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1 Introduction

We explain a way to prove the volume conjecture for hyperbolic double twist knots by
using the complex tetrahedron associated with the geometric SL(2,C) representation of
the fundamental group of the complements. The volume conjecture for knots and links is
the following, which is based on Kashaev’s conjecture proposed in [4].

Conjecture 1 (Volume conjecture [6]). For a knot or link K,
= v3[[S%\ K]

where v is the volume of the regular ideal tetrahedron and [|S®\ K|| is Gromov’s simplicial
volume of the complement, which is the sum of Gromov’s simplicial volumes of hyperbolic
pieces of the JSJ decomposition of S3\ K.

This conjecture is generalized as follows.

Conjecture 2 (Complexified volume conjecture [7]). For a hyperbolic knot or link K,

v (K)
2 i TN

= Vol(S*\ K) ++v/—1CS(S*\ K)

where CS(5%\ K) is the Chern-Simons invariant and Vol(S?\ K) is the hyperbolic volume
of the complement.
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Figure 1: (k,t) double twist knot or link K. K is a link If s and ¢ are both odd, then K is a link, and if
otherwise K is a knot.

Here we investigate (s,t) double twist knot given in Figure 1. Conjecture 2 is solved
for some knots and links, but not so much. For the figure eight knot, it is easy to prove by



undergraduate calculus. Proofs for other prime knots are not so easy and Ohtsuki [9] gave
a proof for 5, knot by using the Poisson sum formula adding to the saddle point method
used in Kashaev’s paper [4] where he discovered the relation between certain quantum
invariants and the hyperbolic volume of the knot complement. Then Ohtsuki-Yokota
[11] gave proofs for prime six crossings knots, Ohtsuki [10] gave proofs for prime seven
crossings knots. For prime knots with larger crossing numbers, the volume conjecture has
not been proved yet. Recently, Chen-Zhu [2] announced a proof of the volume conjecture
for an infinite family of twist knots, but not for all twist knots. A twist knot is the (2, s)
double twist knot for some integer s.
Here, we show the following.

Theorem 1. Let K be a hyperbolic (s,t) ndouble twist knot or link K given in Figure 1.
Then we have J %
M BT _ vy so i),

27 lim
N—oco

To prove this theorem, we first investigate the eigenvalues of the representation matrices
of some elements of the fundamental group 71(S \ K). Then compare these eigenvalues
with the parameters at the saddle point of the volume potential function constructed
from the colored Jones polynomial. At the end, we show that the value of the volume
potential function at the saddle point coincides with the complex volume Vol(S? \ K) +
V—1CS(S8%\ K) by comparing with the Neumann-Zagier function. Here we use the fact
that the double twist knot or link is obtained by surgeries along two components of the
Borromean rings and its variations as in Figure 2.

Figure 2: Surgery presentation of double twist knots and links.

2 Representation of the knot group

Before introducing the complexified tetrahedron, we investigate the geometric SL(2,C)
representation of the complement of a double twist knot K. We assign the elements ¢y,

-+ G4, 12, goz of m(S?\ K) as in Figure 3. Then these elements satisfy the following
relations.

G12 = G192, G23 = G293, G1929391 = 1, (1)

g7 = ga32 9003
91t = 923293923~

wle  Nln

g_l _ g 5—519 g 5—51
if s is even, ' BB ifsis odd, (2)
g

[SIESNIES

-1 t —
{94 = 012291912

o + B if ¢ is even, {941 - 912;92912 :1 if ¢ is odd. (3)
g3~ = G122 92012 g
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Figure 3: Elements g1, g2, g3, g4, 912, g23 in 71 (5% \ K).

The following matrices give the geometric SL(2,C) representation p : 71(S%\ K) —

SL(2,C) where g1, go, g3, g4 are mapped to parabolic matrices with eigenvalues —1, go3
-1

is mapped to the diagonal matrix p(ga3) = (u 2), and the eigenvalues of p(g12) are v

0
and v~!. Then the relations gigs = g12, g293 = ¢23, 91929394 = 1 imply that the following
representation.

