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1 Introduction

Contact geometry is an odd dimensional counterpart of symplectic geometry. Legendrian
submanifolds play an important role in contact geometry in a way similar to that La-
grangian submanifolds do in symplectic geometry. Legendrian knots are objects which
are located at the intersection of contact geometry and 3-dimensional topology.

We consider the classification of Legendrian knots up to Legendrian isotopy, which is
more strict than ambient isotopy. Actually each knot type has infinitely many Legendrian
isotopy classes. It is known that there exist local moves for diagrams which characterize
the relation between diagrams of mutually Legendrian isotopic two Legendrian knots [17].
The local moves are called the Legendrian Reidemeister moves. We can study Legendrian
knots by means of diagrams in combinatorial ways due to the existence of the Legendrian
Reidemeister moves.

In this article, we focus on invariants of Legendrian knots which are constructed from
diagrams. Among such invariants, the Thurston-Bennequin number and the rotation
number are the most fundamental ones. They are called the classical invariants of Legen-
drian knots. The classical invariants are known to be powerful invariants, while it is easy
to compute them from diagrams.

Racks and quandles are algebraic structures without associativity. Quandles were
introduced by Joyce [11] and Matveev [16] independently. Racks, which are generalizations
of quandles, were introduced by Fenn and Rourke [8]. Since the axioms of quandles
correspond to the Reidemeister moves, quandle colorings of knot diagrams bring knot
invariants such as coloring numbers and fundamental quandles. Those knot invariants
are known to be useful to distinguish knots in many cases. Moreover, quandles produce
invariants of several generalizations of knots such as surface-knots and handlebody-knots.

We present invariants of Legendrian knots using racks in this article. There are several
preceding works on invariants of Legendrian knots using racks. These invariants are ana-
logues of quandle coloring numbers of diagrams of topological knots. A quandle coloring
is a map from the set of the arcs of a knot diagram to a quandle satisfying a certain
relation at each crossing of the knot diagram. Front diagrams of Legendrian knots have
not only crossings but also cusps. Hence besides relations at crossings, relations at cusps
are necessary to be set in colorings of front diagrams of Legendrian knots. Kulkarni and



Prathamesh [15] introduced invariants of Legendrian knots by using racks. They set rela-
tions of cusps by using the rack operation. Ceniceros, Elhamdadi and Nelson [2] defined a
Legendrian rack whose axioms correspond to the Legendrian Reidemeister moves. They
set relations of cusps by introducing a map on the rack with several conditions, which
assure invariance under the Legendrian Reidemeister moves. The invariants of Legendrian
knots using Legendrian rack colorings in [2] contain the invariants in [15] as special cases.

In this article, we introduce a bi-Legendrian rack, which is a generalization of a Leg-
endrian rack in [2]. The axioms of bi-Legendrian racks also correspond to the Legendrian
Reidemeister moves. Therefore a bi-Legendrian rack coloring number of a diagram is an
invariant of Legendrian knots. The difference between bi-Legendrian rack colorings and
Legendrian rack colorings is to distinguish downward cusps and upward cusps. Due to
this small difference bi-Legendrian racks give rise to properly stronger invariants. In [15]
and [2], each example of pairs of Legendrian knots they distinguish by their invariants has
different Thurston-Benneqiun numbers. In this article, we state that bi-Legendrian rack
coloring numbers can distinguish simultaneously all Legendrian unknots with the same
Thurston-Bennequin number. Notice that Legendrian rack coloring numbers in [2] can-
not distinguish the family of Legendrian unknots. We also consider pairs of Legendrian
knots which cannot be distinguished by bi-Legendrian rack coloring numbers. We give a
sufficient condition for pairs of Legendrian knots not to be distinguished by bi-Legendrian
quandle coloring numbers. Moreover, we present a pair of Legendrian knots which cannot
be distinguished by bi-Legendrian rack coloring numbers.

