Y. Nakanishi, S. Satoh and K. Wada, Fox's Z-colorings and twelve equivalence relations on \mathbb{Z}^m , in preparation.
- [5] J. H. Przytycki, 3-coloring and other elementary invariants of knots, Banach Center Publ., 42, Polish Academy of Sciences, Institute of Mathematics, Warsaw, 1998, 275-295.

Faculty of Education University of Yamanashi Yamanashi 400-8510 JAPAN

E-mail address: takunakamura@yamanashi.ac.jp

山梨大学大学院総合研究部 中村 拓司

Department of Mathematics Kobe University Kobe 657-8501

JAPAN

E-mail address: nakanisi@math.kobe-u.ac.jp

神戸大学大学院理学研究科 中西 康剛

Department of Mathematics Kobe University Kobe 657-8501 JAPAN

E-mail address: shin@math.kobe-u.ac.jp

佐藤 進 神戸大学大学院理学研究科

Department of Mathematics Kobe University Kobe 657-8501 JAPAN

E-mail address: wada@math.kobe-u.ac.jp

神戸大学大学院理学研究科 和田 康載