_2u u—l
o= (T2 ),

ut+l  u+l
2 _ (ut1)? (v2+1)—8uv+(ut1)(v—1)vD
RTEST 2v(u—1)(u+1)
p<g2) ((u+1)2(v 24+1)—8uv—(u+1)(v=1)vD _ 2u ) ’
2v(u—1)(u+1) u+1
2 (u+1)2('u +1)—8uv+(u+1)(v—1)vVD
_ u+1 2v(u—1)(u+1)
p(gs) = (_(u+1)2(v2+1)—8uv—(u+1)(v—1)@ - 234( ) ,
2uv(u—1)(u+1) ut1
2w u(u-l)
plgs) = | ! “il , where D = (u+ 1)*(v + 1)* — 16uv.
u(u+1) T utl

The elements of SL(2,C) acts on C = JH? by the linear fractional transformation, and
the fixed points p1, pa, p3, pa of p(g1), p(g92), p(g3), p(g4) by this action are as follows.

(u+1)2(v*+1) = Suv + (u+ 1) (v — 1)v/D

= 1 pu—
pl Y p2 QU(U, _ 1)2 )
(u+1)*v?*+1) —8uv — (u+1)(v —1)vD
Pz = —u D) ) by = —u.
2v(u—1)

The fixed points of p(ge3) are 0 and oo, and the fixed points of p(g12) are

(u+1)2%(v+1) = 8u+ (u+1)vVD (u+1)%(v+1) = 8uv — (u+1)vD
a A(u—1) o A(u—1)v ‘




Let p’ be the representation similar to p where g5 is mapped to the diagonal matrix
-1
0 (g12) = (U 0 S) instead of go3. Such p’ is obtained by the transformation matrix

4(u—1) 2(u—1)(v—1)
1 (ut1)(v+1)2=8v+(v+1)vVD
4(v—1)

Q=

(_ (u+1)? (v+1)—8u+(u+1)vVD (u+1)(v+1)(u+v)—8uv+(uv—l)@)

For g € m(S?\ K), let p'(9) = Q7' p(g) Q, then we have

2 v—1 2 v—1
Tl T vl Tkl w(utl

pl(gl) = < ﬁ _2> ’ Pl(gz) = ( v(v—l) ( 2v)> )
v+1 w1 T Torl T vl

% v (@2 41)(v+1)2—8uv+(u—1) (v+1)vD)
/ — ot B 2u(v—1)(v+1)
P'(gs) (u®+1)(v+1)% —8uv—(u—1) (v+1)vD 2 ’
2u(v—1)(v+1) v+1
% ((u2+1)(v+1)2—8uv+(u—1)(v+1)vD)
/ — ot 2u(v—1)(v+1)
p'(9) (u241) (v+1)2—8uv—(u—1) (v+1)VD 2
2uv(v—1)(v+1) v+1

The fixed points i, g2, g3, g1 of p'(91), p'(g2), p'(g3), p'(ga) on OH? are

(u? + 1) (v 4 1)? = Suv + (u — 1) (v + 1)vD
q1 = 17 q2 = —V, qs = —v 2U<’U — 1)2 )
(u? +1)(v+1)% = Suv + (u — 1)(v + 1)v/D

2u(v —1)2 '

qqs =

The fixed points of p/(g12) are 0 and oo, and the fixed points of p(go3) are

(W +1D(v+1)2 -8+ (v+1)VD (u® 4+ 1) (v + 1) = 8uv — (v + 1)\/5‘

A(v—1) ’ du(v —1)

The relations (2) and (3) imply that the eigenvalues v and v are determined by

(-u)*=p  (-0)" =a (4)

Moreover, the geometric representation is given by the solution among the solutions of
(4) satisfying

slog(—u) + logp, ' = £2mv/—1, —tlog(—v) +log gy ' = £27v/—1. (5)

3 Complexified tetrahedron

In the previous section, we introduced the eigenvalues u and v of p(go3) and p(g12). Here we
give a geometric interpretation of these values. To do this, we introduce the complexified
tetrahedron.



