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1 Introduction

This article is an announcement of a forthcoming paper [4]. We refer the reader to [4] for
more details.

Fox’s coloring is one of the fundamental tools in knot theory. For example, the Z/pZ-
coloring number not only distinguishes various pairs of knots but also gives a lower bound
for the unknotting number of a knot [5], and the Z-coloring is useful for classifying rational
tangles [3].

The Z/pZ-colorings of m-braids relate to the Hurwitz action of the m-braid group on
(Z/pZ)™, and Berger [1] determines the orbits of this action. In this article we consider
Z-colorings of m-braids corresponding to the Hurwitz action of the m-braid group on
Z™. For two elements v,w € Z™, we write v ~ w if there is an m-braid admitting a Z-
coloring such that the top and bottom points receive v and w, respectively. See Figure 1.1.
Equivalently, v ~ w holds if they belong to the same orbit. The main aim of this article
is to characterize this equivalence relation ~ on Z™ by introducing several invariants.

v— ax Qm

......

Figure 1.1: v = (a1,...,am) ~w = (by,...,by) € Z™

An (m,m)-tangle is an m-braid without monotone property. It is permitted that an
(m, m)-tangle has a finite number of loops. Considering Z-colorings of (m, m)-tangles, we

. : . e
define two coarser equivalence relations on Z™ than ~ defined above. We write v ~ w (or

v L w) if there is an (m, m)-tangle without loops (or possibly with some loops) admitting
a Z-coloring such that the top and bottom points receive v and w, respectively.



A pure m-braid (or an m-string link) is an m-braid (or an (m, m)-tangle) such that the
1th top point connects to the ¢th bottom point by a string for any « = 1,...,m. Then
we introduce three equivalence relations on Z™ such that v 2w (v = w, or v L w) if
there is a pure m-braid (an m-string link without loops, or an m-string link possibly with
some loops) admitting a Z-coloring such that the top and bottom points receive v and w,
respectively.

By definition, the six equivalence relations on Z™ have a relationship as shown in
Table 1.1. For example, if v L ow holds, that is, v and w are connected by a Z-colored
pure m-braid, then we have v ~ w and v 2w by regarding the pure m-braid as just an
m-braid and an m-string link without loops.

Table 1.1: A relationship among the six equivalence relations

v~vYwW = v@w = U:Cw
1) f 1)

P Lo L
v ~w = v~ w = v ~w

Moreover, by permitting virtual crossings, we consider six equivalence relations ~
(connected by a Z-colored virtual m-braid), "% (connected by a Z-colored virtual (m, m)-
tangle without loops), Z (connected by a Z-colored virtual (m, m)-tangle possibly with
loops), 2z (connected by a Z-colored virtual pure m-braid), oL (connected by a Z-colored

virtual m-string link without loops) and i~ (connected by a Z-colored virtual m-string
link possibly with loops).
For an element v = (ay,...,a,) € Z™, we set

m

e Aw) =Y (-1 g € 2,

i=1
e d(v) =ged{as —ay,...,am —ar} >0,

o dy(v) = 2° for d(v) = 2°t > 0 with s > 0 and ¢ odd, and ds(v) = 0 for d(v) = 0,
e M(v)y ={ai,...,a,} (mod N) as a multi-set, and

o ]\_/}(U)N = (ay,...,an,) (mod N) as an ordered set.

Theorem 1.1. The twelve equivalence relations on Z™ (m > 2) as above are characterized
as shown in Table 1.2.

d(w) and M (v)2qw) =

For example, v ~ w if and ounly if A(v) = A(w), d(v) =
—

M (w)2d(w)- Also, v £ w if and only if A(v) = A(w) and ]\_/}(v)g
2 Preliminaries

For an integer m > 2, let B,, be the m-braid group with the standard generators
O1y..oyOm1. The set Z™ = {(a1,...,am) | a1,...,a, € Z} has the Hurwitz action



Table 1.2: Results

classical case virtual case
ORI U PR ~C I | RGO IR U I B U
A(v) = A(w) OO0 0]0]0
d(v) = d(w) O O O O
da(v) = da(w) O O O O
M(v)2a = M(w)2a || O O
M(v)2d, = M(w)24, O O
M(v)2 = M(w): O O
M ()24 = M(w)q O O
]\7(”)% = ]\_4)(w)2d2 O O
M(v)2 = M(w), O O
of B,, from the right defined by
veop = (g, ., 01, i1, 20541 — G4, Qiga, - ., Q) and
voo; b =(ay, ..., 01,20 — Qg1 i, Gy, e ey Qi)
for an element v = (ay, ..., a,) € Z™. See the left of Figure 2.1. We say that two elements

v,w € Z™ are (Hurwitz) equivalent if there is an m-braid € B,, such that v- 5 = w, and
denote it by v ~ w. The right figure shows that