In [12], Karmakar, Saraf and Singh introduced the fundamental bi-Legendrian rack of
a Legendrian knot, which they call the generalized Legendrian rack of a Legendrian knot.
The fundamental bi-Legendrian rack of a Legendrian knot is an analogy of the fundamen-
tal quandle of a topological knot. A presentation of the fundamental bi-Legendrian rack
of a Legendrian knot is obtained from the front diagram. Arcs of the front diagram cor-
respond to the generators, while crossings and cusps give the relations. A bi-Legendrian
rack coloring is regarded as a homomorphism from the fundamental bi-Legendrian rack
to the given rack. Hence the fundamental bi-Legendrian rack of a Legendrian knot is
the universal invariant for bi-Legendrian rack coloring numbers in the same way as the
fundamental quandle of a topological knot is universal for quandle coloring numbers.

2 Legendrian knots

In this section, we review basics on Legendrian knots briefly. For a more comprehensive
introduction to contact topology and Legendrian knots the reader is referred to [10] [6].

Legendrian knots are defined when an ambient 3-manifold is equipped with a contact
structure. Hence we begin with the definition of a contact structure.

Definition 1. Let M be a 3-manifold. A contact structure & on M is a plane field on M
satisfying, when & = ker « for a local 1-form a on M, a A da is nowhere vanishing. The
pair (M, §) is called a contact 3-manifold.

Roughly speaking, a contact structure is a “twisted” plane field on M.



Example 1. Let (2,7, 2) be the standard coordinate on R3. Let
Qstg = dz + xdy

and

gstd = ker Astd = <%7 gy - m%h{

Then &4 is a contact structure on R3. £,y is called the standard contact structure on R3.

Definition 2. Let (M, §) be a contact 3-manifold. A smooth knot K in (M,§) is called
Legendrian if T, K C &, for any p € K.

Definition 3. Let K and K; be Legendrian knots in a contact 3-manifold (M, §). Ky is
said to be Legendrian isotopic to K, if there exists an isotopy through Legendrian knots
in (M,¢) from Ky to K;.

Remark 1. By the isotopy extension theorem, this definition is equivalent to the following
apparently stronger condition:

Ky is Legendrian isotopic to K if and only if there exists an isotopy ¢, of M (t € [0, 1])
which fixes £ such that g is idys, ¢1(Ko) is K and ¢;(Kp) is Legendrian for any ¢ € [0, 1].

On account of Remark 1, Legendrian isotopy is more strict equivalence relation than
smooth ambient isotopy. We would like to consider the classification of Legendrian knots
in (M, ) up to Legendrian isotopy.

From now on, we only consider Legendrian knots in (R3, £,4). We often use diagrams
in order to study Legendrian knots in the same way as the case of topological knots. The
projection

R® > (z,9,2) — (y,2) € R?
is called the front projection. Front projection diagrams of Legendrian knots have the
following features. Let v(t) = (x(t),y(t),2(t)) (t € [0,1]) be a parametrization of a
Legendrian knot K. Since the tangent vector +'(t) = (2'(t),vy'(t),2'(t)) of K satisfies
asa(7'(t) = 0,

Z(t)+x@)y'(t) =0 (1)
holds. As ¢/(t) = 0 implies 2/(t) = 0 due to (1), a point (y(t),2(t)) on R? satisfying
y'(t) = 0 is a singular point, which is called a cusp. See the right hand side of Figure 1.
Because of (1), the z-coordinate of a point in K is recovered from the front projection as
x(t) = —fil—;(t). Hence at each crossing of the front projection diagram, the slope of the
overcrossing is smaller than that of the undercrossing. Therefore the type of crossings
shown in the left hand side of Figure 1 only appears in front projection diagrams of
Legendrian knots.

The following theorem implies that each knot type has a Legendrian representative.

Theorem 2.1. Let K be a knot in a contact 3-manifold (M,€). Then K can be C°-
approximated by a Legendrian knot ambient isotopic to K.