Before introducing the complexified tetrahedron, we recall generalized tetrahedron,
which is determined by four planes in general position in the hyperbolic space. In the
hyperbolic space, two or three planes sometimes do not intersect even if they are in
general position, but we can consider some geometric object as in Figure 4. For example,
if two plane do not intersect, then the edge corresponding to these planes is the common
perpendicular line segment. The edges of such tetrahedrons are parametrized by dihedral

usual tetrahedron truncated tetrahedron ideal octahedron doubly truncated tetrahedron

Figure 4: Generalized tetrahedrons in the hyperbolic space.

angles and lengths, and it is natural to consider the angle as a purely imaginal number
and the length as a real number. Here we generalize these parameters of generalized
tetrahedrons to actual complex numbers as in Figure 5. The length ¢ is generalized to

Figure 5: Complexification of the dihedral angle and the edge length.

{+ 116, and i 0 is generalized to 76 + £.

Let B be the Borromean rings. The double twist knot is obtained by surgeries along
two components of B as in Figure 2. The complement of B has a hyperbolic structure,
and is divided into two copies of the regular ideal octahedron in Figure 4, which is one of
the extremal generalized tetrahedron. In other words, glueing two copies of the regular
ideal octahedron is a fundamental domain of the action of 71(S®\ B) to the hyperbolic
space H?. The six vertices of the octahedron corresponds to the edges of a tetrahedron,
and its edge lengths and dihedral angles are all zero. The six vertices correspond to
the fixed points of parabolic elements of SL(2,C) representing g1, g2, g3, g1, G12, goz of
7 (S?\ B). For a double twist knot K, the hyperbolic structure of its complement is
obtained as a deformation of the complement of B. For m;(S?\ K), the matrices for gy,
g2, g3, g4 are parabolic, and the matrices for g2, go3 are deformed to a generic matrices.
Actual representations of these matrices are given in the previous section.

Now we look at the fundamental domain of the action of 7;(S*\ K) which is obtained
by a deformation of the regular ideal octahedron. The regular ideal octahedron has six
vertices, and we deform a pair of opposite two vertices. Other four vertices are fixed
points p1, pa, 3, P4 of g1, g2, g3, g4. The elements go3, g12 have axes log, l12, SO We assign



representation p representation p’

Figure 6: Complexified tetrahedron. The left explains the upper part and the right explains the lower
part. These two are glued at blue lines and p; and ¢; are identified.

complex parameters to these axes u, v, which is the eigenvalues of go3, g12. Let r1, 79, 73,
r4 be the foots of perpendicular on ly3 from py, po, ps, p4, and, ry, r5, 15, 7 be the foots
of perpendicular on ly5 from py, ps, p3, ps. Let us define eight faces piparary, papsrsra,
D3DaTaT3, PaPIT1T4, P1D2THTY, DaDsThTh, D3parTyrh, pap17iry. These faces are not flat and are
not defined uniquely, but the edges of the faces are straight lines and we define these
faces topologically. Let T be the subset of H? surrounded by these eight faces, and here
we call T a complezified tetrahedron corresponding to the double twist. Let 7" be similar
complexified tetrahedron constructed from (—u)py, (—u)ps, (—u)ps, (—u)ps, (—u)li2 and
(—u)laz = la3. Then T and T” are adjacent at the face pspsrars and TUT” is a fundamental
domain of the action of m(S?\ K) to H3.

Let K be the (6,2) double twist knot, which is the twist knot 8; in Rolfsen’s table.
Then the eigenvalues u, v satisfying (4) and (5) where the sums are both 4277 is

u = —0.619307 — 0.8845671, v = 1.72565 + 2.060551,
and from these u, v, we get the complex numbers py, -, p4, p1, - - -, qa as follows.

pr=1 pyo= 13731 —0.7921i, ps = 1.5511 +0.7240i, p; = 0.6193 + 0.88454,
¢ =1, g»=—1.7256 — 2.0605i, g3 = —0.2388 + 0.2852i, g4 = —0.0242 — 0.13624,

Now take foots of perpendicular from p; to lo3, we get pictures as in Figure 6. The
blue lines correspond to the four edges representing the equator of the octahedron. The
left picture explains the upper part and the right picture explains the lower part of the
complexified tetrahedron. The line o3 is the axis of the action of g3 and the multiplication
by the eigenvalue u of ty3 maps pa, ps3 to p1, ps. The action of p(ge3) on OH? corresponds
to the multiplication of u2, so we get the picture in Figure 7. Similarly, the action of
0’ (g12) corresponds to the multiplication of v~2 and is also explained the figure.