(1,=5,4) - (o7 '03) = (7,7,10) € Z°,
and hence (1, —5,4) ~ (7,7,10).

ai aj—1 a; Qi+1 Ai+2 am
\ 1 -5 4
ax Ai—1 Qi+l 20541 — G5 Gig2 Qm,
ai a;—1 a; 41 42 Am
L ‘ \/ 3
o, = .
/ 77 10
ax ai—1 2a; —a;41 Qi Q42 A
Figure 2.1: The Hurwitz action of B,, on Z™
An element v € Z™ is called trivial if v = a-1 = (a,...,a) for some a € Z, where
1 = (1,...,1). By definition, if v ~ w and v is trivial, then we have v = wj; in other

words, the orbit of a trivial element v consists of v only.



For an element v = (ay,...,a,) € Z™, we will consider two integers defined by
Av) = Z(—l)i_lai and
i=1
dv) =ged{a; —a; |1 <i#j<m}=ged{a, —a1 |2<i<m}>0.
We remark that v € Z™ is trivial if and only if d(v) = 0. In what follows, “a = b (mod 0)”
means “a = b € Z” for convenience. For example, the element v = (1,—5,4) € Z? has

A(v)=1—-(=5)+4 =10 and d(v) = ged{—6,3} = 3.
Lemma 2.1. For an element v = (ay,...,a,) € Z™, we have the following.
(i) ay =+ = a,, (mod d(v)).
(ii) If m is odd, then A(v) = a; (mod d(v)).
(iii) If m is even, then A(v) =0 (mod d(v)).

Let S,, be the symmetric group on {1,...,m}. For an m-braid g € B,,, we denote
by 73 € S, the permutation associated with (3; that is, 8 connects each ¢th top point
to the m(i)th bottom point (i = 1,...,m). For a multi-subset X of Z and an integer
N > 2, we denote by Xy the multi-subset of Z/NZ consisting of the congruence classes
of all integers in X modulo N. We also use the symbol X, = X for convenience. For
v=_(ay,...,a,) € Z", weset M(v) ={ay,...,a,} as a multi-subset of Z.

Now we consider the multi-set M (v)aq() C Z/2d(v)Z. If v =0a-1 = (a,...,a) € Z™ is
trivial, then we have d(v) = 0 and

M)o=Aa,...,a}s C Z.

If v € Z™ is nontrivial, then it follows from Lemma 2.1(i) that

M(v)2q@wy = {r,-.., 7,7 +d(v),...,r + d(vl}gd(v)

~~

p m—p

for some 0 <r < d(v) and 1 < p <m — 1. For example, the element v = (1, —5,4) has
d(v) =3 and M(v)s = {1,1,4}s.

Lemma 2.2. Let v = (ay,...,a,) and w = (by,...,by) € Z™ be elements satisfying
v- B =w for an m-braid B € B,,. Then we have the following.

(i) Av) = Aw).
(i) d(v) = d(w).
(iil) bryx) = ar (mod 2d(v)) for any k=1,...,m.
(iv) M(v)2aw) = M(w)2a(v).-
For example, since w = (7,7, 10) is equivalent to v = (1, —5,4), we have
A(w) = A(v) =10, d(w) =d(v) =3 and M(w)s = M(v)s ={1,1,4}¢
by Lemma 2.2(i), (ii) and (iv).



3 The case m > 3 odd

Throughout this section we consider the equivalence relation ~ on Z™ for m = 2k—1 > 3.
The following theorem provides a classification of Z?*~! under ~.

Theorem 3.1. For two elements v, w € Z*~1, the following are equivalent.
(i) v ~w.
(i) A(v) = A(w), d(v) = d(w) and M(v)aq@w) = M(W)2d(w) -
For example, v = (2, —4,11,8,—1) and w = (5, 5,2,2,8) € Z° satisfy
A(v) = A(w) =8, d(v) = d(w) =3 and M(v)s = M(w)s = {2,2,2,5,5}.
Therefore we have v ~ w by Theorem 3.1.

