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1 Introduction

One of the early applications of the signature invariant was the determination of the 4-
genus and the unknotting number of two-strand torus knots [14]. Indeed, all knots K
with definite symmetrised Seifert form satisfy the equality

|0 (K)| = 294(K) = 29(K),

where o(K), g4(K), g(K) denote the signature invariant, the topological 4-genus, and the
Seifert genus of K, respectively. Precise computations of the signature invariant of torus
links T'(m,n) in the early 80’s revealed that the ratio between their signature invariant
and their Seifert genus satisfies

lim o(T(m,n))

=1,
m,n—00 g(T(m7 n))

rather than 2 [10], making an easy determination of the smooth 4-genus of torus knots
impossible. It took more elaborate techniques to achieve this: some kind of gauge theory
or Khovanov homology [11, 16]. Interestingly, the topological 4-genus of torus links is
still unknown. Recent results show that the ratio between the topological 4-genus and
the Seifert genus satisfies
o G nn) 14
mn—oo g(T(m,n)) — 27

suggesting that the asymptotic ratio ;—4 might actually be 2, as for two-strand torus

knots [2]. A positive answer to the following question would imply that.
ga(T(m,n)) 1

Question 1. Does lim = — hold?
m,n—00 mn 4

In order to get a better understanding of the topological 4-genus, we propose to study a
relative version of it, the topological cobordism distance d,, defined as follows, compare [4,
5]. Let Ly, Ly be two oriented links in S*. We define d, (L1, Ly) as the maximal absolute
value of the Euler characteristic y(3) among all topological submanifolds ¥ C S3 x [0, 1]
with 0¥ = L1 x {0} UX = Ly x {1}, all whose connected components intersect both
¥ = L; x {0} and ¥ = Ly x {1} non-trivially. With this definition, for all knots K,
294(K) = d, (K, O), where O denotes the trivial knot. The following statement is a slight
strengthening of Theorem 1 in [5].



Theorem 1. There exists a constant ¢ > 0, so that for all m,n, N € N with N > %mn:
d(T(m,n), T(2,N)) =0(T(2,N)) —o(T(m,n)) + E(m,n),

with an error term E(m,n) satisfying |E(m,n)| < c(m+n+1).

Remark 1. The difference o(T(2, N)) — o(T(m,n)) is positive, since the values of the

signature invariant involved are o(T'(2, N)) = N —1 > 3mn — 1 and o(T(m,n)) ~ 22,
see again [10]. For the same reason, the error term E(m,n) is asymptotically negligable,
making Theorem 1 much sharper than the corresponding bound on the cobordism distance
derived in [1].

Remark 2. The condition N > %mn in Theorem 1 may come a bit arbitrary; however,
there is no way around a restriction on N, since for N ~ %", the difference o(7'(2, N)) —
o(T(m,n)) vanishes up to linear order in m and n. Interestingly, a similar equality with
the right hand side reversed, o(T(m,n)) — o(T(2, N)) + E(m,n), could hold again for
small values of N. In particular, the case N = 1 essentially boils down to a positive
answer to Question 1.

In order to estimate the topological 4-genus, or the cobordism distance between links,
we need tools that produce lower and upper bounds on these quantities. For the latter,
we will use the method of nullhomologous twisting introduced by McCoy [13]. This is
completely different from the construction of asymptotically minimal smooth cobordisms
between torus links of type 7'(d, d) and large 2-strand torus links in the recent work [3].

For the lower bound, we will use the signature invariant. Indeed, the known inequality
lo(K)| < 2¢4(K) for all knots K, see for example [6], readily generalises to

|0(L1) = o(Le)| < dy(Ly, L),

for all oriented links Lq, Ls. It turns out that Theorem 1 has an interesting consequence
concerning all topological concordance invariants that share certain basic properties with
the signature invariant. Inspired by [4], we define a maximal clover invariant to be an
additive link invariant p with the following two properties:

(i) p(T(2,N)) =0o(T(2,N)), for all N € Z,
(i) |p(L1) — p(L2)| < dy (L1, Lo), for all oriented links Ly, L.

The first property asks that maximal clover invariants coincide with the signature invari-
ant on closures of 2-braids. The second property implies that topologically concordant
links, i.e. pairs of links with vanishing topological cobordism distance, have equal max-
imal clover invariants. As the term ‘maximal’ suggests, there is a more general notion
of clover invariant, where the first property is asked to be true for the trefoil knot only:
p(31) = 0(31). As explained in [4], all Levine-Tristram signature invariants oz~ with
0 € (5,3] (see [12, 18] for a definition) are clover invariants, but only the classical sig-
nature invariant is a maximal clover invariant. Moreover, neither of the well-established
smooth concordance invariants s and 7 are clover invariants, since these coincide with the
smooth 4-genus on torus knots, up to sign [16, 15]. In fact, we do not know any example
of a maximal clover invariant, beside the signature invariant.