Observation 1. The complexified tetrahedron described above is a deformation of the reg-
ular ideal octahedron associated with the Borromean rings complement. As a generalized



quadrilateral p1popsps  p1p2p3ps U (—u)p1p2apsps p1p2p3pa U -+ - U (—u) " p1papspa

quadrilateral q1¢2q3q4  ¢14293qa U (—v)q14243¢4 01929394 U -+ - U (—0)q1¢2q3a

Figure 7: The actions of ga3 and ¢g12. The upper row is for the action of p(ga3) and the lower row is
for the action of p/(g12). They act OH? by rotations and shrinking/enlargement around the origin. The
middle pictures correspond to the fundamental domain of the action of m (5% \ K).

tetrahedron, the six edges of the tetrahedron correspond to the six vertices of the regular
ideal octahedron, and these edges are parametrized by all zero for the angles and lengths.
For the complexified tetrahedron associated to the double twist knot complement, one
edge has logu = log ps as the angle parameter and the opposite edge has logv = log ¢
as the angle parameter. Moreover, log ps coincides with the length parameter of the first
edge, and log g4 coincides with the length parameter of the second edge. For other edges,
parameters are all zero and they correspond to ideal points on OH?. See Figure 8.

Note that the signature of angles and lengths are not canonically determined. For
example, as length parameters, we may choose — log py, —log q4 instead of log ps, log qy.

4 Colored Jones polynomial and ADO invariant

Let N be an odd integer greater than equal to three. The colored Jones invariant Jy_1(K)
N—-1

of a knot K at ¢ = e~ is equal the ADO invariant AKOy(K "2 ) introduced in [1], where
K is colored by % Here we use the following notations.

¢"=expiF (a€C), {a}=¢"-¢" {n}l={nH{n-1}...{1},



(log ps,log p)
(a,b) means that a is the angle parameter and

b is the length parameter. The top edge is
parametrized by (logps,logpa), the bottom
edge is parametrized by (logge,logqs), and
the other edges are parametrized by (0,0).

(0,0)
(0,0)

(log g2, log g4

Figure 8: Parametrization for the complexified tetrahedron associated to the double twist knot.

{a,k} ={a}{a—1}.. {a—k+1}, [‘g] :% (a—be{0,1,...,N—1}),

_ _ N—1\2  (N-1)?
ro=ala+1—N)=(a— 5 ) — T

The ADO invariant is generalized to colored knotted graphs in [3] whose colors are in
(C\Z/2)U(NZ —1)/2, and it satisfies the following properties.

ADOy (»<:b>i) = Gaa [2“ o } ADOy (-t

C 2a + 1
et 2c+N] ™' s
ADOy (_b»> = > [20 L 1} ADOy <b><b> :
a+b—c=0,1,--- N—1

v
(2Q_) = ADON (-t

ADOy (.20 ) = ¢ ADOy (- —tvr),
(a_’_(y\/b) — T ADOy <a_,_<l;) ’

) = a0 AD0y (1),

b
ADOy (—--”'— —) =N {20+ N, N = 1} g NADO ()

o

>
)
©)
=2

/—g

o

—(Z»—) = ADOy (W) (dual representation).

The ADO invariant of the colored tetrahedral graph is a version of the quantum 65 symbol
and is given in [3] as follows. ADOy(K) is computed formally as follows.

a b e
{d c f}q:ADON v
e

Figure 9: The quantum 63 symbol defined by the colored tetrahedral graph.
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d c f { By }{Bayc}!

mln(B ec a C)
dz: ! Aucf +1-N Bucf +m Bbfd+Bdec_m Bcde+m
2c+m+1— N Bacf Bbfd Bdfb '

m=max(0,—Bpgs +Baec)