Here we just mention the outline of the proof. For a curve v in (R?, £,4), a C°-
close Legendrian approximation of v is obtained by adding small zig-zags to the front
projection of v. See Figure 2. For a knot K in arbitrary contact 3-manifold, we cut K
into sufficiently small picces and then we carry out the procedure for such small pieces.
This gives a C%-close Legendrian approximation of K because of Darboux’s theorem.
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Figure 1: Crossings and cusps appeared in front diagrams of Legendrian knots.
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Figure 2: C°-close Legendrian approximation of a curve.
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Figure 3: How to obtain a front diagram of a Legendrian knot from a given knot diagram.
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Figure 4: Legendrian Reidemeister moves.

Remark 2. One can also get a Legendrian representative in (R3, £,4) of a given knot type
in R? in the following way. Take any diagram of the given knot. Convert each vertical
tangency in the diagram to a cusp and add two cusps near each crossing which is not the
type in Figure 1. See Figure 3. Note that the obtained Legendrian representative is not
("-close to the given knot.

The following theorem is Legendrian analogy of Reidemeister’s theorem.

Theorem 2.2 ([17]). Let K and K be Legendrian knots in (R3, £,4) and D; the front
projection diagram of K; (i =0,1). Then Ky and K are Legendrian isotopic if and only
if Dy and D, are related by a finite sequence of the three types of local moves shown in
Figure 4.

The local moves shown in Figure 4 are called the Legendrian Reidemeister moves.

3 Classical invariants of Legendrian knots

In this section, we explain the classical invariants of Legendrian knots.
The most fundamental invariant of Legendrian knots is, of course, the (topological) knot
type. The next fundamental invariants of Legendrian knots are the Thurston-Bennequin
number and the rotation number. They are called the classical invariants of Legendrian
knots. Both of the classical invariants are integer-valued invariants. Take a Seifert surface
F for a Legendrian knot K. The Thurston-Bennequin number tb(K) € Z of K is the
twisting number of the contact plane & relative to F' along K. If we take a vector field v
along K transverse to ¢ and define a parallel knot K’ by pushing K along v, then tb(K)
is equal to the linking number [k(K, K') of K and K’.

While the Thurston-Bennequin number is an invariant of unoriented Legendrian knots,
the rotation number is an invariant of oriented Legendrian knots. Since F'is a surface with
boundary, the plane bundle &|r over F' is the trivial bundle. We take any trivialization of
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Figure 5: Stabilizations.

|p. By this trivialization, we can identify £|p with F' x R?% Then the rotation number
rot(K) € Z of an oriented Legendrian knot K is the rotation number of the tangent vector
of K on the contact plane ¢ along K. Note that the value of rot(K) is independent of a
choice of a trivialization of £|r. Denote the Legendrian knot with the reverse orientation
to K by —K, rot(—K) = —rot(K) holds.

The classical invariants of a Legendrian knot K are computed from the front projection
diagram of K as follows:

th(K) = w(D) — 5e(D)

rot(K) = %(dC(D) — uc(D)),

where w(D) is the writhe of D, ¢(D) is the number of the cusps of D, de(D) is the number
of the downward cusps of D and uc(D) is the number of the upward cusps of D.

A stabilization of a Legendrian knot K is an operation which changes the Legendrian
isotopy class and does not change the knot type. A positive (or negative) stabilization
is represented by adding two downward (or upward) cusps to a trivial arc for the front
projection diagram. See Figure 5. We denote a positive (or negative) stabilization by
Sy (or S_). A positive sabilization and a negative stabilization are commutative, i.e.,
S,.S_ = S5_5,. A stabilization changes the classical invariants in the following way.

tb(5+(K)) = th(K) — 1,
rot(S4(K)) = rot(K) + 1.

For any knot type K, one can get a Legendrian knot with arbitrary small Thurston-
Bennequin number whose knot type is IC by performing many stabilizations. This implies
that any knot type has infinitely many Legendrian isotopy classes.