In the case m = 2k — 1 = 3, the multi-set M (v)24() can be uniquely determined by
A(v) and d(v). In fact, we have

M (v)2aqy = {A(v), A(v) 4+ d(v), A(v) + d(v) }2dq(w)

which includes the case where v is trivial with d(v) = 0. Therefore we see that v ~ w € Z3
if and only if A(v) = A(w) and d(v) = d(w) only.

To prove Theorem 3.1, we prepare Lemmas 3.2-3.6 and Proposition 3.7.

For an element v = (ay, as, a3) € Z3, we set

|v| = max{ay, as, a3} — min{ay, as,as} > 0.

Lemma 3.2. Let v = (ay,aq,a3) be an element in Z3. If ai, ay and az are mutually
distinct, then v is equivalent to some w € Z* with |w| < |v].
Lemma 3.3. Any element v € Z? is equivalent to (z,y,y) for some x < y.

Lemma 3.4. Let v € Z*~! be an element of the form
V=T Yy Yy 2y, 2)
e e’ S e e’
2p—1 2q 2r

for some x,y,z,p,q,7 € Z with p,q,r > 1 andp+qg+r==~k. If vt <y < z holds, then v
18 equivalent to

for some y', 2 ¢, € Z withx <y <2 <z and {¢,7"} = {q,r}.
Lemma 3.5. Let v € Z**~! be an element of the form
v=(2,. .. T, Y, Y 2, 2)
—— S — N —
2p—1 2q 2r
for some x,y,z,p,q, 7 € Z with p,q,vr > 1 andp+q+r =k. If xt <y < z holds, then v
18 equivalent to
(x,...,2, 0 ..., Y)
—— ——
2p'—1 2k—2p’

for some y',p' € Z with x <y and p' € {p,p+q¢,p+r}.



Lemma 3.6. Any element v € Z**~1 is equivalent to
(z,...,2,9,...,9)
N N —
2p—1 2k—2p
for some x,y,p € Z withx <y and 1 <p < k.
By Lemma 2.1(i) and (ii), any element v = (ay, ..., a9 1) € Z**~1 satisfies
ap = -+ = ag_1 = A(v) (mod d(v)).

Therefore we have a; = A(v) or A(v) 4+ d(v) (mod 2d(v)). Moreover, the number of a;’s
congruent to A(v) modulo 2d(v) is odd.

Proposition 3.7. Let v be an element in Z**71. Set A = A(v), d = d(v) and
M) ={A,...,AA+d,..., A+ d}ay
—— y

2p—1 2k—2p

for some p € Z with 1 < p < k. Then we have
v~ (A A A+ A+ d).
R e ”

-

2p—1 2k—2p

4 The case m > 4 even

Throughout this section we consider the equivalence relation ~ on Z™ for m = 2k > 4.
The following theorem provides a classification of Z?* under ~.

Theorem 4.1. For two elements v,w € Z**, the following are equivalent.
(i) v ~w.
(i) A(v) = A(w), d(v) = d(w) and M(v)aq@w) = M(W)2d(w)-
For example, v = (—4,11,8,—1) and w = (5,5, 2,8) € Z* satisfy
A(v) = A(w) = —6, d(v) = d(w) =3 and M(v)g = M(w)s =1{2,2,5,5}s.

Therefore we have v ~ w by Theorem 4.1.
To prove Theorem 4.1, we prepare Lemma 4.2 and Proposition 4.3.

Lemma 4.2. Let v € Z** be a nontrivial element of the form

v=(x,....,x,c+Ad,x+d,...,v+d)
N / N - >

p 2k—p—1

for some v, \,d,p € Z withd >0 and 1 < p <2k — 2. Then we have
v~v42nd-1

for any n € Z.



Proposition 4.3. Let v be a nontrivial element in Z?*. Set d = d(v) and
M©W)ag={r,...;r,r+d,...,7 +d}ay
—— 4
p 2k—p

for somer,p e Z with0 <r <dand1<p<2k-—1.

(i) If p > 2 holds, then there is an even integer \ such that

v (ryo e+ AN+ d, L+ d).
N s N v

p—1 2k—p

(ii) If 2k — p > 2 holds, then there is an odd integer A such that

v (oo rr+ A r+d, .+ d).
S—— N d

p 2k—p—1

5 Tangles

In this section we define two coarser equivalence relations % and L on Z™ than ~, and
characterize them. Throughout this section we assume k > 2 and m > 3.