506 <Gttt [ 2 T ] " x

where
Ay =2 +y+ 2, By =z+y— 2z
Since
N—-1
2 ) = [2k+ N7 24 N
oy | Q00X | - 32 [557] [3] avon 7
ADOy(K"7") is computed as follows.
ADON(K 7)) =
i 3 I By il
{2k 4+ N,N —1}{2l + N,N — 1} A kS

k,1=0

:q@_t)w—ﬁNzNZ‘{2k+1}{2Z+1}q8<k-”2‘1>2-t“-”2‘”2 RN
{20+ N,N}{2k + N,N} sonlii i)

k,1=0 2
. However, we

To tell the truth, this computation is wrong since the color k, [ is in Z
can perturb the color by €, § and obtain ADON(K%) as the limit ¢ — 0 and 0 — 0 as

follows.
% +d0+¢

e

ADON(K'7) = lm ADOy | ¢ <‘\,’\,’\,’\'§ _

2k 42+ N 20 +25+ N
Z X Ydis+e

2k +2e+1 20426 + 1
qSTk+a—3T(N—1)/2+a—th+5+tT(N—1)/2+5+(S—t)(N—1) /4 ADOy | ¥ Ni+s

N-1 , s
-+ 0

lim
£,0—0
k,1=0

i N2 N-1 {Qk 4+ 2+ 1}{2[ 1+ 925 + 1}q37"k+6_ST(N—I)/2+5_trl+6+tT(N—1)/2+6+(3 t)(N-1)/4
= Jm N3 (2k + 26+ N,N}{20 1 25 + N, N}




TA s L 046
Tt tefttetdktef,
N2 q(s t)(N—-1)2/4 N-1

TN N2 V) §0{2k+25+1}{2l+25+1}x

N—-1 N—-1
qSTk+E_ST(N—1)/2+e_trl+6+t7'(N—1)/2+(§ {Nz 1 +9 2 L+ 5}

Nl el tetdk+e

Now we use L’Hoptal’s rule. The actual computation shows that

0 1]:[7214—5 ML 146 0 [Atys L4
de Fheft bt dk4ef | 0 | Yo T Hdktef,
e=0
9 (M=l NoLoj4y
= . N1 12 )
dr | T3 T3 Ao T |
0 [Mtes 0 peal | o f 2 N gy
05 Mt +eftvetok+ef, | o5 Mt et ek+ef |
:2{_17‘1 S ,
dy T+€T+€k+6 o
0 NZ Lys N g4 A = )
006 |t +et +e+dk+e C 000 | N M ke
9le=6=0 9le=6=0

Therefore, we have

ADON( 2 ) Nq(s t)(N—-1)2 /4

2

8

s(o—(N=1)/2)*—t{y—(N—1)/2)? {

= ‘2
M
<
——

8

k,1=0

w‘
M‘

N p=k,y=I

2

0edd

{2 + N, N}{26 + N, N}

e=0=0
:(_1)N%q(s—t)(zv—1)2/4x
m

o . , (N=1 N-1
Z 1}q( (N=1)/2)*=t(y—(N-1)/2) {N N1 g}
1=0 2 2 U =k y=1
z=k,y
So, to investigate the limit
N—-1
. |ADO(K =)
T N ©
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it is enough to see the part

N-1 o

9 N=1)/2)2—t(y—(N—1)/2)?
> 520y {2z +1}{2y + 1}¢°©

k,l=0

2

‘2

‘2

liyD
<

=
=

),

w‘
w‘

r=k,l=y

5 Saddle points and big cancellation

To investigate (7), we apply the Poisson sum formula and then the saddle point method.
We first rewrite (7) by an analytic funtion. There is an analytic functions @ y(z,y) and
®(z,y) such that

(r2Etl 5 2Ly NoLoNoLg
62’” eN 2N 2N /7 = ﬁ ﬁ ]{,’ 3 q)N(:Evy) ]V—> CI)(x7y)
5 3 q — 00
Note that
N-1 N-1 I min(k+I,N—1) {m}‘g
2 2 —
{¥ ot k}q zax:(kl) {m—kp2{m —1}12{k +1—-m}??
and
log {m}!?