The following theorem is shown by Fuchs and Tabachnikov [9].

Theorem 3.1 ([9]). Let K, and K; be Legendrian knots in (R3, £4). Then K, and
K have the same knot type if and only if S7°S"(Ky) and S¥'S™'(K,) are Legendrian
isotopic for some non-negative integers pg, ng, p1 and n;.
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Figure 6: the Chekanov knots.

This theorem states that two Legendrian knots in (R?, £,4) with the same knot type are
stably Legendrian isotopic.

The pair of the classical invariants are known to be rather strong. In order to explain
this, we introduce the following notion.

Definition 4. A knot type K is called Legendrian simple if for any two Legendrian knots
Ky and K of the knot type K, if tb(Ky) = tb(K) and rot(K,) = rot(K;), then K, and
K are Legendrian isotopic.

In other words, Legendrian simplicity of I means that the pair of the classical invariants
completely classifies the Legendrian isotopy classes of K.

Several knot types are known to be Legendrian simple. The following theorems give
examples of Legendrian simple knot types.

Theorem 3.2 ([5]). The unknot is Legendrian simple.
Theorem 3.3 ([7]). Each torus knot is Legendrian simple.
Theorem 3.4 ([7]). The figure eight knot is Legendrian simple.

On the other hand, there are many knot types which are not Legendrian simple. See
[4]. The first example of knot types which are shown to be not Legendrian simple is
the knot m(55), where m(K) means the mirror image of the knot type K. K, and K3 in
Figure 6 have the same knot type m(5s), tb(Ks) = tb(K3) = 1 and rot(Ky) = rot(Ks3) = 0.
However, Chekanov [3] proved K» and K3 are not Legendrian isotopic by using Legendrian
contact homology. K5 and K3 are called the Chekanov knots.

Theorem 3.5 (Bennequin’s inequality [1]). Let K be a Legendrian knot (R3, &,4) and
I a Seifert surface for K. Then the following inequality holds:

th(K) + |rot(K)| < —x(F).
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Figure 7: A Legendrian unknot with tb = —1.
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Figure 8: A Legendrian unknot K, with tb(Kp ) = —1—mn, rot(Kp,) = 2p —n.

The Bennequin’s inequality implies that the Thurston-Bennequin number of a Legen-
drian knot in (R3, £,4) has an upper bound. For a knot type K, the Thurston-Bennequin
number of any Legendrian knot with the knot type K is bounded above by 2¢(K) — 1,
where g(K) is the genus of K.

At the end of this section, we give the classification result of Legendrian unknots in
(R3, £41q) explicitly. From the Bennequin’s inequality, a Legendrian unknot K satisfies

th(K) + |rot(K)| < —1.

Due to this inequality, tb(K) = —1 — n for some non-negative integer n and —n <
rot(K) < n. In addition, from the fact ([5] Proposition 1.7) that tb(K') +rot(K) is always
odd, if tb(K) = —1 — n, then rot(K) = 2p — n for some integer p with 0 < p < n.

For any non-negative integers n and p with p < n, a Legendrian unknot K with
th(K) = —1 —n and rot(K) = 2p — n can be realized by p times positive stabilizations
and (n —p) times negative stabilizations from the Legendrian unknot with tb = —1 shown
in Figure 7. We denote the Legendrian unknot obtained by such stabilizations by K, ,,.
See Figure 8.

Since the unknot is Legendrian simple ([5] Theorem 1.5), each Legendrian unknot is
Legendrian isotopic to kK, , for some non-negative integers n and p with p < n.



4 Rack coloring invariants of Legendrian knots

In this section, we introduce rack coloring invariants of Legendrian knots. We define a
bi-Legendrian rack and an invariant of Legendrian knots derived from a bi-Legendrian
rack. Furthermore, we present distinguishing results of Legendrian knots by using bi-
Legendrian rack coloring numbers. We also mention the fundamental bi-Legendrian rack
of a Legendrian knot, which is introduced by Karmakar, Saraf and Singh in [12].