5.1 Tangles

By a k-string tangle T', we mean a tangle diagram of k strings possibly with some loops.
A map C : {arcs of T} — Z is called a Z-coloring of T if the equation a + ¢ = 2b holds
at each crossing of T', where a and ¢ are the integers assigned to the under-arcs at the
crossing, and b is the integer assigned to the over-arc. The integer assigned to an arc is
called the color of the arc. Let aq, ..., as be the colors of the 2k endpoints of T listed in
counterclockwise order. Then we say that the endpoints receive v = (ay, ..., ay) € Z*.
For example, we consider a 3-string tangle T with a single loop admitting a Z-coloring as
shown in Figure 5.1. Then the 6 endpoints of T receive (1,5,19,20,6,1) € Z°.

Proposition 5.1. For an element v € 7%, the following are equivalent.

(i) There is a k-string tangle T without loops admitting a Z-coloring such that the 2k
endpoints of T receive v.

(ii) There is a k-string tangle T" possibly with some loops admitting a Z-coloring such
that the 2k endpoints of T' receive v.

(iil) A(v) = 0.

5.2 (m,m)-tangles without loops

By an (m, m)-tangle, we mean an m-string tangle diagram possibly with some loops such
that each string connects between top and bottom points. We denote by 7, the set of
(m, m)-tangles, and by T,,0 C T, that of (m, m)-tangles without loops.



Figure 5.1: A 3-string tangle with a single loop admitting a Z-coloring

For two elements v, w € Z™, we write v % w if there is an (m, m)-tangle without loops
admitting a Z-coloring such that the top and bottom points receive v and w, respectively.
Figure 5.2 shows an example of a (3, 3)-tangle without loops admitting a Z-coloring which

gives (—1,2,2) % (0,3,2). We remark that (—1,2,2) 4 (0,3,2) by Lemma 2.2(ii); in fact,

we have
d((—1,2,2)) =3 #1=4d((0,3,2)).

-1 2 2

|

0 3 2

Figure 5.2: A (3, 3)-tangle without loops admitting a Z-coloring

The following theorem provides a classification of Z™ under .

Theorem 5.2. For two elements v,w € Z™, the following are equivalent.

(i) v 2 w.

(i) A(v) = Aw), da(v) = da(w) and M(v)aayw) = M(W)2dy(w)-
To prove this theorem, we prepare Lemmas 5.3-5.5, Propositions 5.6 and 5.7.

Lemma 5.3. Let T' € Ty, be an (m, m)-tangle without loops admitting a Z-coloring such
that the top m points of T receive v = (ay,...,a,) € Z™, and

A; = Ci1,Ci2, - - - Cin(i)



the colors of all the arcs on each ith string of T from top to bottom (i = 1,...,m). If
cij — ay 1s diwisible by an integer N > 1 for any 1, j, then we have the following.

(1) ¢ij — a; is divisible by 2N for any i, j.
(ii) If a; — ay is divisible by 2N for any i, then so is ¢;; — ay for any i, j.

For T' € Ty, we denote by mr € S, the permutation on {1,...,m} associated with
T; that is, each ith string of T connects the ith top point to the 77 (i)th bottom point
(t=1,...,m). For v = (ay,...,a,) € Z™, we define an integer ds(v) > 0 as follows: If v
is nontrivial with d(v) = 2°t for s > 0 and ¢ odd, then we set do(v) = 2°. If v is trivial,
that is, d(v) = 0, then we set dy(v) = 0.

Lemma 5.4. Let T € Tpo be an (m,m)-tangle without loops admitting a Z-coloring
such that the top and bottom points receive v = (ay, ..., ay) and w = (by, ..., by,) € Z™,
respectively. Then we have the following.

(i) Av) = A(w).