Question 2. Does there exist a maximal clover invariant other than the classical signature
invariant?

A positive answer to the above question would yield a striking characterisation of the
signature invariant. We do not expect this, even though the following consequence of

Theorem 1 poses a strict restriction on the values of maximal clover invariants on torus
links.

Corollary 1. There exists a constant C' > 0 with the following property. For all maximal
clover invariants p, and for all m,n € N:

p(T(m,n)) > %mn —C(m+n+1).

Here, as well as in Theorem 1, it is possible to extract an explicit constant C' (resp. ¢) of
order less than one hundred from the proof. Corollary 1 has an interesting consequence:
the signature invariant is minimal among all maximal clover invariant on torus links,
up to an affine term. Moreover, when combined with a positive answer to Question 1,
Corollary 1 yields the following limit for all maximal clover invariants p:

o pTlmm) 1
m,n—0o0 mmn

We present the proofs of Theorem 1 and Corollary 1 in the next two sections, re-
spectively. As alluded to before, they are both variations on recent work about minimal
cobordisms between torus links and clover invariants [5, 4].

2 Nullhomologous twisting

Freedman’s work in the early 80’s provided examples of knots that bound topological
subsurfaces in the 4-ball, but not smooth subsurfaces of the same topological type. In
particular, all knots with trivial Alexander polynomial are topologically slice, i.e. they
bound topological submanifolds homeomorphic to a disc in the 4-ball [8]. This fact quickly
led to the conclusion that the Thom conjecture about the 4-genus of algebraic links was
not true in the topological setting [17]. As mentioned in the introduction, the topological
4-genus of torus links still waits to be determined. An important step in this direction
was taken by McCoy, who derived an upper bound on the topological 4-genus from an
operation called nullhomologous twisting [13].

Let L C S? be an oriented link and let C' C S?\ L be an unknotted circle whose total
linking number with L is zero. The operation that introduces a positive or negative full
twist along the circle C to the link L is called a positive or negative nullhomologous twist.
An example of a negative nullhomologous twist is depicted in Figure 2. In that figure, all
six strands are supposed to be oriented from left to the right; the boxes labelled £1 stand
for a positive or negative full twist on three strands.

The main result in [13], Theorem 1, implies the following: let K C S be a knot that
can be transformed into the trivial knot by a sequence of k£ positive nullhomologous twists
and k negative nullhomologous twists, then g4(K) < k. Similar to Feller’s upper bound on



(
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Figure 1: negative null-homologous twist

the topological 4-genus via the Alexander polynomial of knots [7], 2¢4(K) < deg(Ak(t)),
McCoy’s bound takes Freedman’s disc theorem as main input. However, the applications
of these two upper bounds are quite different. It turns out that nullhomologous twisting
is better suited for torus knots. Indeed, McCoy showed that the ratio between the topo-
logical and smooth 4-genus of torus links was essentially bounded above by %, a bound
that was quickly improved to ;—‘; in [2]. In these applications, only negative nullhomol-
ogous twists are used. The full strength of McCoy’s result comes to play in [5], where
the topological cobordism distance between ‘thick and thin’ torus knots is computed, in
particular between torus knots of type T'(m,m + 1) with large m € N, and 7'(2, N) with
N > %mQ. In the rest of this section, we present the method of proof by deriving a slightly
more general result, Theorem 1.

Proof of Theorem 1. Fix m,n,N € N with N > 3mn. The two expressions o(T'(m,n))
and d, (T'(m,n),T(2, N)) involved in the statement of Theorem 1 enjoy a kind of Lipschitz-
continuity in both parameters m,n, as follows: the torus link 7'(m,n) can be transformed
into T'(m,n — 1) by smoothing n crossings in its standard diagram, the closure of the
braid (oy---0,-1)". Smoothing a crossing of a link is a special case of an operation
called saddle move, which changes the signature invariant of that link, and its cobordism
distance to any other link, by at most one. As a consequence, we may assume that both
parameters m, n are even, without changing the validity of the statement of Theorem 1,
since we allow for an affine error term E(m,n) with |E(m,n)| < ¢(m+n+1). Moreover,
for simplicity, we will assume m = 2p, n = 2q with ged(p,q) = 1, which ensures that
T(p,q) is a knot. The case ged(p, q) > 1 can be dealt with by replacing the link 7'(p, q)
by a knot connected to the latter by at most p — 1 saddle moves, compare the proof of
Theorem 1 in [4]. Now comes a key observation: the link 7'(2p, 2q) is a 2-cable of the knot
T(p,q). It is a well-known fact that the knot T'(p, ¢) can be transformed into the trivial
knot by a sequence of %(p — 1)(¢ — 1) negative crossing changes. This is the ‘easy’ part
of the Milnor conjecture. When looking at T'(2p, 2q) as a 2-cable of T'(p, q), we obtain
the following consequence, which was already observed by McCoy [13]: the link T'(2p, 2q)
can be transformed into the link 7°(2,2pq) by a sequence of t = %(p -Dg-1) =~ %pq
negative nullhomologous twists. The special case of a single nullhomologous negative
twist transforming the link 7(4,6) into 7'(2,12) is sketched in Figure 2. The interested
reader is invited to check that the two braids depicted there indeed close up to the links
T(4,6) and T'(2,12).