{m — k2 {m — 2 {k+ 1 — m}2 N
N
g (621 = 2+ in)iz-+ (" + (1)) + (i~
2Li, (eiz) + 2Lis (ei('z_fﬂ)) + 2Li, (ei(z—y)) + 9L, (ei(z—y—z)) )

2k+1 2l+1

for v = 25 y =255, 2z = 27T2m+1 Let

pla,y, 2) = (i2)* = 2(ix + iy)iz + (ix)* + (iz) (iy) + (iy)*~
2Li, (%) + 2Ly (€"~)) + 2Li, (¢/79) + 2Li, (/¥ ) |

Then, for z,y € [0, 27], we have

min(k+I,N—1)
{m}?? N
2 (m— k2 {m — D2 {k+1—m}2 N 7 (279"@7%20))

m=max(k,l)

where 7 satisfies 5
E (x,y, Z) =0, (8)

and it corresponds to the maximal value among z € [0,27]. By relacing £ = €@, ( = e,
n = €, the equation (8) is equivalent to the quadratic equation

2 = (E+ 1)(¢+1)n+28¢ =0,

11



and the solutions are given by

1

Z51/2<1/2 ((§1/2 + §—1/2)<<1/2 + 4—1/2) + \/(51/2 + 5—1/2)2@1/2 4 4—1/2)2 _ 16) ]

7’]:

These solutions are both sit on the unit circle and the solution corresponds to the maximal
value is

igl/2cl/2 ((51/2 + 5—1/2)«1/2 + é—1/2) + i\/16 _ (51/2 + 5—1/2)2@1/2 4 <—1/2)2> 7

To =
and zg = %log no. Let ®(x,y) = o(x,y, 20),

2a+1 28+1
\115152(271‘ g§72 B )

P <5123§17”+ &2 QBHWH—M( (5 mi)? — (BN i) + Dy (2#%1,%—25#))).

and

\1151752(2 23]«\[#172 26—0—1)

exp <612g§1m—|—5 26+1m+2—m( (2N )2 —t(wg}v mi)? + O(2r 2t o 25+1))>_

Then

N-1
() ~ D> creaglsy U (2n gt 2n 2

N—oo
61762::|:1 k‘7l=0

. 9)

The Poisson sum formula is the following identity which holds for rapidly decreasing

function f.
S0 = 3 Flm). where fo) = [ &gy,

kEZ mez.
Applying this formula, we get the following.

(7]

N—oo

8182//[ : —Nz ml(ac——)erz(y )) 8§By\1}€1,s2 (l‘, y) d:z:dy
0,27

£1,62= :|:1 mi1,mo€Z

Z myms // 627” 27r(m130+m2y)+s(a: )2 —t(y—m) 2+ (z,y) )dI'dy
0

,2m]2

(10)

int egral by part

mi,mo€Z

In this computation, ~ means that there is an error, but this error is proved to be small
enough and the limit (6) is obtained from the above formula.

Now we apply the saddle point method to (10). The equations to get the saddle points
are the following.

o (27 (maz + may) + s(z — m)* — t(y — )* + D(2,y)) =0,

8% (27 (maz +may) + s(x — ) — t(y — 7)* + @(z,y)) = 0.

(11)

12



The largest contributing parts are m; = 1, mg = +1. Let (¢, yo) be a solution of these
equations for m; = my = 1, then we have the following.

Proposition 5.1. The limit (6) coincides with the imaginary part
Im (27 (w0 + yo) + s(xo — 7)* — t(yo — 7)* + P(0,%0))- (12)

To prove this, we have to check the condition so that we can apply the saddle point
method for the integral (10). In this case, the range of sum for & and [ are wide enough.
It covers all over the unit circle of the complex plane. Moreover, the function ¢ does not
depend on s and t. The function ® is based on the potential function of the colored Jones
polynomial of the Borromean rings. Here we omit the proof for general case, and just
explain for the (6,2) double twist knot.