Before that, we recall the definitions of racks and quandles.

Definition 5 ([11][16][8]). (X, *) is called a rack if X is a set with a binary operation
satisfying the following conditions for all x,y,z € X :

xx: X — X is a bijection,
(x*xy)*xz=(rxz)*(y=xz).
A rack which satisfies z * x = x for all x € X is called a quandle.

We denote the inverse map of * x by * x.

Since the axioms of quandles correspond to the Reidemeister moves, quandle colorings
of knot diagrams bring knot invariants, such as quandle coloring numbers and the funda-
mental quandle. We apply the same idea to Legendrian knots. Namely, we consider the
axioms correspond to the Legendrian Reidemeister moves in order to obtain invariants of
Legendrian knots.

We introduce a bi-Legendrian rack as a small modification of a Legendrian rack defined
in [2].

Definition 6 ([13]). (X,x*, f,g) is called a bi-Legendrian rack if (X, *) is a rack and f
and g are maps on X satisfying the following conditions for all z,y € X :

Jog=golf,
fg(z*xx) =2,

flxxy) = f(z) *y,

g(xxy) = g(z) xy,
zx fly) =z *y,
zxg(y) =z *y.

Remark 3. If (X, f) is a Legendrian rack in the sense of Definition 4 in [2], then
(X, %, f, f) is a bi-Legendrian rack. Hence a bi-Legendrian rack is a generalization of a
Legendrian rack.

Remark 4. Let (X, %, f, g) be a bi-Legendrian rack. Then (X, %) is a quandle if and only
if ¢ is the inverse map of f.

Proposition 4.1 ([13]). Let (X, %, f,g) be a bi-Legendrian rack. Then f and g are
automorphisms of (X x).
)-

Definition 7 ([12]). Let (X1, *1, f1,91) and (Xa, %9, fo,g2) be bi-Legendrian racks. A
bi-Legendrian rack homomorphism ¢ : (Xy,%*q, f1,91) — (Xa, %2, f2,92) is a map ¢ :
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X — X satisfying the following conditions:

o(x*1y) = o(x) *2 ©(y),
po fi=faop,
©ogL=g20p.

Example 2. Let (G, *) be a conjugation quandle, i.e. G is a group and z *y = y txy
for z,y € G. Take an elemmaent z contained in the center of GG, and define a map f on
G by f(z) = zz. Then (G, x, f, f1) is a bi-Legendrian quandle.

Example 3. Let (X, ) be a constant rack, i.e., x * y = o(z) for some bijection o on X.
For maps f and g on X, we can easily check that (X, x, f,¢) is a bi-Legendrian rack if

and only if
1

fog=gof=o0"
holds. Hence any constant bi-Legendrian rack is obtained as follows.
Let X be a set. Take bijections f and g on X such that they are commutative. Define a
binary operation * on X by

zxy:=(fog) ' (v).
Then (X, %, f,g) is a constant bi-Legendrian rack.

Example 4. (Z/8Z,x, f,g) is a bi-Legendrian rack with f # ¢ if we define an operation
x and maps f and g on Z/8Z by

Txy = 3z + 2y,
flx) =2 +4,
g(x) =bx+4

for x,y € Z/8Z.

In this article, an arc of a front diagram of a Legendrian knot is defined as a part of
the diagram each of whose end is either an undercrossing or a cusp and which contains
no undercrossings and no cusps in its interior.

Definition 8. Let D be the front diagram of a Legendrian knot and (X, *, f,g) a bi-
Legendrian rack. An (X, f, g)-coloring of D is a map from the set of the arcs of D to
X such that at each crossing and each cusp the relations between colors of arcs shown in
Figure 9 hold. The set of the (X, x, f, g)-colorings of D is denoted by Col(D, X).