At this point, we invoke the method of ‘twisting up’ used in [4] and [5]. When passing
from T'(2p,2q) to T(2,2pq) by t negative nullhomologous twists, we may further apply
t positive nullhomologous twists that increase the framing of the resulting two-strand
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Figure 2: negative twist relating 7'(4,6) and T'(2,12)

;

torus link to 7°(2,2pg + (p — 1)(¢ — 1)) =~ T'(2,3pq). This is true, since we can transform
T(2,N) into T'(2, N + 2) by a single positive crossing change. Altogether, this means
that we can transform the link 7'(2p, 2¢) into T'(2, 3pq) by a sequence of about ¢ negative
nullhomologous twists and ¢ positive nullhomologous twists. At last, a ‘relative version’
of McCoy’s upper bound g4 < ¢, explained in the proof of Theorem 1 in [5], implies

dy(T(2p,2q),T(2,3pq)) < 2t = pq,

up to an affine error term in p, ¢ (in a nutshell, this relative version derives from McCoy’s
bound via the equation dy (K1, K3) = 2g4(K1#K), for all knots Ky, Ky C S°, where
K # K 5 denotes the connected sum of K with the mirror image of K5). Recalling m = 2p,

n =2q, o(T(m,n)) = imn, o(T(2,N)) = N — 1, we obtain

dy(T(m,n),T(2,N)) < o(T(2,N)) = o(T(m,n)) + E(m, n),

with an error term E(m,n) satisfying |E(m, n)| < ¢(m+n+1), for N = 3pg = 3mn. We
conclude the proof of Theorem 1 with the following two remarks. First, the last inequality
can be replaced by an equality, since the difference o(7'(2, N)) —o (7' (m,n)) is also a lower
bound for d,(T'(m,n),T(2,N)). Second, the case N > 3mn is an immediate consequence
of the limit case N = %mn, since increasing N by one increases the right hand side by
one, while it changes the left hand side by at most one.

O

3 Maximal clover invariants

In this short section, we derive a lower bound on the values of maximal clover invariants
on torus links. Recall that a maximal clover invariant is an additive link invariant p which
coincides with the signature invariant on closures of 2-braids, and satisfies the following
Lipschitz property for all links Lq, Lo:

|p(L1) — p(L2)| < dy(L1, La).

Proof of Proposition 1. Let p be a maximal clover invariants and let m,n € N. Choose
N > %mn. Theorem 1 together with the Lipschitz property of p implies:

[p(T(m,n)) — p(T(2,N)| < d\(T(m,n),T(2,N))
<o(T(2,N)) —o(T(m,n)) +c(m+n-+1)
<o(T (2,N))——mn+C(m—|—n—|—1)



for a suitable constant C' > 0, easy to extract from Theorem 5.2. in [10]. Finally, the
normalisation p(7'(2,N)) = o(7'(2, N)) implies

p(T(m,n)) > %mn —C(m+n+1).

O

A similar bound for all clover invariants was derived in [4], with the quadratic term
%mn replaced by 1—58mn. As a consequence of that result, the Levine-Tristram signature
invariant T omil is minimal among all clover invariant on torus links, up to an affine
term. There is a hierarchy of clover invariants py, obtained by requiring pn(7'(2,k)) =
o(T(2,k)), for all k € Z with |k| < N, for any given N > 3. In the case of odd N, we may

expect similar (sharp) lower bounds on py(7'(m,n)), with the minimum possibly attained
by the Levine-Tristram signature invariant o ,.;;1,. Here the number eri(i—w) € §1 s

the location of the ‘last jump’ of the signature function of the knot 7'(2, N). This could
yield a purely topological interpretation of the results by Gambaudo and Ghys on the
asymptotic profile of the Levine-Tristram signature function of torus links [9].
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