(ii) da(v) = da(w).
(iii) brpy = a; (mod 2da(v)) for any i =1,...,m.
(iv) M(v)2dyw) = M(W)2dy(w)-
Lemma 5.5. For any integers x,s,t € Z with s > 0 and t odd, we have

(x,z + 2°t) % (x+2°2+2°(t+1)).
For any element v € Z™, we have
a; =+ = a,, (mod dy(v))

by Lemma 2.1(i) and the fact that dy(v) divides d(v). In the case where m is odd, it
follows from Lemma 2.1(ii) that

a; = A(v) or A(v) +da(v) (mod 2ds(v)),
and the number of a;’s congruent to A(v) modulo 2ds(v) is odd.
Proposition 5.6. Let v be a nontrivial element in Z*~1. Set A = A(v), dy = dy(v) and
M(’U)Qd2 = {A,...,A,A-f—dg,...,A-i-d%}de

~~

2p—1 2k—2p

for some p € Z with 1 < p <k —1. Then we have
VE (AL A Ay, A+ dy).
N—— -

-~

2p—1 2k—2p

We consider the case where m = 2k is even. For a nontrivial element v = (aq, ..., a) €
72 there is an integer r with 0 < r < dy(v) such that a; = r (mod dy(v)) for any
i =1,...,2k. Then it holds that

a; =rorr+dy(v) (mod 2dy(v)).



Proposition 5.7. Let v be a nontrivial element in Z?*. Set dy = do(v) and

M(v)oa, = A{r,....,7,7 +do, ..., 7+ ds}a,

-~
P 2k—p

for some r,p € Z with 0 <r <dy and 1 <p <2k —1.

(i) If p > 2 holds, then there is an even integer \ such that

'UE(T,...,T,T+)\d2,T+d2,,,,,7“—|-d2).
w_/ >

p—1 2]‘3\:?
(ii) If 2k — p > 2 holds, then there is an odd integer A such that

UE(7‘,---,r,r+>\d2,r+d2,...,r+d2),
N—— -~ %

p 2k—p—1

5.3 (m,m)-tangles possibly with loops

For two elements v, w € Z™, we write v L w if there is an (m, m)-tangle possibly with
some loops admitting a Z-coloring such that the top and bottom points receive v and w,

respectively. We remark that v % w implies v L w by definition.
Figure 5.3 shows an example of a (3, 3)-tangle with a single loop admitting a Z-coloring
To
which gives (6,10,4) z (0,0,0). We remark that (6, 10,4) 72 (0,0,0) by Lemma 5.4(ii);

in fact, we have

6 10

e

/

3

\M/_ —

e/

I
0

o

Figure 5.3: A (3,3)-tangle with a single loop admitting a Z-coloring

The following theorem provides a classification of Z™ under Z,

Theorem 5.8. For two elements v,w € Z™, the following are equivalent.

(i) vZ w.



(i) A(v) = A(w) and M(v)s = M(w)s.
To prove this theorem, we prepare Lemmas 5.9-5.11 and Proposition 5.12.

Lemma 5.9. Let T € T, be an (m,m)-tangle possibly with some loops admitting a Z-
coloring such that the top m points of T' receive v = (ay,...,a,) € Z™, and

a; = Ci1,Ci2, - - -, Cin(i)
the colors of all the arcs on each ith string of T' from top to bottom (i =1,...,m). Then
¢ij = a; (mod 2) for any i, j.
Lemma 5.10. If two elements v,w € Z™ satisfy v z w, then we have the following.
(i) A(v) = A(w).
(il) M(v)e = M(w),.
Lemma 5.11. If two integers x,y € Z satisfy x =y (mod 2), then we have
Tyoo,x) ~ (Y, ..., y).
( )~ (Y- y)
2p 2p
Proposition 5.12. Let v be an element in Z™. Set
M('U)Q :{O,...,O,l,...,l}g
—— ——
p m—p
for some p € Z with 0 < p < m.
(i) If p > 1 holds, then there is an even integer \ such that

v X(0,..., 0\ 1,...,1).
\ﬁ,l_/ N——
p— m—p

(ii) If m —p > 1 holds, then there is an odd integer A\ such that

v X(0,...,0,A1,...,1).
N—— \W_l./
p m—p—

6 Pure braids and string links

. . . . P L c To
In this section we define three finer equivalence relations ~, =~ and ~ on Z™ than ~, ~

and :C, respectively, and characterize them. Throughout this section we assume m > 3.