Proposition 4.2 ([13]). Let K be a Legendrian knot in (R3, s4) and D the front dia-
gram of K. Let (X,x*, f,g) be a bi-Legendrian rack. Then the number of the (X, *, f, g)-
colorings of D is invariant under the Legendrian Reidemeister moves. Namely, #Col(D, X))
is an invariant of a Legendrian knot K, denoted by #Col(K, X).

We present distinguishing results of Legendrian knots by using bi-Legendrian rack
coloring numbers. We state that bi-Legendrian rack coloring numbers can distinguish
all Legendrian unknots with the same Thurston-Bennequin number. We also consider

10



f(z) T

Figure 9: Relations at crossings and cusps (1).

pairs of Legendrian knots which cannot be distinguished by bi-Legendrian rack coloring
numbers.

Recall that each Legendrian unknot is Legendrian isotopic to K,, for some non-
negative integers n and p with p < n. See Figure 8. Notice that tb(K,,) = —1 —n,
rot(Ky,) = 2p —n.

Theorem 4.3 ([13]). For any non-negative integer n, there exists a bi-Legendrian rack
(Xy, *, f,g) such that n + 1 Legendrian unknots K,, (0 < p < n) are simultaneously
distinguished by #Col(Kn, X;).

Remark 5. K, with a fixed n and different p cannot be distinguished by Legendrian
rack coloring numbers used in [2].

Theorem 4.3 implies that bi-Legendrian rack coloring numbers can distinguish some
Legendrian knots with the same Thurston-Bennequin number. A natural question to
consider next is whether or not bi-Legendrian rack coloring numbers can distinguish pairs
of Legendrian knots with the same Thurston-Bennequin number and the same rotation
number. Although we do not have a complete answer, the following two theorems give a
partial answer of this question.

Theorem 4.4 ([13]). If two Legendrian knots K and K are of the same knot type and
satisty tb(Ko) = tb(K7) and rot(Ky) = rot(Ky), then #Col(Ky, X) = #Col(K;, X) for
any bi-Legendrian quandle (X, x, f, g).

Recall that K5 and K3 in Figure 6 are of the same knot type m(52), th(Ks) = th(K3) = 1
and rot(K,) = rot(K3) = 0.

Theorem 4.5 ([13]). Let K5 and K3 be the Chekanov knots shown in Figure 6. Then
#Col(Ky, X) = #Col(K3, X) for any bi-Legendrian rack (X, x, f, g).

We explain the fundamental bi-Legendrian rack of a Legendrian knot, which is intro-
duced by Karmakar, Saraf and Singh in [12]. The fundamental bi-Legendrian rack of a
Legendrian knot is a Legendrian analogue of the fundamental quandle of a topological
knot.

Let S be a set. We define the set of words W (.S) generated by S satisfying the following
conditions:

(i) x € W(S) for any x € S,

11



(i) zxy, z*y, f(x) and g(x) € W(S) for any z,y € W(S).

We define the free bi-Legendrian rack generated by S, denoted by FOLR(S), as the set
of equivalence classes of elements of W (S) modulo the equivalence relation generated by
the following relations:

(x*y) *

(z*y)

IS

~
~

for any x,y,z € W(S).
Free bi-Legendrian racks satisfy the universal property as follows.

Proposition 4.6 (Proposotion 4.2 [12]). Let S be a set. Then, for any bi-Legendrian
rack (X, #1, f1,01) and any map ¢ : S — X, there exists a unique bi-Legendrian rack
homomorphism @ : (FbLR(S),*, f,g) — (X, *1, f1, g1) satisfying @ o = ¢, where ¢ is the
inclusion from S to FbLR(S).

We define the fundamental bi-Legendrian rack of a Legendrian knot K from the front
diagram D of K as follows. Let S be the set of the arcs of D. Define the fundamental
bi-Legendrian rack bLR(D) associated to D as the quotient of the free bi-Legendrian rack
FbLR(S) by the equivalence relation generated by the relations at crossings and cusps
shown in Figure 9.