The condition for applying the saddle point method is that the integral region fully
surrounds the saddle point. We are now considering the function with two variables x
and y. The integral region is two dimensional while the total space is C? and is four
dimensional. The saddle point is sit in this four dimensional space and the meaning of
surrounding the saddle point is explained in Figure 10. In this case, the solution of the
saddle point equation (11) for m; = my =1 is

r = 4.10158 — 0.0767893¢, y = 0.873623 — 0.988685¢,

while the integral region [0,27]? in C2. The saddle point is apart from the integral region,
and we deform this region to the imaginary direction as in the figure so that it passes the
saddle point, and the imaginary value is equal or less to the imaginary value at the saddle
point . The contour for the imaginary part of the function 27 (z +y) + 6(z — m)* — 2(y —
7)24®(z,y)) looks like a cone in this moving picture and the original integral region cuts
this cone completely. This means that the saddle point method is applicable.

Here is another example for the figure eight knot which is (2,2) double twist knot in
Figure 11. This case is the most extremal one. For the other cases, the saddle points are
closer to (m, ), and the contours deforms continuously with respect to (s, t).

Remark. The saddle point equation (11) always has a solution z = y = 7, and the value
Im(27r(:c +y) +6(x —m)* = 2(y — 7)? + ®(z,y)) is equal to Im ®(r, ) = 7.3277. This
large value does not contribute to the sum (9) because we apply integral by part and
therm for m; = my = 0. Such phenomenon also happens for the Chen-Yang conjecture
for the Turaev-Viro invariant. Any solution of the saddle point equation corresponds to a
SL(2, C) representation, and the largest contributing terms comes from |m;| = |ms| = 1
term correspond to the geometric representation. The reason is that 27m,; is the total
angle around the i-th edge comes from the hyperbolic structure of the representation.
The vanishing of the term for m; = 0 is called the big cancellation, and here we give one
explanation why such cancellation happens.

6 Neumann-Zagier function

The last thing we have to do is to show that the imaginary part of the value (12) is equal
to the volume of the knot complement. To do this, we have to connect the results in
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Contours of Im(27(z + y) + 6(z — )% — 2(y — 7)% + ®(x,9)).
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Figure 10: Check the condition for applying the saddle point method for (6,2) double twist knot.

Sections 3 and Section 5, which is given by the following observation showing that the
function @ is equal to the Neumann-Zagier function in [8]. Therefore, the imaginary part
of the value (12) is equal to the volume of the knot complement.

Observation 2. To get the saddle point equation (11), we have to compute g—i(x,y) and
‘2—‘5(1:, y). An actual computation shows that

exp (%g—i(x,yﬁ =p2,  exp (%g—j(%y)) = -

On the other hand, from the construction of the complexified tetrahedron, we see that po,
q4 are eigenvalues of p(hy) and p/(hy) where hy, ho are elements of 7, (S*\ K') for meridians
of the surgery components as in Figure 12 if we assign €™, ¥ to be the eigenvalues of the
p(g23) and p'(g12) which represent the longitudes of the urgery components. Therefore,
O (xz,y) satisfies the same differential equation as the Neumann-Zagier function associated
with the surgeries of two components of the Borromean rings, and the function ®(z,y)
must coincide with it up to a scalar. They are equal for x = y = m, which corresponds to
the Borromean rings. So ®(z,y) is equal to the Neumann-Zagier function.

7 Problems

Here is a list of problems for future work.
1. Generalize Theorem 1 to the complex volume Vol(S5®\ K) + CS(S?\ K)/—1.

2. Generalize Theorem 1 to two-bridge knots.
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Contours of Im(27(z + y) + 6(z — )% — 2(y — 7)% + ®(x,9)).
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Figure 11: Check the condition for applying the saddle point method for the figure eight knot.

ga

)
o m—
(_QGC’Q

Figure 12: Elements of (5% \ B).

3. Generalize Theorem 1 to fully augmented links.

4. Prove the volume conjecture for general knot by using the face model for the colored
Jones polynomial given in [5] and/or the ADO invariant given in [3].

Problem 1 may be solved by looking at the argument carefully. Problem 2 may be solved
by the almost same argument here since the complement of the two-bridge knot can be
decomposed into a combination of compleified teterahedrons whose shapes are similar to
those for double twist knot. Two opposite edges have complexified parameters and other
four edges are ideal points.

To solve problems 3 and 4, we may need more careful argument to check the condition
for applying the saddle point method since the complexified tetrahedrons for these cases
has more than two edges having complexified parameters.
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