6.1 Pure braids

A pure m-braid is an m-braid § € B, such that the permutation 7z € S, associated
with § is the identity e; that is, the ith top point connects to the ith bottom point by
a string of § for any ¢ = 1,...,m. Let P,, denote the pure m-braid group, which is the

subgroup of B,, consisting of pure m-braids. We denote by X the equivalence relation on
Z™ induced from the Hurwitz action of P,, C B,,.
For an element v = (ay,...,a,) € Z™, we set M(v) = (ay,...,a,) as an ordered set

of Z. The following theorem provides a classification of Z™ under R

Theorem 6.1. For two elements v,w € Z™, the following are equivalent.
i) v 2 w.
.. —

(i) A(v) = A(w), d(v) = d(w) and M( V)2d(w) = M(W)2a(w)-

For example, we consider v = (1,—5,4), w = (10,7,7) and u = (7,7,10) € Z>. They
satisfy

A(w) = A(u) =10, d(v) = d(w) = d(u) = 3,
(w)g = M(u)g = {1,1,4}¢ and
(w)e = (1,1,4)5 # (4,1,1)5 = M (w)s.

<
S~—
Il

Then we have
P
ve~w, vobwand v~

by Theorem 6.1. See Figure 6.1.

o
\f vl

10 7 7 7 7 10

Figure 6.1: (1,—5,4) ~ (10,7,7) and (1,—5 4) (7,7,10)

To prove Theorem 6.1, we prepare Lemma 6.2.
For an integer ¢« with 1 <17 < m, we consider two subgroups of §,,, defined by

Sii={r €Sy |m(j)=jfori+1<j<m} and
Sim={m eSS, |n(j)=jfor1 <j<i—1}



Lemma 6.2. Let v € Z™ be an element of the form

v=(z,...,x,x+Xd,x+d,...,x+d).
——— —~ /

p m—p—1

for some x,\,d,p € Z withd >0 and 1 <p <m — 2.

(i) If X is even, then for any m € S1p11 and " € Spio.m, there is an m-braid 5 € B,
such thatv- 8 =v and mg = wr'.

(ii) If A is odd, then for any m € 81, and ' € Spi1m, there is an m-braid 5 € B, such
that v -5 =wv and mg = ',

For example, we consider the element v = (0,0,2,1,1,1) € Z% as in Lemma 6.2 for
z=0,\A=2,d=1and p=2. For the permutations 7 = (2 3) € S; 3 and 7’ = e € Sy,
the 6-braid 8 = (030, ")o3(0905 ") € B satisfies v- 3 = v and 73 = 77’ = (2 3). See
Figure 6.2.

0 1 1

Figure 6.2: The 6-braid 3 = g30; 030905+ with 75 = (2 3)

6.2 String links

An m-string link is an (m, m)-tangle T possibly with some loops such that the permutation
mr € S, associated with T is the identity; that is, the ith top point connects to the ith
bottom point by a string for any ¢+ = 1, ..., m. We denote by L,, the set of m-string links,
and by £,, 0 C L,, that of m-string links without loops.

For two elements v, w € Z™, we write v % w if there is an m-string link without loops
admitting a Z-coloring such that the top and bottom points receive v and w, respectively.

By Lemmas 5.4, 6.2, Propositions 5.6 and 5.7, we have a classification of Z™ under 2 as
follows.
Theorem 6.3. For two elements v,w € Z™, the following are equivalent.

(i) v & w.



(i) A®W) = A(w), do(v) = da(w) and M (v)aayw) = M (W)aay0w)-

For two elements v, w € Z™, we write v £ w if there is an m-string link possibly with
some loops admitting a Z-coloring such that the top and bottom points receive v and w,
respectively. By Lemmas 5.9, 5.10 and Proposition 5.12, we have a classification of Z™

c
under ~ as follows.

Theorem 6.4. For two elements v,w € Z™, the following are equivalent.
(i) v K w.

(i) A(v) = A(w) and M(v)s = M(w)s.

7 Virtual versions

. . . . . . v vTg vT vP wvwlo vl .
In this section we define six equivalence relations ~, ~, ~, ~, '~ and ~ on Z™ as virtual

. To T P L c . .
versions of ~, ~, ~, ~, < and ~, respectively, and characterize them for m > 3.

Let VB,, (m > 2) be the virtual m-braid group with the standard generators
01y Om—1 and 7y, ..., Ty_1

such that o; corresponds to a classical crossing (see the left of Figure 2.1 again), and 7;
corresponds to a virtual crossing between the ith and (7 + 1)st strings (cf. [2]).
The set Z™ has the Hurwitz action of V13,, such that v - g; is defined as the same as
in Section 2 and
V-T; = (al, NN ¢ 7 [P ¢ 7 I N0 N 0 TR, DA am),
where v = (ay,...,a,) € Z™. See the left of Figure 7.1. We denote by v ~ w if there is
a virtual m-braid g € VB,, with v - = w. The right figure shows that

(1a _5a4) : (TIUQUl_lTQ) = (_27 1a 1) S Z3a
and hence (1,—5,4) ~ (=2,1,1).