Proposition 4.7 (Theorem 4.3 [12]). Let K be a Legendrian knot in (R?, £y4) and D
the front diagram of K. Then the fundamental bi-Legendrian rack bLR(D) associated
to D is invariant under the Legendrian Reidemeister moves. Namely, the fundamental
bi-Legendrian rack is an invariant of a Legendrian knot K, denoted by bLR(K).

The fundamental bi-Legendrian rack of a Legendrian knot is the universal invariant
for bi-Legendrian rack coloring numbers in the following sense.

Remark 6. Let D be the front diagram of a Legendrian knot K and (Xi,x*i, f1,91)
a bi-Legendrian rack. An (X, %1, f1, g1)-coloring of D defined in Definition 8 is a ho-
momorphism from the fundamental bi-Legendrian rack bLR(K) of K to (X7, *1, f1,01)-
Hence #Col(K, X;) is the cardinality of the set of the homomorphisms from bLR(K) to

(X1,*17f1791)~

The fundamental quandle of a topological knot can be recovered from the fundamental
bi-Legendrian rack of a Legendrian knot.

Remark 7. For a Legendrian knot K with the knot type I, we obtain the fundamental
quandle of K from the fundamental bi-Legendrian rack bLR(K) of K by adding the
relation f(z) = g(x) = x for any generator = of bLR(K).

12



At the end of this section, we define a 4-Legendrian rack, which is a generalization
of a bi-Legendrian rack. We state that a 4-Legendrian rack coloring number and the
fundamental 4-Legendrian rack are invariants of Legendrian knots.

Definition 9 ([14]). (X, *, fL, fr, 91, 9r) is called a 4-Legendrian rack if (X, *) is a rack

and fr, fr, g and gr are maps on X satisfying the following conditions for all z,y € X :

frogr=gro fo = frogr = gro fr.
frgr(x xx) =,

fr(zxy) = fr(z) xy,
fr(zxy) = [r(z) xy,
gr(zxy) = go(z) * v,
gr(z *y) = gr(z) x y,
z* fr(y) = xx* fr(y) =z *y,
rxgr(y) =xxgrly) =c*y

Remark 8. If (X, %, f, g) is a bi-Legendrian rack, then (X, x, f, f, g,¢9) is a 4-Legendrian
rack. Hence a 4-Legendrian rack is a generalization of a bi-Legendrian rack.

Remark 9. Let (X, *, f1, fr, 91, 9r) be a 4-Legendrian rack. Then (X, %) is a quandle if
and only if g, is the inverse map of fr and gg is the inverse map of f.

Proposition 4.8 ([14]). Let (X, *, fr, fr, 91, gr) be a 4-Legendrian rack. Then f1, fr, g1,
and gg are automorphisms of (X, ).

Definition 10. Let (X1, *1, fi.1, fi,r, 91,0, 91,r) and (Xo, %2, fo1, fo,r, 92,1, g2,r) be
4-Legendrian racks. A 4-Legendrian rack homomorphism

o (X1, %1, fin, fir 910, 91.8) — (Xo, %2, fo.r, fo.r 2.0, 92.R)

is a map ¢ : X; — Xy satisfying the following conditions:

p(z*1y) = p(x) =2 9(y),

po firL= farowp,

0o fir= foar0 ¥,

¥Yoag1,L = 92,L0°®,

¥ O g1,R = g2,R O Y.
Definition 11. Let D be the front diagram of a Legendrian knot and (X, x, 1, fr, 91, 9r)
be a 4-Legendrian rack. An (X, *, fr, fr, 9L, gr)-coloring of D is a map from the set of
the arcs of D to X such that at each crossing and each cusp the relations between colors

of arcs shown in Figure 10 hold. The set of the (X,x, fr, fr, 91, gr)-colorings of D is
denoted by Col(D, X).

The difference between bi-Legendrian rack colorings and 4-Legendrian rack colorings is
to distinguish left cusps and right cusps.

13
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Figure 10: Relations at crossings and cusps (2).
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Proposition 4.9 ([14]). Let K be a Legendrian knot in (R3?, £44) and D the front
diagram of K. Let (X,x*, fr, fr, 91, gr) be a 4-Legendrian rack. Then the number of the
(X, *, fL, fr, 91, gr)-colorings of D is invariant under the Legendrian Reidemeister moves.
Namely, #Col(D, X) is an invariant of a Legendrian knot K, denoted by #Col(K, X).

Recall that we state in Theorem 4.4 that two Legendrian knots with the same knot
type and the same classical invariants cannot be distinguished by bi-Legendrian quandle
coloring numbers. Even if we make use of 4-Legendrian quandle coloring numbers, these
Legendrian knots still cannot be distinguished as follows.

Theorem 4.10 ([14]). Let Ky and K; be Legendrian knots in (R?, £q). If Ko and K,
are of the same knot type, tb(Ky) = tb(K;) and rot(Ky) = rot(K;), then #Col(Ky, X) =
#Col( K1, X) for any 4-Legendrian quandle (X, *, fr, fr, 91, 9r)-

We also define free 4-Legendrian racks and the fundamental 4-Legendrian rack of a
Legendrian knot in the similar way as the bi-Legendrian rack case.

We define the fundamental 4-Legendrian rack of a Legendrian knot K from the front
diagram D of K as follows. Let S be the set of the arcs of D. Define the fundamental
4-Legendrian rack 4L R(D) associated to D as the quotient of the free 4-Legendrian rack
FALR(S) by the equivalence relation generated by the relations at crossings and cusps
shown in 10.

Proposition 4.11 ([14]). Let K be a Legendrian knot in (R?, ,4) and D the front dia-
gram of K. Then the fundamental 4-Legendrian rack 4 LR(D) associated to D is invariant
under the Legendrian Reidemeister moves. Namely, the fundamental 4-Legendrian rack
is an invariant of a Legendrian knot K, denoted by 4LR(K).

The fundamental 4-Legendrian rack of a Legendrian knot is the universal invariant for
4-Legendrian rack coloring numbers in the following sense.

Remark 10. Let D be the front diagram of a Legendrian knot K and

(X1, %1, f1,L, f1,R, 91,1, 91,r) @ 4-Legendrian rack. An (X, *1, f1.1, f1,r, 91,1, 91,r)-coloring
of D is a homomorphism from the fundamental 4-Legendrian rack 4LR(K) of K to
(X1, %1, f1,0, f1,r, 91,1, 91,r). Hence #Col(K, X;) is the cardinality of the set of the homo-
morphisms from 4LR(K) to (X1, *1, fi.r, f1.r, 91.0, 91.R)-

The fundamental bi-Legendrian rack can be recovered from the fundamental 4-Legendrian
rack.
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Remark 11. We obtain the fundamental bi-Legendrian rack bLR(K) of a Legendrian
knot K from the fundamental 4-Legendrian rack 4LR(K) of K by adding the relation

fo(@) = frle)(= f(x)) and go(z) = ga(x)(= g(x)) for any generator « of 4LR(K).

Recall we state in Theorem 4.5 that the Chekanov knots cannot be distinguished by bi-
Legendrian rack coloring numbers. Even if we make use of the fundamental 4-Legendrian
rack, the Chekanov knots still cannot be distinguished as follows.

Theorem 4.12 ([14]). Let Ky and K3 be the Chekanov knots shown in Figure 6. Then
4LR(K>,) and 4LR(K3) are isomorphic.

Though invariants of Legendrian knots derived from 4-Legendrian racks are theoreti-
cally stronger than those from bi-Legendrian racks, it has not been known yet whether
they are actually stronger. We have not found a pair of Legendrian knots which cannot
be distinguished by invariants from bi-Legendrian racks but can be distinguished by those
from 4-Legendrian racks.
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