1 ) 4
ai Ai—1 a; Qi1 Q542 A /
" ' ‘ >< \/
a1 a;—1  Gi41 a; Aj4-2 Qo
—2 1 1

Figure 7.1: The Hurwitz action of VB,, on Z™



Theorem 7.1. For two elements v,w € Z™, the following are equivalent.
(i) v ~ w.
(ii) d(v) = d(w) and M(v)2aw) = M(W)2q(w)-
For two elements v, w € Z™, we write v % w (or v <z w) if there is a virtual (m,m)-

tangle without loops (or possibly with some loops) admitting a Z-coloring such that the
top and bottom points receive v and w, respectively.

Theorem 7.2. For two elements v,w € Z™, the following are equivalent.
(i) v*2 w.
(1) da(v) = da(w) and M(v)ain(0) = Mo(w)ainia).
Theorem 7.3. For two elements v,w € Z™, the following are equivalent.
(i) v T,
(il) M(v)e = M(w),.
The virtual pure m-braid group is defined by
VP, ={8 € VB, | 75 =e}.
Then VP,, acts on Z™ as well as VB,,, does. For two elements v, w € Z™, we write v L w
if there is a virtual pure m-braid g € VP,, with v- g = w.
Theorem 7.4. For two elements v,w € Z™, the following are equivalent.
(i) v T w.

(i) d(v) = d(w) and M(v)aae) = M (0)2dw)-

For two elements v,w € Z™, we write v R w (or v i~ w) if there is a virtual m-string
link without loops (or possibly with some loops) admitting a Z-coloring such that the top
and bottom points receive v and w, respectively.

Theorem 7.5. For two elements v,w € Z™, the following are equivalent.

(i) v "% w.

.. — —
(i) d2(v) = da(w) and M(v)za,w) = M(W)2dy w)-
Theorem 7.6. For two elements v,w € Z™, the following are equivalent.

(i) v ~ w.

(i) M(v) = M(w)s.



Proposition 7.7. For an element v € Z*, the following are equivalent.

(i) There is a virtual k-string tangle without loops T admitting a Z-coloring such that
the 2k endpoints of T receive v.

(ii) A(v) =0 (mod 2ds(v)).
Proposition 7.8. For an element v € Z*, the following are equivalent.

(i) There is a virtual k-string tangle possibly with some loops T admitting a Z-coloring
such that the 2k endpoints of T receive v.

(il) A(v) =0 (mod 2).

8 The case m =2

In the previous sections we provide the characterization results of the twelve equivalence
relations on Z™ for m > 3. This section extends them to the case m = 2.

Theorem 8.1. For two elements v,w € Z*, we have the following.
(i) v ~w if and only if A(v) = A(w) and M(v)sqw) = M(W)2q(w)-

(ii) v 5w if and only if A(v) = A(w) and M (v)aq,w) = M (W)ady(w)-
(iii) v L w if and only if A(v) = A(w) and M(v)s = M(w),.
Theorem 8.2. For two elements v,w € Z*, we have the following.

(i) v X w if and only if A(v) = A(w) and ]\_/[>(v)2d(v) = ]\_/[>(w)2d(w).

(ii) v 2w if and only if A(v) = A(w) and ]\7(1})2@(@) = ]\_/[>(w)2d2(w).

(iii) v X w if and only if A(v) = A(w) and ]\_/[>(v)2 = ]\_/}(w)g.

Theorem 8.3. For two elements v,w € Z*, we have the following.
(i) v ~w if and only if d(v) = d(w) and M (v)aa@w) = M (W)ad(w)-

(ii) v D w if and only if dy(v) = da(w) and M (v)aayw) = M(W)2dy (w)-
(iii) v 2w if and only if M(v)y = M(w),.
Theorem 8.4. For two elements v,w € Z*, we have the following.

(i) v L w if and only if d(v) = d(w) and ]\_/[)(v)gd(v) = ]\_/[)(w)gd(w).

(ii) v A w if and only if ds(v) = da(w) and ]\_/}(v)ng(v) = ]\_/[>(w)2d2(w).

(iii) v 2w if and only if ]\_/[>(v)2 = ]\_4>(w)2.
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